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ABSTRACT
Object categories inherently form a hierarchy with di�erent levels
of concept abstraction, especially for �ne-grained categories. For
example, birds (Aves) can be categorized according to a four-level
hierarchy of order, family, genus, and species. This hierarchy en-
codes rich correlations among various categories across di�erent
levels, which can e�ectively regularize the semantic space and thus
make prediction less ambiguous. However, previous studies of �ne-
grained image recognition primarily focus on categories of one
certain level and usually overlook this correlation information. In
this work, we investigate simultaneously predicting categories of
di�erent levels in the hierarchy and integrating this structured cor-
relation information into the deep neural network by developing a
novel Hierarchical Semantic Embedding (HSE) framework. Speci�-
cally, the HSE framework sequentially predicts the category score
vector of each level in the hierarchy, from highest to lowest. At
each level, it incorporates the predicted score vector of the higher
level as prior knowledge to learn �ner-grained feature representa-
tion. During training, the predicted score vector of the higher level
is also employed to regularize label prediction by using it as soft
targets of corresponding sub-categories. To evaluate the proposed
framework, we organize the 200 bird species of the Caltech-UCSD
birds dataset with the four-level category hierarchy and construct
a large-scale butter�y dataset that also covers four level categories.
Extensive experiments on these two and the newly-released VegFru
datasets demonstrate the superiority of our HSE framework over
the baseline methods and existing competitors.
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1 INTRODUCTION
Object categories inherently form a hierarchy with di�erent levels
of concept abstraction, in which nodes closer to the root of the
hierarchy refer to more abstract concepts while nodes closer to the
leaves refer to �ner-grained concepts. This hierarchy organization
is especially important and obvious for �ne-grained categories. For
example, the �ne-grained categories of birds (Aves) can be orga-
nized with a four-level hierarchy of order, family, genus and species,
where an order consists of several families while a family consists
of several genera, and so on. This category hierarchy provides very
rich semantic correlations among categories across di�erent levels,
which can e�ectively regularize semantic space and provide extra
guidance to attend more subtle regions for better recognition. For
example, to recognize the �ne-grained category of a given object
(e.g., the species of a bird), we might �rst recognize its superclass
(e.g., genus). Then, we prefer to concentrate on the �ne-grained cat-
egories that are subject to this superclass and �xate on object parts
that are more distinguishable among these �ne-grained categories.

Existing methods on �ne-grained image recognition (FGIR) pri-
marily focus on classifying categories of one particular level, e.g.,
categorizing 200 species of birds [25, 50] or 431 models of cars [15],
and usually overlook this correlation information. In this work, we
simultaneously predict categories of all levels in the hierarchy, and
integrate this structured correlation information into the deep neu-
ral network to progressively regularize label prediction and guide
representation learning. To this, we formulate a novel Hierarchical
Semantic Embedding (HSE) framework that orderly predicts the
score vector of each level, from highest to lowest. At each level,
it incorporates the predicted score vector of the higher level as
prior knowledge to learn �ner-grained feature representation. This
is implemented by a semantic guided attentional mechanism that
learns to �xate on more discriminative regions for better distin-
guishing. During training, we also utilize the predicted score vector
of the higher level as soft targets to regularize the label prediction,
thus that the predicted result at this level �nely accords with that
predicted at the higher level.

Caltech-UCSD birds dataset [39] is the most widely used bench-
mark for evaluating the FGIR task. To evaluate our proposed HSE
framework on this benchmark, we organize the 200 bird categories
with a four-level hierarchy of 13 orders, 37 families, 122 genera,
and 200 species according to the ornithological systematics [32, 33].
In addition, we also create a new large-scale butter�y (namely
Butter�y-200) dataset that also covers four-level categories for
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multi-granularity image recognition. Currently, this dataset con-
sists of 200 prevalent species of butter�ies, which are grouped into
116 genera, 23 sub-families, and 5 families according to the insect
taxonomy [34, 38]. It contains 25,279 images in total and at least
30 images per species. It’s worth noting that these category hierar-
chies can be obtained from the literature of taxonomy [33, 38] or
directly retrieved from Wikipedia conveniently, thus the methods
of embedding this structured information can be easily adapted to
various domains.

