
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 1

Interpretable Visual Question Answering by
Reasoning on Dependency Trees

Qingxing Cao, Bailin Li, Xiaodan Liang and Liang Lin

Abstract—Collaborative reasoning for understanding image-question pairs is a very critical but underexplored topic in interpretable
visual question answering systems. Although very recent studies have attempted to use explicit compositional processes to assemble
multiple subtasks embedded in questions, their models heavily rely on annotations or handcrafted rules to obtain valid reasoning
processes, which leads to either heavy workloads or poor performance on compositional reasoning. In this paper, to better align image
and language domains in diverse and unrestricted cases, we propose a novel neural network model that performs global reasoning on
a dependency tree parsed from the question; thus, our model is called a parse-tree-guided reasoning network (PTGRN). This network
consists of three collaborative modules: i) an attention module that exploits the local visual evidence of each word parsed from the
question, ii) a gated residual composition module that composes the previously mined evidence, and iii) a parse-tree-guided
propagation module that passes the mined evidence along the parse tree. Thus, PTGRN is capable of building an interpretable visual
question answering (VQA) system that gradually derives image cues following question-driven parse-tree reasoning. Experiments on
relational datasets demonstrate the superiority of PTGRN over current state-of-the-art VQA methods, and the visualization results
highlight the explainable capability of our reasoning system.

Index Terms—Visual Question Answering, Image and Language Parsing, Deep Reasoning, Attention Model

F

1 INTRODUCTION

THE task of visual question answering (VQA) is to pre-
dict the correct answer given an image and a textual

question. The key to this task is the ability to apply core-
asoning over the image and language domains. However,
most previous methods [1], [2], [3] work in a manner similar
to a black box, i.e., simply mapping the visual content to
the textual words by crafting neural networks. The main
drawback of these methods is the lack of interpretability of
the results, i.e., why are these answers produced? Moreover,
it has been shown that the accuracy of these results may be
improved by overfitting the data bias in the VQA bench-
mark [4] and that not explicitly exploiting the structures
of the text and images leads to unsatisfactory performance
on relational reasoning [5]. Very recently, a few pioneering
works [6], [7], [8] have taken advantage of the inherent
structure of text and images; these works parse the question-
image input into a tree or graph layout and assemble local
features of nodes to predict the answer. For example, the
layout “more(find(ball),find(yellow))” means that the module
should locate the ball and the yellow object in the image
first and then combine the two results to determine whether
there are more balls than yellow objects. However, these
methods rely on either handcrafted rules for understanding
questions or a layout parser that is trained from scratch; the

• This work was supported in part by the National Key Research and De-
velopment Program of China under Grant No. 2016YFB1001004, in part
by National Natural Science Foundation of China (NSFC) under Grant
No. 61976233, 61836012, 61622214, and in part by the Natural Science
Foundation of Guangdong Province under Grant No. 2017A030312006.

• Q.Cao and X. Liang are with the School of Intelligent Systems Engineer-
ing, Sun Yat-sen University, China. B. Li is with DMAI Great China.
L. Lin is with the School of Data and Computer Science, Sun Yat-sen
University, China

• Corresponding author: Xiaodan Liang (E-mail: xdliang328@gmail.com)

first approach requires human experts to design appropriate
rules in a specific domain or requires heavy labor to anno-
tate a specific dataset [9], while the second results in a large
decrease in performance [7]. We argue that these limitations
severely limit the application potential of these approaches
for understanding general image-question pairs that may
contain diverse and open-ended question styles.

To achieve a general and powerful reasoning system that
can enable reasoning over any dependency parse trees of
questions without domain-specific knowledge, we propose
a novel parse-tree-guided reasoning network (PTGRN) that
contains three collaborative modules to perform tailored
reasoning operations for addressing the two most common
word relations in the questions. As shown in Figure 1, given
a specific dependency tree of a question parsed by an off-
the-shelf parser, we construct a reasoning route that follows
the parse tree layout, which is a tree structure composed
of several types of nodes or edges. Our proposed network
then alternately applies three collaborative modules on each
word node for global reasoning to 1) exploit the local visual
evidence of each word guided by the exploited regions of
its child nodes, 2) integrate the messages of child nodes via
gated residual composition, and 3) propagate the hidden
and exploited map toward its parent with respect to the type
of edges. Notably, in contrast to previous methods, PTGRN
is a general and interpretable reasoning VQA framework
that does not require any complicated handcrafted rules or
ground-truth annotations to obtain a specific layout.

Specifically, we observe that the frequently used types
of dependency relations can be categorized into two sets
depending on whether the head is a predicate that describes
the relation of its children (e.g.color← is, is→nose) or a word
described by its child (e.g.furthest→object). We refer to the
first set as a clausal predicate relation, which describes how

ar
X

iv
:1

80
9.

01
81

0v
2 

 [
cs

.C
V

] 
 2

5 
D

ec
 2

01
9



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 2

Fig. 1. Illustration of our parse-tree-guided reasoning network (PTGRN)
that sequentially performs reasoning over a dependency tree parsed
from the question. Conditioned on preceding word nodes, PTGRN al-
ternately mines visual evidence for nodes via an attention module and
integrates the features of child nodes via a gated residual composition
module.

a parent node composes its children, and we refer to the
second as a modifier relation, which will help specify an
object more concretely given the parent-child pairs. Thus,
we design an attention module to unitize the information
propagated from the modifier relations, a gated residual
composition module to compose the messages from child
nodes, and finally, a parse-tree-guided propagation module
to transfer the node’s inner representations to its parent
conditioned on the fine-grained relation types.

First, the attention module mines visual evidence from
the image feature map given the word and encoded atten-
tion maps from child nodes. We sum the encoded attention
maps from child nodes and fuse the result with the image
feature and word encoding. Then, we perform an attention
operation on the fused hidden map to extract new local
visual evidence for the current node. Second, two gated
residual composition modules separately integrate both the
mined local visual evidence and the attention map with the
child nodes. To retain the information from an arbitrary
number of child nodes, the module sums over the child
nodes and learns a gate and a residual that will forget
and update the hidden representations. Finally, the parse-
tree-guided propagation module transforms the composed
visual hidden representation and the attention hidden rep-
resentation based on a head-dependent relation type and
propagates the output message to the parent nodes. This
edge-dependent module is capable of learning to encode
how much of a hidden vector should be persevered given
a specific head-dependent type. Thus, the gated residual
composition module of parent nodes can forget a previ-
ous message if necessary. The hidden and attention output
message of the root node will pass through a multilayer
perceptron to predict the final answer.

A preliminary version of this work is published in
CVPR2018. In this work, we inherit the idea of reasoning
along the dependency parse tree, but we redevelop both
modules such that they depend on specific types of rela-
tions rather than on a coarse-grained modifier relation and
a clausal predicate relation. Furthermore, to improve the
performance on question types of “count” and “compare
number”, we compose and propagate an attention map that
is the same as the hidden representations. These changes
involve fewer manually designed structures and thus lead
to better performance and generalizability. We perform ad-
ditional experiments to show the influence of redeveloped
components, and we evaluate the generalizability against
different tasks.

Extensive experiments show that our model can achieve
state-of-the-art VQA performance on the CLEVR and Fig-
ureQA relational datasets. Moreover, the qualitative results
further demonstrate the interpretability of PTGRN on col-
laborative reasoning over the image and language domains.

Our contributions are summarized as follows. 1) We
present a general and interpretable reasoning VQA system
that follows a general dependency layout composed of mod-
ifier relations and clausal predicate relations. 2) An attention
module is proposed to enforce efficient visual evidence
mining, a gated residual composition module is proposed
for integrating knowledge of child nodes, and a parse-
tree-guided propagation module is proposed to propagate
knowledge along the dependency parse tree.

