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Abstract. Image-based virtual try-on systems for fitting a new in-shop
clothes into a person image have attracted increasing research attention,
yet is still challenging. A desirable pipeline should not only transform the
target clothes into the most fitting shape seamlessly but also preserve well
the clothes identity in the generated image, that is, the key characteristics
(e.g. texture, logo, embroidery) that depict the original clothes. However,
previous image-conditioned generation works fail to meet these critical
requirements towards the plausible virtual try-on performance since they
fail to handle large spatial misalignment between the input image and
target clothes. Prior work explicitly tackled spatial deformation using
shape context matching, but failed to preserve clothing details due to
its coarse-to-fine strategy. In this work, we propose a new fully-learnable
Characteristic-Preserving Virtual Try-On Network (CP-VTON) for ad-
dressing all real-world challenges in this task. First, CP-VTON learns
a thin-plate spline transformation for transforming the in-shop clothes
into fitting the body shape of the target person via a new Geometric
Matching Module (GMM) rather than computing correspondences of in-
terest points as prior works did. Second, to alleviate boundary artifacts of
warped clothes and make the results more realistic, we employ a Try-On
Module that learns a composition mask to integrate the warped clothes
and the rendered image to ensure smoothness. Extensive experiments
on a fashion dataset demonstrate our CP-VTON achieves the state-of-
the-art virtual try-on performance both qualitatively and quantitatively.
Code is available at https://github.com/sergeywong/cp-vton.

Keywords: Virtual Try-On · Characteristic-Preserving · Thin Plate
Spline · Image Alignment

1 Introduction

Online apparel shopping has huge commercial advantages compared to tradi-
tional shopping(e.g. time, choice, price) but lacks physical apprehension. To
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Fig. 1. The proposed CP-VTON can generate more realistic image-based virtual try-
on results that preserve well key characteristics of the in-shop clothes, compared to the
state-of-the-art VITON [10].

create a shopping environment close to reality, virtual try-on technology has
attracted a lot of interests recently by delivering product information similar
to that obtained from direct product examination. It allows users to experience
themselves wearing different clothes without efforts of changing them physi-
cally. This helps users to quickly judge whether they like a garment or not and
make buying decisions, and improves sales efficiency of retailers. The traditional
pipeline is to use computer graphics to build 3D models and render the output
images since graphics methods provide precise control of geometric transforma-
tions and physical constraints. But these approaches require plenty of manual
labor or expensive devices to collect necessary information for building 3D mod-
els and massive computations.

More recently, the image-based virtual try-on system [10] without resorting
to 3D information, provides a more economical solution and shows promising re-
sults by reformulating it as a conditional image generation problem. Given two
images, one of a person and the other of an in-shop clothes, such pipeline aims
to synthesize a new image that meets the following requirements: a) the person
is dressed in the new clothes; b) the original body shape and pose are retained;
c) the clothing product with high-fidelity is warped smoothly and seamlessly
connected with other parts; d) the characteristics of clothing product, such as
texture, logo and text, are well preserved, without any noticeable artifacts and
distortions. Current research and advances in conditional image generation (e.g.
image-to-image translation [12,38,5,34,20,6]) make it seem to be a natural ap-
proach of facilitating this problem. Besides the common pixel-to-pixel losses (e.g.
L1 or L2 losses) and perceptual loss [14], an adversarial loss [12] is used to allevi-
ate the blurry issue in some degree, but still misses critical details. Furthermore,
these methods can only handle the task with roughly aligned input-output pairs
and fail to deal with large transformation cases. Such limitations hinder their
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application on this challenging virtual try-on task in the wild. One reason is the
poor capability in preserving details when facing large geometric changes, e.g.
conditioned on unaligned image [23]. The best practice in image-conditional vir-
tual try-on is still a two-stage pipeline VITON [10]. But their performances are
far from the plausible and desired generation, as illustrated in Fig. 1. We argue
that the main reason lies in the imperfect shape-context matching for aligning
clothes and body shape, and the inferior appearance merging strategy.