The major contributions of this work are concluded to three
folds: 1) We formulate a novel Hierarchical Semantic Embedding
(HSE) framework that integrates semantically structured informa-
tion of category hierarchy into the deep neural network for FGIR.
To our knowledge, this is the �rst work that explicitly incorporates
this structured information to aid FGIR. 2) We introduce a four-
level category hierarchy for the Caltech-UCSD birds dataset [39]
and construct a new large-scale butter�y dataset that also covers
four-level categories for evaluation. To our knowledge, these two
datasets are the �rst that involves in four-level categories in FGIR
and they may bene�t research on multi-granularity image recogni-
tion. 3) We conduct experiments on the two and the VegFru [14]
datasets, and demonstrate the e�ectiveness of our proposed HSE
framework over the baseline and existing state-of-the-art methods.
Moreover, we also conduct ablative studies to carefully evaluate
and analyze the contribution of each component of the proposed
framework. The code, trainedmodels, and dataset are available online:
https://github.com/HCPLab-SYSU/HSE.

2 RELATEDWORK
2.1 Fine-grained image recognition
Recent progress on image classi�cation mainly bene�ted from the
advancement of deep Convolutional Neural Networks (CNNs) [3, 4,
11, 22, 23, 35] that learned powerful feature representation via stack-
ing multiple nonlinear transformations. To adapt the deep CNNs for
handling the FGIR task, a bilinear model [25] was proposed to com-
pute high-order image representation that captured local pairwise
interactions between features generated by two independent sub-
networks, but the bilinear feature is extremely high-dimensional,
making it impractical for subsequent analysis. To reduce the feature
dimension while keeping comparable performance on FGIR task,
Gao et al. [9] developed a compact model that approximates bilin-
ear feature with the polynomial kernels. Kong et al. [19] proposed
classi�er co-decomposition to further compress the bilinear model.

To better capture subtle visual di�erence among sub-ordinate
categories, a series works [16, 46, 47] were also proposed to lever-
age extra supervision of bounding boxes and parts to locate dis-
criminative regions. However, the heavy involvement of manual
annotations prevents these methods from application to large-scale
real-world problems. Recently, visual attention models [5, 26, 30, 42]
were intensively proposed to automatically search the informative
regions and various works successfully applied this technique to
FGIR [8, 17, 28, 50]. Liu et al. [28] formulated a reinforcement
learning framework to adaptively glimpse local regions regard-
ing discriminative object parts and trained the framework using a
greedy reward strategy with image-level labels. Zheng et al. [50]
introduced a multi-attention convolutional neural network that

learned channel grouping for parts localization, and aggregated
features from the located regions as well as the global object for
classi�cation. These works learned to locate informative regions
merely based on image content by the self-attention mechanism.
In contrast, some works also introduced extra guidance to learn
more meaningful and semantic-related regions to aid FGIR. For
example, Liu et al., [2, 27] introduce part-based attribute to guide
learning more discriminative features for �ne-grained bird recogni-
tion. Similarly, He et al. [12] further utilized more detailed language
descriptions to help mine discriminative parts or characteristics.

Our framework is also related to some existing works that exploit
category hierarchy. For example, Srivastava et al. [37] exploited
class hierarchy prior to transfer knowledge among similar lower-
level classes for transfer learning. Jia et al. [6] proposed a probabilis-
tic classi�cation model based on a hierarchy and exclusion graph to
capture label relations of mutual exclusion, overlap, and subsump-
tion for object classi�cation. Works [5, 41] utilized an RNN to model
label co-occurrence dependencies for multi-label recognition. In
contrast to these methods that merely model dependencies on label
space, our HSE framework introduces the hierarchical informa-
tion to progressively regularize label prediction and simultaneously
guide learning �ner-grained feature representation. Besides, using
predicted results of the higher level as soft targets for label regular-
ization can distill knowledge learned from the high level to lower
level, which is also original compared with these methods.