2 RELATED WORKS

Visual question answering. The VQA task requires corea-
soning over both image and text to infer the correct answer.
The baseline method proposed in the VQA dataset [10] to
solve this task uses a convolutional neural network (CNN)-
long short-term memory (LSTM)-based architecture, which
consists of a CNN to extract image features and an LSTM to
encode the question features. The method combines these
two features to predict the final answer. In recent years,
a large number of works have followed this pipeline and
have achieved substantial improvements over the baseline
model. Among these works, the attention mechanism [2],
[11], [12], [13], [14], [15] and the joint embedding of image
and question representation [3], [16], [17] have been widely
studied. The attention mechanism learns to focus on the
most discriminative subregion rather than the whole im-
age, providing a certain extent of reasoning to the answer.
Different attention methods, such as stacked attention [15]
and coattention between question and image on different
levels [2] consistently improve the performance of the VQA
task. For multimodal joint embedding, Fukui et al. [16], Kim
et al. [3] and Hedi et al. [18] exploited the compact bilinear
method to fuse the embedding of image and question and
incorporate the attention mechanism to further improve
performance.

However, some recently proposed works [4], [19] have
shown that the promising performance of these deep mod-
els might be achieved by exploiting the dataset bias. It
is possible to perform equally well by memorizing the
question-answer (QA) pairs or encoding the question with
the bag-of-words method. To address this concern, newer



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 3

Fig. 2. PTGRN pipeline. Each PTGRN module is composed of an attention module and two gated residual composition modules. Each node
receives the encoded attention map, the hidden features from its children, and the image feature and word encoding. The attention module is
employed to generate a new attention map conditioned on image features, word encodings and previous attended regions given by the child nodes.
The gated residual composition module is trained to evolve a higher-level representation by dropping and integrating features of its children with
local visual evidence. The edge modules transform the output attention and hidden feature according to the question encoding and the relation
types (nmod: nominal modifier, dobj: direct object and nsubj: nominal subject). The blue arrows indicate the propagation process of the attention
map, and the yellow arrows represent the process of the visual hidden representation.

datasets have been released recently. The VQAv2 dataset [4]
was proposed to eliminate data biases by balancing QA
pairs. The CLEVR [5] dataset consists of synthetic images
and provides more complex questions that involve multiple
objects. This dataset has also balanced the answer distribu-
tion to suppress the data bias.

Reasoning model. Some prior works attempted to ex-
plicitly incorporate the knowledge into the network struc-
ture. [20], [21] encoded both images and questions into dis-
crete vectors, such as image attributes or database queries.
These vectors enable the model to query external data
sources for common knowledge and basic factual knowl-
edge to answer questions. [22] actively acquired prede-
fined types of evidence to obtain external information and
predict answers. Other recent works proposed networks
to handle compositional reasoning. [23] augmented a dif-
ferentiable memory and encoded long-term knowledge to
infer answers. The neural reasoning network was recently
proposed to address compositional visual reasoning. Rather
than using a fixed structure to predict the answer to every
question, this line of work assembles a structure layout for
different questions into predefined subtasks. Then, a set of
neural modules is designed to solve a particular subtask.
Some representative works [6], [7] used the sequence-to-
sequence recurrent neural network (RNN) to predict the
postorder of the layout and jointly trained the RNN and
the neural module on the CLEVR dataset by using rein-
forcement learning or expectation maximization. However,
RNN training requires ground-truth layouts for supervision.
The performance drops rapidly on CLEVR if ground-truth
layouts are not used. On the VQA dataset, [6], [24], [25] gen-
erated layouts based on dependency parsing. These three

works first filter the set of dependencies to those connected
to the wh-word at a certain distance. Then, they applied
predefined modules to the remaining words to generate
their inference layout. [6] further used the generated layouts
as supervision to train an RNN layout parser. The parse tree
filter and module assignment include too many manually
designed rules and thus it is difficult to generalize across
tasks. Our work intends to address this problem by applying
a modular network to the raw parse tree. More recently,
[26] proposed an explicitly interpretable modular network
by restricting the modules to pass only attention masks. [9]
converted both question and images into symbolic repre-
sentations and executed symbolic program for reasoning.
These works rely on ground-truth layouts in CLEVR but
achieve high accuracy and interpretable results. In addition
to the tree-structured layout, [27], [28] performed sequential
reasoning with augmented memory. At each step, a time-
dependent module reads the memory based on both the
question and the image and writes a newly generated
encoding to the memory for answer prediction. Different
from these works, our model intends to achieve similar
interpretable compositional reasoning on tree structures [6],
[7], [24], [25] without ground-truth layouts or manually
designed rules [27], [28].

Reasoning with counting-like questions. Counting the ob-
jects in an image has been studied for years. Lempitsky and
Zisserman [29] learned to produce a density map for count-
ing. [30], [31] exploited a convolution network to estimate
density and count target objects. Zhang et al. [32] studied
the problem of salient object subitizing, which recognizes
the number of salient objects when only a few objects are
present. Chattopadhyay et al. [33] further extended this



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 4

approach by employing a divide and conquer strategy;
they divided the image into subregions, counted within the
regions individually, and combined the results.

However, the counting problem has been infrequently
addressed in VQA. Anderson et al. [34] improved the
“counting” question accuracy on VQAv2 [4] by first training
an object detector on the Visual Genome dataset [35]. The
pretrained detector was used to extract the objects from the
VQAv2 dataset, and the attention operation was performed
on candidate objects rather than the grid feature map only.
Trott et al. [36] followed this pipeline, representing each
image as a set of detected objects. Then, they treated the
counting problem as a sequential decision process by de-
ciding which candidate object should be counted at each
step. Finally, they employed reinforcement learning to train
the model. However, this pipeline is limited to counting
questions and cannot be easily applied to other types of
questions. Zhang et al. [37] reported that it is the soft
attention mechanism that limits the counting capability of
VQA models. If one should answer how many cats are in an
image, then cats counted by the normalized attention map
will have weights that sum to 1. Weighted sum pooling
on these cats results in a feature vector that is similar to
a single cat. To resolve this problem, Zhang et al. [37] first
generated an attention weight for each detected object; then,
they performed “soft” nonmaximum suppression on the
weights to count the attended objects.

Inspired by these observations, we separately encode
and propagate the mined visual evidence and attention
map. The attention map at each node will be composed
with its children’s output through a convolution GRU and
will be propagated to its parent. We preserve the feature
of the attended region and utilize it to predict the counting
questions.

3 TREE-STRUCTURED COMPOSITION REASONING
NETWORK

3.1 Overview
Given free-form questions Q and images I , our proposed
PTGRN model learns to predict the answers y and their
corresponding explainable attention maps. We first generate
the tree-structured layout by parsing the input question Q
into a parse tree with an off-the-shelf universal Stanford
Parser [38]. We prune leaf nodes that are not nouns to reduce
computational complexity.

We denote the tree-structured layout as a 3-tuple G =
(u,X,E), and u = (v, q) represents the global attributes
that contain the image feature v and the question encoding
q. X = {wi}i=1:N represents the nodes in the parsed
tree, and N is the number of nodes. Each node is asso-
ciated with word encoding wi in the origin question Q.
E = {ei,j}i,j=1:N represents the set of edges in the parsed
tree, and ei,j denotes the edge type between head node j
and its dependent node i in the dependency parse tree.

We then perform bottom-up visual question reasoning
on the parse tree. Specifically, the image feature v is ex-
tracted from each image via any CNN pretrained on Ima-
geNet (e.g., conv5 features from ResNet-152 [39] or conv4
features from ResNet-101 [39]). The word encoding w is
obtained with Bi-GRU [40]. Each word in the question is first

Fig. 3. Detailed architecture of the attention module. The image feature,
previously attended regions and word encoding are projected to 2048-d
features. Then, they are fused by elementwise multiplication. Finally, the
fused feature is projected to a 1-d attention map and normalized with
softmax.