To address the aforementioned challenges, we present a new image-based
method that successfully achieves the plausible try-on image syntheses while
preserving cloth characteristics, such as texture, logo, text and so on, named as
Characteristic-Preserving Image-based Virtual Try-On Network (CP-VTON). In
particular, distinguished from the hand-crafted shape context matching, we pro-
pose a new learnable thin-plate spline transformation via a tailored convolutional
neural network in order to align well the in-shop clothes with the target person.
The network parameters are trained from paired images of in-shop clothes and a
wearer, without the need of any explicit correspondences of interest points. Sec-
ond, our model takes the aligned clothes and clothing-agnostic yet descriptive
person representation proposed in [10] as inputs, and generates a pose-coherent
image and a composition mask which indicates the details of aligned clothes kept
in the synthesized image. The composition mask tends to utilize the information
of aligned clothes and balances the smoothness of the synthesized image. Ex-
tensive experiments show that the proposed model handles well the large shape
and pose transformations and achieves the state-of-art results on the dataset
collected by Han et al. [10] in the image-based virtual try-on task.

Our contributions can be summarized as follows:

– We propose a new Characteristic-Preserving image-based Virtual Try-On
Network (CP-VTON) that addresses the characteristic preserving issue when
facing large spatial deformation challenge in the realistic virtual try-on task.

– Different from the hand-crafted shape context matching, our CP-VTON in-
corporates a full learnable thin-plate spline transformation via a new Geo-
metric Matching Module to obtain more robust and powerful alignment.

– Given aligned images, a new Try-On Module is performed to dynamically
merge rendered results and warped results.

– Significant superior performances in image-based virtual try-on task achieved
by our CP-VTON have been extensively demonstrated by experiments on
the dataset collected by Han et al. [10].

2 Related Work

2.1 Image synthesis

Generative adversarial networks(GANs) [9] aim to model the real image distri-
bution by forcing the generated samples to be indistinguishable from the real
images. Conditional generative adversarial networks(cGANs) have shown im-
pressive results on image-to-image translation, whose goal is to translate an in-
put image from one domain to another domain [12,38,5,34,18,19,35]. Compared
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L1/L2 loss, which often leads to blurry images, the adversarial loss has become
a popular choice for many image-to-image tasks. Recently, Chen and Koltun [3]
suggest that the adversarial loss might be unstable for high-resolution image
generation. We find the adversarial loss has little improvement in our model. In
image-to-image translation tasks, there exists an implicit assumption that the in-
put and output are roughly aligned with each other and they represent the same
underlying structure. However, most of these methods have some problems when
dealing with large spatial deformations between the conditioned image and the
target one. Most of image-to image translation tasks conditioned on unaligned
images [10,23,37], adopt a coarse-to-fine manner to enhance the quality of final
results. To address the misalignment of conditioned images, Siarohit et al. [31]
introduced a deformable skip connections in GAN, using the correspondences
of the pose points. VITON [10] computes shape context thin-plate spline(TPS)
transofrmation [2] between the mask of in-shop clothes and the predicted fore-
ground mask. Shape context is a hand-craft feature for shape and the matching
of two shapes is time-consumed. Besides, the computed TPS transoformations
are vulnerable to the predicted mask. Inspired by Rocco et al. [27], we design a
convolutional neural network(CNN) to estimate a TPS transformation between
in-shop clothes and the target image without any explicit correspondences of
interest points.

2.2 Person Image generation

Lassner et al. [17] introduced a generative model that can generate human pars-
ing [8] maps and translate them into persons in clothing. But it is not clear
how to control the generated fashion items. Zhao et al. [37] addressed a problem
of generating multi-view clothing images based on a given clothing image of a
certain view. PG2 [23] synthesizes the person images in arbitrary pose, which
explicitly uses the target pose as a condition. Siarohit et al. [31] dealt the same
task as PG2, but using the correspondences between the target pose and the pose
of conditional image. The generated fashion items in [37,23,31], kept consistent
with that of the conditional images. FashionGAN [39] changed the fashion items
on a person and generated new outfits by text descriptions. The goal of virtual
try-on is to synthesize a photo-realistic new image with a new piece of clothing
product, while leaving out effects of the old one. Yoo te al. [36] generated in shop
clothes conditioned on a person in clothing, rather than the reverse.