Fig. 4. The gated residual composition module utilizes the architecture
of a gated recurrent unit to integrate the features of its children with
local visual evidence or attention map. The sum of children input is
considered memory, and the local visual evidence or attention map is
the input at the current step.

Fig. 5. The parse-tree-guided propagation module performs bilinear fu-
sion between the hidden/attention map and question encoding. Different
edge types have the same architecture but different sets of weights.

embedded as a 200-dimensional vector, and then the words
are fed into a bidirectional GRU. The final word encoding w
is the hidden vector of Bi-GRU at its corresponding position,
and the hidden vector at the end of the question is extracted
as question encoding q.

A node j has several inputs: the image feature v,
the question encoding q, the word encoding wj , and the
messages {mij} from its input edge {eij}. The message
mij = [ma

ij ,m
h
ij ] includes the message ma

ij for the attention
map and mh

ij for hidden representation. It generates the
attention map attj with the attention module fa as well
as the hidden representation hj and the attention map
encoding hattj with the gated residual composition module
fh.

The inputs of an edge jk are the hidden representation
hj and the attention map encoding hattj generated by node
j. Given the inputs and the edge type ejk, edge jk generates
the message [ma

jk,m
h
jk] with the parse-tree-guided propaga-

tion module fe and transfers these messages to node k.
We update each node from bottom to top by postorder

traversing the tree. Finally, at root node N , [mh
N ,m

a
N ] are

passed to a multilayer perceptron classifier to predict the
answer, as shown in Figure 2.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 5

3.2 Attention module

In node j, the attention module fa is used to locate the
image region that corresponds to the words encoding wj

and the input attention message {ma
ij}eij∈E . Specifically, as

shown in Figure 3, the input attention feature ãttj of each
node j is first obtained by summing {ma

ij}eij∈E as ãttj .
Then, we project the image feature v, the input attention fea-
ture ãttj and the word encoding wj to 2048-d features and
perform elementwise multiplication on these three 2048-d
features. Finally, the fused 2048-d feature is fed into another
convolution layer, resulting in a new attention map attj . We
further apply softmax to regularize the resulting attention
map into the range [0, 1]. The local image feature vj of node
j is then generated by the weighted sum of each grid in
image feature v given the weights in attention map attj .

3.3 Gated residual composition module

A node j contains two gated residual composition modules
with similar architectures but different weights, as shown
in Figure 4. This module is used to compose the newly
generated attention map attj and local image feature vj
with input messages {ma

ij} and {mh
ij} respectively. In the

preliminary work, the nodes share only weight at the same
level, which contains many parameters and is not suitable
for global reasoning with different parse trees. However,
applying a single node module multiple times essentially
acts as a recurrent network and will suffer from gradient
exploding/vanishing problems. Meanwhile, in the CLEVR
dataset, there are a large number of objects referred to by
their relationships with other objects, such as “left of the
big sphere” or “left of the brown metal”. To answer the
question, the visual representation of “big sphere” is not
necessary and might impact the final prediction. Previously,
we dropped the hidden feature of these nodes when its
head-dependent relation is a modifier relation. We want to
enable the module to learn this drop process rather than
using handcrafted rules. Here, we utilize the widely used
gated recurrent unit to enable the module to learn the drop
process.

As shown in Figure 4, the gated residual composition
module fh first sums the messages of hidden representation
{mh

ij} of its children into h̃j , and then it concatenates h̃j
with extracted local image feature vj . Similar to a gated
recurrent unit, the module generates the reset gate rj and
the update gate zj based on the concatenated [h̃j , vj ]. Then,
the module produces an update vector cj , updates and
outputs the hidden representation hj :

h̃j =
∑

(i,j)∈E

mh
ij

zj = σ(Wz · [h̃j , vj ])
rj = σ(Wr · [h̃j , vj ])
cj = tanh(W · [r ∗ h̃j , vj ])
hj = (1− zj) ∗ h̃j + zj ∗ cj

(1)

To encode the attention map attj , we perform similar
operations. We first sum {ma

ij} to obtain ãttj . Since the
attention map is a 2-dimensional grid, we use the convo-
lution gated recurrent unit to update the attention map

encoding hattj . Compared with our preliminary work, which
has cj = tanh(W · [h̃j , vj ]) and hj = h̃j + cj , in our current
work, we add an update gate and a reset gate to the residual
composition. These two gates can reduce the effect of the
gradient exploding/vanishing problems when applying a
single node multiple times, which enables us to reuse the
node module across multiple parse tree heights. The update
process is also similar to that in Child-Sum Tree-LSTMs [41].
In [41], the LSTM cell calculates forget gates for each of
the memories from its child; we simplify this process by
first summing over the children’s hidden representation and
outputting a single reset and forget gate for updating the
hidden representation hj .

3.4 Parse-tree-guided propagation module
Given the edge jk, the parse-tree-guided propagation mod-
ule is used to transfer the hidden representation hj and the
attention map encoding hattj of node j to messages mh

jk

and ma
jk based on the edge type ejk, as shown in Figure 5.

This module to transfer the hidden representation to its par-
ent node is based on the fine-grained dependency relation
rather than directly blocking the hidden representation or
the attention map based on two coarse-grained categories,
namely, modifier relations and clausal predicate relations.
For different types of edges, we apply the same module on
hidden representation hj but with different sets of weights.
The module performs multimodal bilinear pooling [3] on the
hidden representation hj and the question encoding q. Then,
it generates the message for its parentmh

jk. Specifically, fully
connected layers are applied to project both the hidden
representation hj and the question encoding q into two
feature vectors that have the same size as hj . Then, we
perform elementwise multiplication on these two features
and apply ReLU nonlinearity on the result. Finally, we add
the result to hj , resulting in a hidden vector mh

jk that will
be passed through the edge.

mh
jk = hj +ReLU((Wh

ejk
·hj + bhejk)∗ (W

q
ejk
· q+ bqejk)) (2)

Here, ejk indicates the type of dependency relation between
node j and its parent node k.

When propagating the attention map encoding attj , we
use convolution to project attj , as shown in Figure 5. There
are a total of 22 relation types that reside in the dependency
parse tree for questions in the CLEVR dataset; thus, we have
ejk ∈ [1, 22].

3.5 The proposed PTGRN model
Given the tree-structured layout of the dependency tree,
our PTGRN module is sequentially used on each word
node to mine visual evidence and integrate features of its
child nodes from bottom to top, and then it predicts the
final answer at the root of the tree. Formally, each PTGRN
module can be written as

attj = fa({ma
ij}eij∈E , v, w),

vj = attj ∗ v,
hj = fh({mh

ij}eij∈E , vj),

hattj = fatth ({ma
ij}eij∈E , attj),

mh
jk = fhejk(hj , q),

ma
jk = faejk(h

att
j , q)

(3)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 6

We process each node by postorder traversing on the de-
pendency tree. The type of edge indicates whether a node
serves as a modifier, which can modify their parent node by
referring to a more specific object, or as a subject/object of
its predicate parent node. We thus pass both the attention
map and the hidden representation of a node to its parent
based on the edge such that the parent node can generate a
more precise attention map as attj or integrate the features
of child nodes to enhance the representation given the
predicate word. After propagating through all word nodes,
the output message of the root node [mh

root,m
a
root] is used to

predict the answer. We perform global max pooling on the
encoded attention map ma

root and concatenate it with mh
root.