2.3 Virtual Try-on System

Most virtual try-on works are based on graphics models. Sekine et al. [30] intro-
duced a virtual fitting system that captures 3D measurements of body shape.
Chen et al. [4] used a SCAPE [1] body model to generate synthetic people. Pons-
Moll et al. [26] used a 3D scanner to automatically capture real clothing and
estimate body shape and pose. Compared to graphics models, image-based gen-
erative models are more computationally efficient. Jetchev and Bergmann [13]
proposed a conditional analogy GAN to swap fashion articles, without other
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Fig. 2. An overview of our CP-VTON, containing two main modules. (a) Geometric
Matching Module: the in-shop clothes c and input image representation p are aligned
via a learnable matching module. (b) Try-On Module: it generates a composition mask
M and a rendered person Ir. The final results Io is composed by warped clothes ĉ and
the rendered person Ir with the composition mask M .

descriptive person representation. They didn’t take pose variant into consider-
ation, and during inference, they required the paired images of in-shop clothes
and a wearer, which limits their practical scenarios. The most related work is
VITON [10]. We all aim to synthesize photo-realistic image directly from 2D
images. VITON addressed this problem with a coarse-to-fine framework and
expected to capture the cloth deformation by a shape context TPS transoforma-
tion. We propose an alignment network and a single pass generative framework,
which preserving the characteristics of in-shop clothes.

3 Characteristic-Preserving Virtual Try-On Network

We address the task of image-based virtual try-on as a conditional image gen-
eration problem. Generally, given a reference image Ii of a person wearing in
clothes ci and a target clothes c, the goal of CP-VTON is to synthesize a new
image Io of the wearer in the new cloth co, in which the body shape and pose of
Ii are retained, the characteristics of target clothes c are reserved and the effects
of the old clothes ci are eliminated.

Training with sample triplets (Ii, c, It) where It is the ground truth of Io
and c is coupled with It wearing in clothes ct, is straightforward but unde-
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sirable in practice. Because these triplets are difficult to collect. It is easier if
Ii is same as It, which means that c, It pairs are enough. These paris are in
abundance from shopping websites. But directly training on (It, c, It) harms the
model generalization ability at testing phase when only decoupled inputs (Ii, c)
are available. Prior work [10] addressed this dilemma by constructing a clothing-
agnostic person representation p to eliminate the effects of source clothing item
ci. With (It, c, It) transformed into a new triplet form (p, c, It), training and
testing phase are unified. We adopted this representation in our method and
further enhance it by eliminating less information from reference person image.
Details are described in Sec. 3.1. One of the challenges of image-based virtual
try-on lies in the large spatial misalignment between in-shop clothing item and
wearer’s body. Existing network architectures for conditional image generation
(e.g. FCN [21], UNet [28], ResNet [11]) lack the ability to handle large spatial
deformation, leading to blurry try-on results. We proposed a Geometric Match-
ing Module (GMM) to explicitly align the input clothes c with aforementioned
person representation p and produce a warped clothes image ĉ. GMM is a end-
to-end neural network directly trained using pixel-wise L1 loss. Sec. 3.2 gives
the details. Sec. 3.3 completes our virtual try-on pipeline with a characteristic-
preserving Try-On Module. The Try-On module synthesizes final try-on results
Io by fusing the warped clothes ĉ and the rendered person image Ir. The overall
pipeline is depicted in Fig. 2.

3.1 Person Representation

The original cloth-agnostic person representation [10] aims at leaving out the
effects of old clothes ci like its color, texture and shape, while preserving infor-
mation of input person Ii as much as possible, including the person’s face, hair,
body shape and pose. It contains three components:

– Pose heatmap: an 18-channel feature map with each channel corresponding
to one human pose keypoint, drawn as an 11× 11 white rectangle.

– Body shape: a 1-channel feature map of a blurred binary mask that roughly
covering different parts of human body.

– Reserved regions: an RGB image that contains the reserved regions to main-
tain the identity of a person, including face and hair.

These feature maps are all scaled to a fixed resolution 256×192 and concatenated
together to form the cloth-agnostic person representation map p of k channels,
where k = 18 + 1 + 3 = 22. We also utilize this representation in both our
matching module and try-on module.

3.2 Geometric Matching Module

The classical approach for the geometry estimation task of image matching con-
sists of three stages: (1) local descriptors (e.g. shape context [2], SIFT [22] )
are extracted from both input images, (2) the descriptors are matched across
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images form a set of tentative correspondences, (3) these correspondences are
used to robustly estimate the parameters of geometric model using RANSAC [7]
or Hough voting [16,22].

Rocco et al. [27] mimics this process using differentiable modules so that
it can be trainable end-to-end for geometry estimation tasks. Inspired by this
work, we design a new Geometric Matching Module (GMM) to transform the
target clothes c into warped clothes ĉ which is roughly aligned with input per-
son representation p. As illustrated in Fig. 2, our GMM consists of four parts:
(1) two networks for extracting high-level features of p and c respectively. (2)
a correlation layer to combine two features into a single tensor as input to the
regressor network. (3) the regression network for predicting the spatial trans-
formation parameters θ. (4) a Thin-Plate Spline (TPS) transformation module
T for warping an image into the output ĉ = Tθ(c). The pipeline is end-to-end
learnable and trained with sample triplets (p, c, ct), under the pixel-wise L1 loss
between the warped result ĉ and ground truth ct, where ct is the clothes worn
on the target person in It:

LGMM (θ) = ||ĉ− ct||1 = ||Tθ(c)− ct||1 (1)

The key differences between our approach and Rocco et al. [27] are three-fold.
First, we trained from scratch rather than using a pretrained VGG network. Sec-
ond, our training ground truths are acquired from wearer’s real clothes rather
than synthesized from simulated warping. Most importantly, our GMM is di-
rectly supervised under pixel-wise L1 loss between warping outputs and ground
truth.

3.3 Try-on Module

Now that the warped clothes ĉ is roughly aligned with the body shape of the
target person, the goal of our Try-On module is to fuse ĉ with the target person
and for synthesizing the final try-on result.

One straightforward solution is directly pasting ĉ onto target person image
It. It has the advantage that the characteristics of warped clothes are fully pre-
served, but leads to an unnatural appearance at the boundary regions of clothes
and undesirable occlusion of some body parts (e.g. hair, arms). Another solution
widely adopted in conditional image generation is translating inputs to outputs
by a single forward pass of some encoder-decoder networks, such as UNet [28],
which is desirable for rendering seamless smooth images. However, It is impos-
sible to perfectly align clothes with target body shape. Lacking explicit spatial
deformation ability, even minor misalignment could make the UNet-rendered
output blurry.

Our Try-On Module aims to combine the advantages of both approaches
above. As illustrated in Fig. 2, given a concatenated input of person represen-
tation p and the warped clothes ĉ, UNet simultaneously renders a person image
Ir and predicts a composition mask M . The rendered person Ir and the warped
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clothes ĉ are then fused together using the composition mask M to synthesize
the final try-on result Io:

Io = M � ĉ+ (1−M)� Ir (2)

where � represents element-wise matrix multiplication.
At training phase, given the sample triples (p, c, It), the goal of Try-On Mod-

ule is to minimize the discrepancy between output Io and ground truth It. We
adopted the widely used strategy in conditional image generation problem that
using a combination of L1 loss and VGG perceptual loss [14], where the VGG
perceptual loss is defined as follows:

LVGG(Io, It) =

5∑
i=1

λi ‖φi(Io)− φi(It)‖1 (3)

where φi(I) denotes the feature map of image I of the i-th layer in the visual
perception network φ, which is a VGG19 [32] pre-trained on ImageNet. The layer
i ≥ 1 stands for ’conv1 2’, ’conv2 2’, ’conv3 2’, ’conv4 2’, ’conv5 2’, respectively.