This concatenated feature is passed through a multilayer
perceptron with three layers to predict the final answer y.

Our model is stacked by a list of node modules with a
tree-structured layout. Weights are shared across all node
modules. The entire model can be trained in an end-to-end
manner with only the supervision signal y.

4 EXPERIMENT

We validate the effectiveness and interpretation capability
of our models on both synthetic datasets (i.e., CLEVR and
FigureQA) that focus mainly on relation reasoning and
natural image datasets (i.e., VQAv2).

4.1 Datasets
CLEVR [5] is a synthesized dataset with 100, 000 images
and 853, 554 questions. The images are photorealistic ren-
dered images with objects of random shapes, colors, materi-
als and sizes. The questions are generated using sets of func-
tional programs, which consist of functions that can filter
certain colors and shapes or compare two objects. Thus, the
reasoning routes required to answer each question can be
precisely determined by the underlying function program.
Unlike natural image datasets, this dataset requires a model
capable of reasoning on relations to answer the questions.

FigureQA [42] is also a synthesized dataset. This dataset
contains 100, 000 images and 1, 327, 368 questions for train-
ing. In contrast to CLEVR, the images are scientific-style
figures. The dataset includes five classes: line plots, dot-line
plots, vertical and horizontal bar graphs, and pie charts.
The questions also concern various relationships between
elements in the figures, such as the maximum, the area
under the curve, intersections, etc. Thus, this dataset also
requires the VQA model to perform relational reasoning on
the plot elements.

The VQAv2 [4] is a widely used VQA benchmark on
natural images. It contains 204, 721 natural images from
COCO [43] and 1, 105, 904 free-form questions. Compared
with its first version [10], this dataset focuses on reducing
dataset biases through balanced pairs: for each question,
there are a pair of images that have different answers.

4.2 Implementation details
For the CLEVR dataset, we employ the same settings used
in [5], [44] to extract image features and word encodings. We
first resize all images to 224 × 224, and then we extract the
conv4 feature from ResNet-101 pretrained on ImageNet. The

resulting 1024×14×14 feature maps are concatenated with a
2-channel coordinate map, which is further fed into a single
3× 3 convolution layer. The resulting 128× 14× 14 feature
maps are also concatenated with the 2-channel coordinate
map and then passed through our PTGRN module. We
encode the questions using a bidirectional GRU with 512-
d hidden states for both directions. The hidden vector of
Bi-GRU at the corresponding word position is extracted
to be this word’s encoding w. The hidden representations
of gated residual composition modules are 128-d for both
hj and hattj . The messages generated by parse-tree-guided
propagation module modules are also 128-d for both the
attention map and the hidden representation. The three-
layer MLP has output sizes of 512, 1024 and 29, where 29 is
the number of candidate answers.

We resize the images in FigureQA to 256 × 256. Then,
we use a five-layer CNN to extract the image features. Each
layer has a 3 × 3 kernel and a stride of 2. The dimensions
of the feature map in the first four layers are 64, and the
last layer has 128-channel outputs. The resulting feature
map is concatenated with the 2-d coordination map. Thus,
the image feature map has a size of 130 × 8 × 8. The hid-
den output representations of gated residual composition
modules and propagation modules are 128-d. The words
in a question are first embedded as a 200-d vector, and
then the whole question is encoded by a bidirectional GRU,
which has 1024-d hidden units in both directions. The word
encoding vector is represented by the GRU hidden vector at
its corresponding position.

For the VQAv2 dataset, we use the image features pro-
vided by a bottom-up attention network [34]. The bottom-
up attention network [34] detects 36 objects for each image
and extracts 2048-d regional features for each object. The
word vectors are extracted from a 512-d bidirectional LSTM
at corresponding positions. The hidden representation and
attention map encoding are 1024-d and 128-d, respectively.
Since attention is performed on 36 objects instead of the
feature map, we use a fully connected layer rather than a
convolutional layer to encode the attention results. Specif-
ically, we concatenate the 36-d attention weights with cor-
responding 4-d bounding box coordinates, then flatten it to
a 36 ∗ 5-d vector, and finally fed the 180-d vector into a
fully-connected layer to produce the 128-d attention map
encoding.

For CLEVR and FigureQA dataset, the model is trained
with the Adam optimizer [47]. The base learning rate is
0.0003 for CLEVR, and it is 0.0001 for FigureQA. The batch
size is 64. The weight decay, β1 and β2 are 0.00001, 0.9, and
0.999, respectively. We train our model on the training split,
and then we evaluate on the validation or test split. For
VQAv2 dataset, we train the model on VQAv2 on training
and validation split with Adamax [47] with a learning rate
of 0.001 and a batch size of 128.

4.3 Comparison with state-of-the-art models

4.3.1 CLEVR dataset
Table 1 shows the performances of different works on the
CLEVR test set. The previous end-to-end modular net-
work [6] and program execution engine [7] are referred
to as N2NMN and PE, respectively. Both approaches use



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 7

Fig. 6. Two examples of the dependency trees of questions and corresponding regions attended by our model at each step on the CLEVR dataset.
The questions are shown on the bottom. The input images and dependency parse trees are shown on the left and lower parts. The arrows in the
dependency tree are drawn from the head words to the dependent words. The curved arrows point to pruned leaf words that are not nouns. Thus,
the word “are” is the root node for both examples.

TABLE 1
Comparison of question answering accuracy on the CLEVR dataset. The performances of question types Exist, Count, Compare Integer, Query,

and Compare are reported in each column. Methods with ∗ are trained with extra program layout annotations.

Method Exist Count Compare
Integer

Query
Attribute

Compare
Attribute Overall

LBP-SIG [44] 79.6 61.3 80.7 88.6 76.3 78.0
N2NMN scratch [6] 72.7 55.1 78.5 83.2 50.9 69.0
N2NMN cloning expert* [6] 83.3 63.3 80.3 87.0 78.5 78.9
N2NMN policy search* [6] 85.7 68.5 84.9 90.0 88.7 83.7
PE-semi-9K* [7] 89.7 79.7 79.7 92.6 96.0 88.6
PE-Strong* [7] 97.7 92.7 98.7 98.1 98.9 96.9
RN [45] 97.8 90.1 93.6 97.9 97.1 95.5
FiLM [46] 99.2 94.5 93.8 99.2 99.0 97.6
MAC [27] 99.5 97.1 99.1 99.5 99.5 98.9
TbD+reg+hres* [26] 99.2 97.6 99.4 99.5 99.6 99.1
NS-VQA* [9] 99.9 99.7 99.9 99.8 99.8 99.8
ACMN 94.2 81.4 81.6 90.5 97.1 89.3
PTGRN 97.9 91.8 95.2 95.5 98.5 95.5

functional programs as the ground-truth layout, and they
train their question parser in a sequence-to-sequence man-
ner with strong supervision. They also have variants that

are trained using signals with semisupervision or no super-
vision. “N2NMN scratch” indicates the end-to-end modular
network without layout supervision and “N2NMN cloning



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 8

Fig. 7. Two examples of the dependency trees of questions and the corresponding regions attended by our model at each step on the FigureQA
dataset.

TABLE 2
Comparison of question answering accuracy on FigureQA validation

and test sets that have alternative color schemes.

Model Val Test
Text only 50.01 50.01
CNN+LSTM 56.16 56.00
CNN+LSTM on VGG-16 features 52.31 52.47
RN 72.54 72.40
Ours 86.25 86.23

expert” shows the results of models trained with full super-
vision. “N2NMN policy search” provides this model’s best
results if it further trains the parser from “N2NMN cloning
expert” with RL. As shown, our model outperforms the
previous models by a large margin without using a dataset-
specific layout, thus showing the good generalizability of
PTGRN. PTGRN also surpasses the program execution
engine [7] variant trained with semisupervision (as “PE-
semi-9K”). Furthermore, PE-Strong [7], NS-VQA [9] and
TbD+reg+hres [26] used extra program layouts as additional
supervision signals. RN [45] and FiLM [46] are black-box
models that lack interpretability. PTGRN not only obtains
comparable accuracy, but also provides more explicit rea-
soning results without dataset-specific layout supervision.