Towards our goal of characteristic-preserving, we bias the composition mask
M to select warped clothes as much as possible by applying a L1 regularization
||1−M ||1 on M . The overall loss function for Try-On Module (TOM) is:

LTOM = λL1||Io − It||1 + λvggLVGG(Î , I) + λmask||1−M ||1. (4)

4 Experiments and Analysis

4.1 Dataset

We conduct our all experiments on the datasets collected by Han et al. [10]. It
contains around 19,000 front-view woman and top clothing image pairs. There
are 16253 cleaned pairs, which are split into a training set and a validation
set with 14221 and 2032 pairs, respectively. We rearrange the images in the
validation set into unpaired pairs as the testing set.

4.2 Quantitative Evaluation

We evaluate the quantitative performance of different virtual try-on methods
via a human subjective perceptual study. Inception Score (IS) [29] is usually
used as to quantitatively evaluate the image synthesis quality, but not suitable for
evaluating this task for that it cannot reflect whether the details are preserved as
described in [10]. We focus on the clothes with rich details since we are interested
in characteristic-preservation, instead of evaluating on the whole testing set. For
simplicity, we measure the detail richness of a clothing image by its total variation
(TV) norm. It is appropriate for this dataset since the background is in pure
color and the TV norm is only contributed by clothes itself, as illustrated in
Fig. 3. We extracted 50 testing pairs with largest clothing TV norm named as
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Fig. 3. From top to bottom, the TV norm values are increasing. Each line shows some
clothes in the same level.

LARGE to evaluate characteristic-preservation of our methods, and 50 pairs
with smallest TV norm named as SMALL to ensure that our methods perform
at least as good as previous state-of-the-art methods in simpler cases.

We conducted pairwise A/B tests on Amazon Mechanical Turk (AMT) plat-
form. Specifically, given a person image and a target clothing image, the worker
is asked to select the image which is more realistic and preserves more details
of the target clothes between two virtual try-on results from different methods.
There is no time limited for these jobs, and each job is assigned to 4 different
workers. Human evaluation metric is computed in the same way as in [10].

4.3 Implementation Details

Training Setup In all experiments, we use λL1 = λvgg = 1. When composition
mask is used, we set λmask = 1. We trained both Geometric Matching Module
and Try-on Module for 200K steps with batch size 4. We use Adam [15] optimizer
with β1 = 0.5 and β2 = 0.999. Learning rate is first fixed at 0.0001 for 100K
steps and then linearly decays to zero for the remaining steps. All input images
are resized to 256× 192 and the output images have the same resolution.

Geometric Matching Module Feature extraction networks for person repre-
sentation and clothes have the similar structure, containing four 2-strided down-
sampling convolutional layers, succeeded by two 1-strided ones, their numbers of
filters being 64, 128, 256, 512, 512, respectively. The only difference is the num-
ber of input channels. Regression network contains two 2-strided convolutional
layers, two 1-strided ones and one fully-connected output layer. The numbers
of filters are 512, 256, 128, 64. The fully-connected layer predicts the x- and y-
coordinate offsets of TPS anchor points, thus has an output size of 2×5×5 = 50.

Try-On Module We use a 12-layer UNet with six 2-strided down-sampling
convolutional layers and six up-sampling layers. To alleviate so-called “checker-
board artifacts”, we replace 2-strided deconvolutional layers normally used for
up-sampling with the combination of nearest-neighbor interpolation layers and
1-strided convolutional layers, as suggested by [25]. The numbers of filters for
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Target
Person

SCMM

GMM

In-shop
Clothes

SCMM
Align

GMM
Align

Fig. 4. Matching results of SCMM and GMM. Warped clothes are directly pasted
onto target persons for visual checking. Our method is comparable with SCMM and
produces less weird results.

down-sampling convolutional layers are 64, 128, 256, 512, 512, 512. The num-
bers of filters for up-sampling convolutional layers are 512, 512, 256, 128, 64, 4.
Each convolutional layer is followed by an Instance Normalization layer [33] and
Leaky ReLU [24], of which the slope is set to 0.2.

4.4 Comparison of Warping Results

Shape Context Matching Module (SCMM) uses hand-crafted descriptors and
explicitly computes their correspondences using an iterative algorithm, which is
time-consumed, while GMM runs much faster. In average, processing a sample
pair takes GMM 0.06s on GPU, 0.52s on CPU, and takes SCMM 2.01s on CPU.
Qualitative results Fig. 4 demonstrates a qualitative comparison of SCMM
and GMM. It shows that both modules are able to roughly align clothes with
target person pose. However, SCMM tends to overly shrink a long sleeve into a
“thin band”, as shown in the 6-th column in Fig. 4. This is because SCMM merely
relies on matched shape context descriptors on the boundary of cloths shape,
while ignores the internal structures. Once there exist incorrect correspondences
of descriptors, the warping results will be weird. In contrast, GMM takes full
advantages of the learned rich representation of clothes and person images to
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Target
Person

In-shop
Clothes

CP-VTON

VITON

Fig. 5. Qualitative comparisons of VITON and CP-VTON. Our CP-VTON success-
fully preserve key details of in-shop clothes.

determinate TPS transformation parameters and more robust for large shape
differences.
Quantitative results It is difficult to evaluate directly the quantitative per-
formance of matching modules due to the lack of ground truth in the testing
phase. Nevertheless, we can simply paste the warped clothes onto the original
person image as a non-parametric warped synthesis method in [10]. We conduct
a perceptual user study following the protocol described in Sec. 4.2, for these two
warped synthesis methods. The synthesized by GMM are rated more realistic
in 49.5% and 42.0% for LARGE and SMALL, which indicates that GMM is
comparable to SCMM for shape alignment.

4.5 Comparison of Try-on Results

Qualitative results Fig. 2 shows that our pipeline performs roughly the same
as VITON when the patterns of target clothes are simpler. However, our pipeline
preserves sharp and intact characteristic on clothes with rich details (e.g. texture,
logo, embroidery) while VITON produces blurry results.

We argue that the failure of VITON lies in its coarse-to-fine strategy and
the imperfect matching module. Precisely, VITON learns to synthesis a coarse
person image at first, then to align the clothes with target person with shape
context matching, then to produce a composition mask for fusing UNet rendered
person with warped clothes and finally producing a refined result. After extensive
training, the rendered person image has already a small VGG perceptual loss
with respect to ground truth. On the other hand, the imperfect matching module
introduces unavoidable minor misalignment between the warped clothes and
ground truth, making the warped clothes unfavorable to perceptual loss. Taken
together, when further refined by truncated perceptual loss, the composition
mask will be biased towards selecting rendered person image rather than warped
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Table 1. Results of pairwise comparisons of images synthesized with LARGE and
SMALL clothes by different models. Each column compares our approach with one
of the baselines. Higher is better. The random chance is at 50%.

Data VITON CP-VTON(w/o mask) CP-VTON(w/o L1 Loss)

LARGE 67.5% 72.5% 84.5%
SMALL 55.0% 42% 38.5%

Target PersonIn-shop Clothes Refined ResultComposition MaskWarped ClothesCoarse Result

Fig. 6. An example of VITON stage II. The composition mask tends to ignore the
details of coarsely aligned clothes.

clothes, despite the regularization of the composition mask(Eq. 4). The VITON’s
“ragged” masks shown in Fig. 6 confirm this argument.

Our pipeline doesn’t address the aforementioned issue by improving match-
ing results, but rather sidesteps it by simultaneously learning to produce a UNet
rendered person image and a composition mask. Before the rendered person
image becomes favorable to loss function, the central clothing region of compo-
sition mask is biased towards warped clothes because it agrees more with ground
truth in the early training stage. It is now the warped clothes rather than the
rendered person image that takes the early advantage in the competition of mask
selection. After that, the UNet learns to adaptively expose regions where UNet
rendering is more suitable than directly pasting. Once the regions of hair and
arms are exposed, rendered and seamlessly fused with warped clothes.