“ACMN” shows the results of our preliminary work. It
performs structured reasoning along the dependency tree
but has three differences. 1) Rather than learning a forget
gate, it drops the attention map or hidden representation
according to whether the edge is a clausal predicate rela-
tion or a modifier relation. 2) It performs fusion between
hidden and question encodings independent of edge type,

but each node shares only weights with other nodes at the
same height. 3) It propagates the attention map without
extra encoding, and the attention module masks the image
feature adversary based on the children’s attention maps.
As shown, our proposed modules significantly improve the
performance by 6.2%.

Figure 6 shows the promising intermediate reasoning
results achieved by PTGRN. The images and the depen-
dency parse trees are shown on the left and bottom. The
attention map that our model obtained at each tree node is
displayed on the right and top. The first example shows that
our model can first locate the “big metallic object”, while
the phrase “same shape” attends the same region. Later, our
model attends all objects except the metallic object given the
phrase “any other things”, and the phrase “are there” ex-
tracts the attended objects’ features and predicts the answer
“no”. The second example first locates the “yellow rubber”
thing, and it attends nothing given the phrase “small red
spheres” because there is no such object in the image. Then,
it sequentially attends the “left” and “shiny things” based
on the yellow rubber object and predicts the answer “yes”.

4.3.2 FigureQA dataset

Table 2 presents the comparisons of our model with prior
works on the FigureQA dataset. The baseline methods “Text
only”, “CNN+LSTM”, “CNN+LSTM on VGG-16 features”
and “RN [45]” were originally reported in [42]. As shown,
PTGRN outperforms all baseline methods by a large margin,
including the relational network, which has achieved great
performance on the CLEVR dataset. This result demon-
strates the generalizability of our model across different



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 9

TABLE 3
Question answering accuracy on VQAv2 test-dev and test-std.

test-dev test-std
Method All Yes/no Numb. Other All Yes/no Numb. Other

Bottom-Up [48] 65.32 81.82 44.21 56.05 65.67 82.20 43.90 56.26
Counter [37] 68.09 83.14 51.62 58.97 68.41 83.56 51.39 59.11

BAN+Glove+Counter [49] 70.04 85.42 54.04 60.52 70.35 - - -
ACMN 63.81 81.59 44.18 53.07 64.05 81.83 43.80 53.22
PTGRN 67.07 83.69 48.47 57.09 67.26 83.67 48.22 57.33

TABLE 4
Comparisons of question answering accuracy on the CLEVR-CoGenT

validation set. Each method is trained on condition A only and
evaluated on both condition A and condition B.

Train A
Model A B

CNN+LSTM+SA 80.3 68.7
PG+EE (18K prog.) 96.6 73.7
CNN+GRU+FiLM 98.3 75.6

CNN+GRU+FiLM 0-Shot 98.3 78.8
Ours 97.35 83.50

datasets. Figure 7 shows the reasoning route on the Fig-
ureQA dataset. The first question queries whether the plot
of purple is greater than that of midnight blue. Our model
successfully locates midnight blue in the first two steps,
and then it locates the dotted purple line and predicts the
answer. The second example first locates several bars that
are “median”, and then it attends the “dark magenta” bar
to predict that it is the low median.

4.3.3 VQAv2 dataset
We compare our model with state-of-art methods on the
VQAv2 dataset, The results are shown in Table 3, and the
intermediate reasoning results are shown in Figure 8.

Compared with bottom-up [48] baseline, our model
gains improvement on overall accuracy and gains large
improvement on “Number” questions. Our model don’t
outperform other state-of-the-art model for the following
two reasons. First, current state-of-the-art models use many
techniques such as multiple glimpse, stacked attention and
data augmentation to achieve high accuracy. These tech-
niques can be applied generally and thus cannot determine
the contribution of a certain model. Second, our model
performs reasoning on dependency parse trees and handles
the compositional reasoning of words in the questions, but
it gains no advantage on reasoning with a single word.
However, as shown in Figure 8, most questions in VQAv2
are structurally simple. They do not require compositional
reasoning of elements in the image but require complex
commonsense reasoning that is outside the image. One of
the most common examples is the word “why”. To give
an interpretable reasoning process, it may need to perform
multistep inference on a commonsense knowledge graph,
which is not included in the VQAv2 dataset.

4.4 CLEVR composition generalization test

The CLEVR composition generalization test (CLEVR-
CoGenT) [5] was proposed to investigate the composition
generalizability of a VQA model. This dataset contains
synthesized images and questions similar to CLEVR, but it
has two conditions: in condition A, all cubes are gray, blue,
brown, or yellow, and all cylinders are red, green, purple,

or cyan; in condition B, cubes and cylinders swap color
palettes. Thus, one model cannot achieve good performance
on condition B by simply memorizing and overfitting the
samples in condition A.

We report the accuracy of our model in Table 4. “Ours”
represents the model that we trained on the CLEVR dataset
with the same settings and hyperparameters. We train it on
a training set that meets condition A and evaluate it on
a validation set that meets condition A and condition B.
Our model achieves 97.35% accuracy on condition A, and it
achieves 83.50% accuracy on condition B without being fine-
tuned on the alternative color scheme set B. Our method
achieves higher accuracy on condition B, while the accuracy
on condition A is similar to PE [7] and FiLM [46]. This
result demonstrates that our model has better composition
generalizability.

In Figure 9, we show our model’s reasoning routes on
the CLEVR-CoGenT condition B validation set. We display
the image and parse tree on the left, and the attention
map at each step is shown on the right. The first questions
query the number of purple blocks and cyan metallic cubes.
When there are no “cyan metallic cubes”, the first step
attends nothing, while the second step successfully attends
the three purple blocks. Note that there is no purple block
in the training set, and our model correctly distinguishes
the purple blocks from the red block. The second example
follows the parsed tree and successively attends the “green
object”, its “left” and the “gray thing”. Gray cylinders are
not present in the training set, but our model can locate the
color “gray” and then predict the answer. These examples
show that our model can locate the color and the object
separately and that it possesses composition generalizability
to a certain extent.

4.5 Ablation studies

We first compare the performance with and without the
redeveloped components in our model. We incrementally
add the modules to the baseline model, and we show the
accuracy on the CLEVR validation set in Table 5.

ACMN The adversarial composition modular net-
work (ACMN) presented in the preliminary work performs
structured reasoning along a general dependency parse tree.
In each node, it first mines local visual evidence with the
adversarial attention module: the image feature is masked
by ReLU(1 − ãtt), where ãtt is the sum of the children’s
attention map; then, the masked image feature is fused with
word embeddings and convolved to a 1-d attention map
att. Then, the attended local image feature v is composed
with the sum of the children’s hidden representation h̃: it
generates the residual by applying a fully connected layer
on concatenated [v, h̃]; then, the residual is added to h̃ and
fused with the question encoding, and the current hidden
h is obtained as the result. Finally, the attention map att
is propagated to its parent if the edge type belongs to a
modifier relation, or hidden h is propagated if the edge is
a clausal predicate relation. Each node will share weights
with other nodes at the same height.

Baseline model Compared with ACMN, the baseline
model has the following changes: 1) each node now shares
its weights with other nodes across different heights in



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 10

Fig. 8. Examples of the dependency trees of questions and the corresponding regions attended by our model at each step on the VQAv2 dataset.

TABLE 5
CLEVR validation accuracy for ablations. We incrementally replace the components of the baseline model with redeveloped modules and report

their results on each row.

Compare Integer Query Compare
Method Exist Count Equal Less More Size Color Material Shape Size Color Material Shape Overall
ACMN 94.20 80.46 74.21 88.98 83.62 93.10 86.42 92.16 89.72 97.17 96.54 95.94 96.64 89.01
baseline 91.38 75.62 76.24 89.00 85.26 92.71 86.20 92.33 89.18 98.29 96.06 97.43 97.05 87.62
+Edge 93.98 80.18 72.18 87.55 84.86 93.37 86.61 92.35 90.36 98.92 98.01 98.20 97.72 89.28
+Edge+GRU 95.23 82.62 83.93 92.04 91.89 92.61 85.92 92.23 89.44 98.56 98.37 97.88 97.69 90.44
+Edge+ConcatAtt 96.38 85.51 86.28 95.37 93.81 95.99 95.22 95.37 94.48 98.74 97.59 98.12 97.66 93.36
+Edge+GRU+ConcatAtt 95.81 86.31 85.44 94.90 93.13 96.03 96.12 95.58 94.06 98.72 98.32 98.23 97.88 93.53
+Edge+GRU+GRUAtt 96.80 87.50 89.00 96.04 95.33 96.76 96.18 96.31 95.11 99.39 98.76 98.27 98.03 94.42
+Edge+GRU+ConvGRUAtt 97.83 91.78 92.08 96.00 96.46 95.90 94.00 95.46 96.15 99.30 98.32 98.52 98.19 95.42

TABLE 6
CLEVR validation accuracy of PTGRN with different word encoding and provided layout.

Compare Integer Query Compare
Method Exist Count Equal Less More Size Color Material Shape Size Color Material Shape Overall
PTGRN (lookup) 92.66 78.03 71.19 86.14 83.68 93.22 86.62 92.92 90.24 94.78 95.52 92.64 93.11 87.75
PTGRN (LSTM) 95.60 86.93 87.55 93.35 93.49 94.61 88.06 93.91 91.92 97.00 95.64 91.19 95.27 91.82
PTGRN (GT layout) 98.67 97.70 97.53 89.79 89.43 98.63 98.04 97.81 97.62 99.91 98.92 98.78 98.47 96.69
PTGRN 97.83 91.78 92.08 96.00 96.46 95.90 94.00 95.46 96.15 99.30 98.32 98.52 98.19 95.42

the parsed tree and 2) the adversarial attention module is
replaced by the proposed one described in section 3.2. To
perform ablation studies on PTGRN, we replace each mod-
ule in the baseline model with our proposed components
and evaluate them incrementally.

Edge-dependent propagation “+Edge” performs ex-
tra edge-dependent feature transformations between chil-
dren and parents. These changes increase the performance
by 0.27% compared to that of ACMN and make the model
easier to apply to different datasets without adjusting the
maximum tree height. Moreover, it is more reasonable to
reuse the same module to perform the same tasks, and the
accuracy is increased by 1.66% over the baseline model.

Gated residual We investigate the effect of the gated
residual module by comparing the accuracy with that of
the “+Edge” model. The “+Edge” model constructs the
mined visual evidence vj and its children nodes’ message
h̃ by concatenating them and performing a linear trans-
form with a fully connected layer, while the “+Edge+GRU”
model replaces it with a GRU, where vj corresponds to

the current input, and the message is the memory. Adding
a GRU improves the accuracy by 1.16%. This result sug-
gests that the GRU module stabilized the recurrent pro-
cess and improved the performance. If the attention map
is encoded into a hidden representation, then whether
the incoming message is gated has little effect on perfor-
mance. With the forgotten gate, the accuracy increases from
93.36% to 93.53%, as shown in “+Edge+ConcatAtt” and
“+Edge+GRU+ConcatAtt”.

Attention map encoding There are multiple methods
for encoding the attention map as a hidden representation.
We evaluate several methods and report their answering
accuracy in Table 5.

The first method is to flatten the attention map, apply a
linear layer, and concatenate the resulting vector to hidden
and propagate it to the parent. In the case of the CLEVR
dataset, the 14 ∗ 14 attention map attj is flattened to a
196-d vector and projected to 128-d feature hattj with two
fully connected layers. Then, it is concatenated with the
mined visual evidence vj . The accuracies are reported as



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 11

Fig. 9. Two examples of the dependency trees of questions and corresponding regions attended by our model at each step on the CLEVR-CoGen
test set.

“+Edge+ConcatAtt” and “+Edge+GRU+ConcatAtt”, where
the first one composes the current hidden [vj , h

att
j ] and

input hidden h̃ by concatenating them, as in the prelimi-
nary work. In “+Edge+GRU+ConcatAtt”, we compose the
[vj , h

att
j ] and h̃ with a GRU-unit, as described in section 3.3.

Both methods pass the original attention map attj to its
parent. “+Edge+ConcatAtt” achieves 93.36% overall accu-
racy. “+Edge+GRU+ConcatAtt” achieves 93.53%, which is
slightly higher than the 93.36% obtained by the model
without GRU. From the accuracy per question type, we
observe that “+Edge+ConcatAtt” performs slightly better
on “compare integer” questions. These results indicate that
updating the encoded attention map and the hidden rep-
resentation together will harm the counting ability of our
model.

The second method investigates the influence of the sep-
arated modules for the attention map. We perform the ex-
periment denoted as “+Edge+GRU+GRUAtt”. This method
also first flattens the attention map to a 196-d vector. Then,
this vector is used to update the input attention feature ãttj
with another GRU rather than concatenating it with mined
visual evidence vj . The output hidden representation of the
GRU hattj will be propagated to its parent node k based
on the edge ejk. Finally, the encoded attention map to the
root node ma

root will be concatenated with the hidden mh
root

and fed into the classifier to predict the answer. It achieves
94.42% overall accuracy on the validation set, which im-
proves the accuracy of the ‘+Edge+GRU+ConcatAtt” base-
line by 0.89%, illustrating that it is necessary to process the

attention map and the hidden representation with different
weights. This result is also consistent with our preliminary
model, which processes the attention map and the hidden
representation differently based on whether the edge is a
modifier relation or a clausal predicate relation.

The last approach is our full model, which is reported as
“+Edge+GRU+ConvGRUAtt”. Compared with the second
one, this approach utilizes the convolution GRU to preserve
spatial information and propagate feature maps across the
tree. We perform global max pooling on the feature map
ma

root and concatenate it with the hidden representation
to predict the final answer. It gains 1% over the second
approach on the validation set. It is shown that preserving
spatial information will lead to better performance.

Bidirectional encoding for pruned words In our
implementation, we pruned leaf nodes that are not nouns
to reduce the computational burden. In this way, we can
ignore determiner and preposition words such as “the”
and “of”. However, this method also prunes some modifier
words such as “big” and “metallic” in Figure 6. Since the
modifiers are near the object words, we use bidirectional
LSTM to extract the hidden representations that encode both
the modifiers and the object words. We train two variants
that use a lookup table and LSTM to extract word encodings.
The results are reported in Table 6 and denoted as “PTGRN
(lookup)” and “PTGRN (LSTM)”, respectively. The lookup
table encoding, which did not consider contexts, led to a
significant accuracy drop from 95.42% to 87.75%. LSTM can
encode the modifier words that precede the object, and thus,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 12

Fig. 10. Quality comparison of the model with and without GRU and the propagation module



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 13

TABLE 7
The accuracy of attention maps on CLVER validation set.