Quantitative results The first column of Table 1 shows that our pipeline
surpasses VITON in the preserving the details of clothes using identical person
representation. According to the table, our approach performs better than other
methods, when dealing with rich details clothes.

4.6 Discussion and Ablation Studies

Effects of composition mask To empirically justify the design of composition
mask and mask L1 regularization (Eq. 4) in our pipeline, we compare it with
two variants for ablation studies: (1): mask composition is also removed and
the final results are directly rendered by UNet as CP-VTON(w/o mask). (2):
the mask composition is used but the mask L1 regularization is removed as
CP-VTON(w/o L1 Loss);

As shown in Fig. 6, even though the warped clothes are roughly aligned
with target person, CP-VTON(w/o mask) still loses characteristic details and
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Fig. 7. Ablation studies on composition mask and mask L1 loss. Without mask com-
position, UNet cannot handle well even minor misalignment and produces undesirable
try-on results. Without L1 regularization on mask, it tends to select UNet-rendered
person, leading to blurry results as well.

produces blurry results. This verifies that encoder-decoder network architecture
like UNet fails to handle even minor spatial deformation.

Though integrated with mask composition, CP-VTON(no L1) performs as
poorly as variant CP-VTON(w/o mask. Fig. 7 shows that composition mask
tends to select rendered person image without L1 regularization. This verifies
that even minor misalignment introduces large perceptual disagreement between
warped clothes and ground truth.

Robustness against minor misalignment In Sec. 4.5 we argue that VITON
is vulnerable to minor misalignment due to its coarse-to-fine strategy, while our
pipeline sidesteps imperfect alignment by simultaneously producing rendered
person and composition mask. This is further clarified below in a controlled
condition with simulated warped clothes.

Specifically, rather than real warped clothes produced by matching mod-
ule, we use the wore clothes collected from person images to simulate perfect
alignment results. We then train VITON stage II, our proposed variant CP-
VTON(w/o mask) and our pipeline. For VITON stage II, we synthesize coarse
person image with its source code and released model checkpoint.

It is predictable that with this “perfect matching module”, all the three meth-
ods could achieve excellent performance in training and validation phase, where
input samples are paired. Next is the interesting part: what if the perfect align-
ment is randomly perturbed within a range of N pixels, to simulate an imperfect
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Fig. 8. Comparisons on the robustness of three methods against minor misalignment
simulated by random shift within radius N . As N increasing, results of CP-VTON
decays more slightly than other methods.

Fig. 9. Some failure cases of our CP-VTON.

matching module? With the perturbation getting greater (N = 0, 5, 10, 15, 20) ,
how fast will the try-on performance decay?

These questions are answered in Fig. 8. As we applying greater perturbation,
the performance of both VITON stage II and CP-VTON(w/o mask) decays
quickly. In contrast, our pipeline shows robustness against perturbation and
manages to preserve detailed characteristic.

Failure cases Fig. 9 shows three failure cases of our CP-VTON method caused
by (1) improperly preserved shape information of old clothes, (2) rare poses and
(3) inner side of the clothes undistinguishable from the outer side, respectively.

5 Conclusions

In this paper, we propose a fully learnable image-based virtual try-on pipeline
towards the characteristic-preserving image generation, named as CP-VTON,
including a new geometric matching module and a try-on module with the
new merging strategy. The geometric matching module aims at aligning in-shop
clothes and target person body with large spatial displacement. Given aligned
clothes, the try-on module learns to preserve well the detailed characteristic of
clothes. Extensive experiments show the overall CP-VTON pipeline produces
high-fidelity virtual try-on results that retain well key characteristics of in-shop
clothes. Our CP-VTON achieves state-of-the-art performance on the dataset
collected by Han et al. [10] both qualitatively and quantitatively.
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