Method MAC [27] PTGRN TbD+reg+hres [26] PTGRN (GT layout)
Accuracy 32.72 64.71 77.11 91.85

its performance slightly drops by 3.6%.
Ground-truth program layout We also investigate the

effectiveness of our neural modules by providing ground-
truth program layouts. The program layouts are used to
generate the questions in CLEVR and are built by com-
posing a set of basic functions into a tree/chain structure.
Each function performs one type of operation based on
object inputs and value inputs. For example, functions with
type “filter color” and value “blue” output the subset of
blue input objects. Given the program layouts, we perform
structured reasoning by considering each function as a node
and applying our neural module. Given a function i, we
encode the value input with a lookup table and use the
result as a word encoding wi; we use the function type
as eij , where j is the subsequent function. The results are
denoted as “PTGRN (GT layout)” in Table 6. It is shown that
our model can achieve results that are good when compared
with other methods that used this layout annotation.

Quality comparison We further compare the reason-
ing results generated by ACMN and PTGRN in Figure 10.
The upper part shows the heat map given by ACMN, and
the lower part displays the results of PTGRN. The first
question queries the number of specific objects. ACMN
correctly attends the “red rubber” things, but it locates only
one of the blue objects; PTGRN has also found the “red
rubber” and locates all of the objects given the phrases
“of things” and “what number”. Finally, PTGRN attends
the two blue objects that are far from the “red rubber” at
the last step. The second example illustrates the process of
locating the “big thing” and the “metal sphere”. Although
both models mined the corresponding objects at each step,
PTGRN can pinpoint the location of these objects.

4.6 Evaluation of interpretability

We evaluate and compare the interpretability of our model
with that of the previous method by calculating how well
the generated attention map matches the ground-truth
bounding boxes. Specifically, the CLEVR dataset provides
functional program layouts for each question. The program
layouts are composed of functions and some functions
output object sets. Given a function output object set and
an attention map, we sum the normalized attention weight
inside the objects’ bounding boxes as the attention accu-
racy on this function. We evaluate the interpretability of a
model by averaging the attention accuracy on all functions
in the program layouts. For MAC [27] and our methods,
the reasoning processes are different from the program
layouts. Thus, for each function, we use the attention map
that achieves highest attention accuracy as the accuracy for
this function. The results are shown in Table 7. Given the
ground-truth layouts, our model achieves better results than
TbD [26]; Our model also outperforms MAC [27] by 31.99%
if the ground-truth layouts are not given, demonstrating the
interpretability of our model.

TABLE 8
Accuracy on CLEVR with randomly perturbed dependency trees.

Percentage of perturb 0 10% 30% 50% 70%
Accuracy 95.42 86.77 69.88 54.21 40.11

4.7 Perturbed tree structure

Since our model relies on the parsed results of the parser, we
perform experiments to investigate the impact of incorrectly
parsed trees. We randomly distort the generated depen-
dency trees to observe the effect on the final prediction.
Specifically, we randomly perturb each dependency relation
with a certain probability by replacing its parent node and
relation edge with a word that is randomly chosen from
the sentence and the possible relations, respectively. The
results are listed in Table 8. As shown, the performance
dramatically decreases as the number of perturbed relations
increases. This result indicates that the parsing results are
crucial to the performance.

5 CONCLUSION

In this paper, we propose a novel parse-tree-guided reason-
ing network (PTGRN) equipped with an attention module, a
gated residual composition module, and a parse-tree-guided
propagation module. In contrast to previous works that rely
on annotations or handcrafted rules to perform explicit com-
positional reasoning, our PTGRN model can automatically
perform an interpretable reasoning process over a general
dependency parse tree based on the question, which can
largely broaden its application fields. The attention module
encourages the model to attend the local visual evidence,
the gated residual composition module can learn to com-
pose and update the knowledge from its child nodes, and
the parse-tree-guided propagation module generates and
propagates the edge-dependent information from children
to their parents. Experiments show that PTGRN can achieve
state-of-the-art VQA performance and good interpretability
without using any specified ground-truth layouts or com-
plicated handcrafted rules.

REFERENCES

[1] M. Malinowski, M. Rohrbach, and M. Fritz, “Ask your neurons: A
neural-based approach to answering questions about images,” in
ICCV, 2015, pp. 1–9.

[2] J. Lu, J. Yang, D. Batra, and D. Parikh, “Hierarchical question-
image co-attention for visual question answering,” in NIPS, 2016,
pp. 289–297.

[3] J.-H. Kim, K. W. On, J. Kim, J. Ha, and B.-T. Zhang,
“Hadamard product for low-rank bilinear pooling,” CoRR, vol.
abs/1610.04325, 2016.

[4] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh,
“Making the V in VQA matter: Elevating the role of image
understanding in Visual Question Answering,” in CVPR, 2017.

[5] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L.
Zitnick, and R. Girshick, “CLEVR: A diagnostic dataset for com-
positional language and elementary visual reasoning,” in CVPR,
2017.

[6] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko, “Learn-
ing to reason: End-to-end module networks for visual question
answering,” in ICCV, 2017.

[7] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, F. Li, C. L.
Zitnick, and R. B. Girshick, “Inferring and executing programs for
visual reasoning,” in ICCV, 2017.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 14

[8] D. Teney, L. Liu, and A. van den Hengel, “Graph-structured
representations for visual question answering,” in CVPR, July
2017.

[9] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenen-
baum, “Neural-symbolic vqa: Disentangling reasoning from vi-
sion and language understanding,” in NIPS, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.
Curran Associates, Inc., 2018, pp. 1031–1042.

[10] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and
D. Parikh, “VQA: Visual Question Answering,” in ICCV, 2015.

[11] I. Ilievski, S. Yan, and J. Feng, “A focused dynamic attention model
for visual question answering,” CoRR, vol. abs/1604.01485, 2016.

[12] H. Xu and K. Saenko, Ask, Attend and Answer: Exploring Question-
Guided Spatial Attention for Visual Question Answering. Cham:
Springer International Publishing, 2016, pp. 451–466.

[13] K. J. Shih, S. Singh, and D. Hoiem, “Where to look: Focus regions
for visual question answering,” in CVPR, 2016.

[14] Y. Zhu, O. Groth, M. S. Bernstein, and L. Fei-Fei, “Visual7w:
Grounded question answering in images,” in CVPR, 2016, pp.
4995–5004.

[15] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola, “Stacked attention
networks for image question answering,” in CVPR, June 2016, pp.
21–29.

[16] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and
M. Rohrbach, “Multimodal compact bilinear pooling for visual
question answering and visual grounding,” in EMNLP, 2016, pp.
457–468.

[17] Z. Yu, J. Yu, J. Fan, and D. Tao, “Multi-modal factorized bilinear
pooling with co-attention learning for visual question answering,”
ICCV, pp. 1839–1848, 2017.

[18] H. Ben-younes, R. Cadene, M. Cord, and N. Thome, “Mutan:
Multimodal tucker fusion for visual question answering,” in ICCV,
Oct 2017.

[19] A. Jabri, A. Joulin, and L. van der Maaten, “Revisiting visual
question answering baselines,” in ECCV, ser. Lecture Notes in
Computer Science, vol. 9912. Springer, 2016, pp. 727–739.

[20] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic
memory networks for natural language processing,” in ICML,
2016, pp. 1378–1387.

[21] P. Wang, Q. Wu, C. Shen, A. van den Hengel, and A. R.
Dick, “FVQA: fact-based visual question answering,” CoRR, vol.
abs/1606.05433, 2016.

[22] Y. Zhu, J. J. Lim, and L. Fei-Fei, “Knowledge Acquisition for Visual
Question Answering via Iterative Querying,” in CVPR, 2017.

[23] C. Xiong, S. Merity, and R. Socher, “Dynamic memory networks
for visual and textual question answering,” in ICML, 2016, pp.
2397–2406.

[24] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, “Neural module
networks,” in CVPR. IEEE Computer Society, 2016, pp. 39–48.

[25] ——, “Learning to compose neural networks for question an-
swering,” in HLT-NAACL. The Association for Computational
Linguistics, 2016, pp. 1545–1554.

[26] D. Mascharka, P. Tran, R. Soklaski, and A. Majumdar, “Trans-
parency by design: Closing the gap between performance and
interpretability in visual reasoning,” in CVPR, June 2018.

[27] D. A. Hudson and C. D. Manning, “Compositional attention
networks for machine reasoning,” in ICLR, 2018.

[28] R. Hu, J. Andreas, T. Darrell, and K. Saenko, “Explainable neu-
ral computation via stack neural module networks,” in ECCV,
September 2018.

[29] V. S. Lempitsky and A. Zisserman, “Learning to count objects in
images,” in NIPS. Curran Associates, Inc., 2010, pp. 1324–1332.

[30] C. Zhang, H. Li, X. Wang, and X. Yang, “Cross-scene crowd count-
ing via deep convolutional neural networks,” in CVPR. IEEE
Computer Society, 2015, pp. 833–841.

[31] D. Oñoro-Rubio and R. J. López-Sastre, “Towards perspective-free
object counting with deep learning,” in ECCV (7), ser. Lecture
Notes in Computer Science, vol. 9911. Springer, 2016, pp. 615–629.

[32] J. Zhang, S. Ma, M. Sameki, S. Sclaroff, M. Betke, Z. Lin, X. Shen,
B. L. Price, and R. Mech, “Salient object subitizing,” International
Journal of Computer Vision, vol. 124, no. 2, pp. 169–186, 2017.

[33] P. Chattopadhyay, R. Vedantam, R. R. Selvaraju, D. Batra, and
D. Parikh, “Counting everyday objects in everyday scenes,” in
CVPR. IEEE Computer Society, 2017, pp. 4428–4437.

[34] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould,
and L. Zhang, “Bottom-up and top-down attention for im-

age captioning and visual question answering,” arXiv preprint
arXiv:1707.07998, 2017.

[35] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,
S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, M. S. Bernstein, and
L. Fei-Fei, “Visual genome: Connecting language and vision using
crowdsourced dense image annotations,” International Journal of
Computer Vision, vol. 123, no. 1, pp. 32–73, May 2017. [Online].
Available: https://doi.org/10.1007/s11263-016-0981-7

[36] A. Trott, C. Xiong, and R. Socher, “Interpretable counting for visual
question answering,” CoRR, vol. abs/1712.08697, 2017.

[37] Y. Zhang, J. Hare, and A. Prügel-Bennett, “Learning to count
objects in natural images for visual question answering,” in ICLR,
2018.

[38] D. Chen and C. D. Manning, “A fast and accurate dependency
parser using neural networks,” in EMNLP, 2014.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR. IEEE Computer Society, 2016, pp.
770–778.

[40] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,”
CoRR, vol. abs/1412.3555, 2014.

[41] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic
representations from tree-structured long short-term memory net-
works,” in ACL (1). The Association for Computer Linguistics,
2015, pp. 1556–1566.

[42] S. E. Kahou, A. Atkinson, V. Michalski, Á. Kádár, A. Trischler,
and Y. Bengio, “Figureqa: An annotated figure dataset for visual
reasoning,” CoRR, vol. abs/1710.07300, 2017.

[43] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, Microsoft COCO: Common Objects in
Context. Cham: Springer International Publishing, 2014, pp. 740–
755.

[44] C. Zhu, Y. Zhao, S. Huang, K. Tu, and Y. Ma, “Structured attentions
for visual question answering,” in ICCV, Oct 2017.

[45] A. Santoro, D. Raposo, D. G. T. Barrett, M. Malinowski, R. Pascanu,
P. Battaglia, and T. P. Lillicrap, “A simple neural network module
for relational reasoning,” CoRR, vol. abs/1706.01427, 2017.

[46] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C. Courville,
“Film: Visual reasoning with a general conditioning layer,” in
AAAI. AAAI Press, 2018.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in ICLR, 2015.

[48] D. Teney, P. Anderson, X. He, and A. van den Hengel, “Tips
and tricks for visual question answering: Learnings from the 2017
challenge,” CoRR, vol. abs/1708.02711, 2017.

[49] J.-H. Kim, J. Jun, and B.-T. Zhang, “Bilinear Attention Networks,”
in NIPS, 2018, pp. 1571–1581.

Qingxing Cao Qingxing Cao is currently a post-
doctoral researcher in the School of Intelligent
Systems Engineering at Sun Yat-sen University,
working with Prof. Xiaodan Liang. He received
his Ph.D. degree from Sun Yat-Sen University
in 2019, advised by Prof. Liang Lin. His current
research interests include computer vision and
visual question answering.

Bailin Li Bailin Li received his B.E. degree
from Jilin University, Changchun, China, in 2016,
and the M.S. degree at Sun Yat-Sen University,
Guangzhou, China, advised by Professor Liang
Lin. He currently leads the model optimization
team at DMAI. His current research interests
include visual reasoning and deep learning (e.g.,
network pruning, neural architecture search).

https://doi.org/10.1007/s11263-016-0981-7


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 15

Xiaodan Liang Xiaodan Liang is currently an
Associate Professor at Sun Yat-sen University.
She was a postdoc researcher in the machine
learning department at Carnegie Mellon Univer-
sity, working with Prof. Eric Xing, from 2016 to
2018. She received her PhD degree from Sun
Yat-sen University in 2016, advised by Liang Lin.
She has published several cutting-edge projects
on human-related analysis, including human
parsing, pedestrian detection and instance seg-
mentation, 2D/3D human pose estimation and

activity recognition.

Liang Lin Liang Lin is CEO of DMAI Great
China and a full professor of Computer Sci-
ence in Sun Yat-sen University. He served as
the Executive Director of the SenseTime Group
from 2016 to 2018, leading the R&D teams
in developing cutting-edge, deliverable solutions
in computer vision, data analysis and mining,
and intelligent robotic systems. He has authored
or co-authored more than 200 papers in lead-
ing academic journals and conferences (e.g.,
TPAMI/IJCV, CVPR/ICCV/NIPS/ICML/AAAI). He

is an associate editor of IEEE Trans, Human-Machine Systems and IET
Computer Vision, and he served as the area/session chair for numerous
conferences, such as CVPR, ICME, ICCV, ICMR. He was the recipient
of Annual Best Paper Award by Pattern Recognition (Elsevier) in 2018,
Dimond Award for best paper in IEEE ICME in 2017, ACM NPAR Best
Paper Runners-Up Award in 2010, Google Faculty Award in 2012, award
for the best student paper in IEEE ICME in 2014, and Hong Kong
Scholars Award in 2014. He is a Fellow of IET.


	1 Introduction
	2 Related Works
	3 Tree-Structured Composition Reasoning Network
	3.1 Overview
	3.2 Attention module
	3.3 Gated residual composition module
	3.4 Parse-tree-guided propagation module
	3.5 The proposed PTGRN model

	4 Experiment
	4.1 Datasets
	4.2 Implementation details
	4.3 Comparison with state-of-the-art models
	4.3.1 CLEVR dataset
	4.3.2 FigureQA dataset
	4.3.3 VQAv2 dataset

	4.4 CLEVR composition generalization test
	4.5 Ablation studies
	4.6 Evaluation of interpretability
	4.7 Perturbed tree structure

	5 Conclusion
	References
	Biographies
	Qingxing Cao
	Bailin Li
	Xiaodan Liang
	Liang Lin