2.2 Fine-grained image datasets
In the past decade, datasets of FGIR have intensively emerged
across various domains ranging from man-made objects to natural
plants or animals, including FGVC-Aircraft [29], Stanford Cars [21],
Caltech-UCSD birds [39], Stanford Dogs [18], Oxford Flowers [31],
to name a few. As a representative dataset that was widely used
in previous FGIR works [9, 12, 27], Caltech-UCSD birds dataset
contained 11,788 images and covered 200 species of birds. These
datasets signi�cantly evolved the research of FGIR, but they pri-
marily focus on categories of one certain level, e.g., Caltech-UCSD
birds with 200 species of birds and Stanford Dogs with 120 breeds of
dogs. More recently, there also released some datasets that involved
categories of multiple levels, like CompCars [45], Boxcars [36],
Cars-333 [44] with three-level car categories of make, model, and
year, and VegFru [14] with 25 upper-level categories and 292 sub-
ordinate classes of vegetables and fruits. These datasets mainly
include man-made vehicles [36, 44, 45] and domestic food materi-
als [14]. To better evaluate our proposed frameworks and increase
the diversity of dataset with categories of multiple levels, we further
organize the 200 bird species with four-level category hierarchy
and construct a new butter�y dataset that also covers four-level
categories. Besides the research on FGIR with categories of mul-
tiple levels, these two datasets have potential to bene�t practical
applications of wildlife recognition, protection, and discovery.

3 HSE FRAMEWORK
In this section, we describe the proposed HSE framework in detail.
Given an image, the framework �rst utilizes a trunk network to
extract image feature maps fI ∈ RW

′×H ′×C ′ , whereW ′, H ′ and C ′

denote the width, height and channel number of the feature maps,

https://github.com/HCPLab-SYSU/HSE
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Figure 1: An overall pipeline of our proposed hierarchical semantic embedding framework. It employs a trunk network to
extract image features and subsequently utilizes a branch network to predict the categories of each level. At each level, it
incorporates the predicted score vector to guide learning �ner-grained feature and simultaneously regularizes label prediction
during training.

respectively. Then, it orderly utilizes a small branch network to
predict the score vectors of all levels, from highest to lowest. At each
level, the branch network incorporates the predicted score vector of
higher level as prior guidance to learn �ner-grained representation
via a soft attention mechanism and aggregates this representation
with features learned without guidance to predict the score vector of
this level. During training, we further use the predicted score vector
of higher level as soft targets to regularize the label prediction, such
that the predicted result at this level tends to accord with that
predicted at the higher level. Since there is no guidance at the �rst
level, we merely use the representation learned without guidance
to make prediction and no label regularization is involved either.
Fig. 1 gives an overall illustration of the HSE framework.

Before delving deep into the formulation, we �rst present some
notations associated with our task that will be used throughout this
article. Without loss of generality, we consider the FGIR task with
a category hierarchy of L levels. We utilize l1, l2, . . . , lL to denote
each level and s1, s2, . . . , sL to denote the predicted score vectors
correspondingly. n1, n2, . . . , nL are used to represent the category
number for each level, respectively.

3.1 Semantic embedding representation
learning

As we orderly predict the score vector of each level, si−1 is given
when making prediction at level li . Generally, si−1 encodes the
category that the object of the given image belongs to with a high
probability at level li−1, and make prediction at level li may tend
to distinguish the sub-ordinate categories of this category. As dis-
cussed above, some certain parts play key roles to distinguish the

sub-ordinate categories of a superclass. In this work, we take full
advantage of this information by incorporating si−1 to guide learn-
ing �ner-grained feature representation at level li . Naturally, this
can be implemented by a soft mechanism that learns to �xate on
the discriminative regions under the guidance of si−1.

At level li , we �rst map the image feature maps fI to higher-level
features f̂i ∈ RW ×H×C via

f̂i = ϕi (fI ), (1)

where ϕi (·) is a transformation that is implemented by a small
network. Then, at each location (w,h), we introduce a shared atten-
tional mechanism ai (·) to compute the attention coe�cient vector
under the guidance of si−1 by

êiwh = ai ([f̂iwh ,φi (si−1)]), (2)

where êiwh = {êiwh1, êiwh2, . . . , êiwhC } denote the importance
of each neuron of feature vector fiwh . In the equation, φi (·) is a
linear transformation that transforms si−1 to a semantic feature
vector. To make the coe�cients easily comparable across di�erent
channels, we normalize the coe�cients across all the locations of
each channels c using a softmax function

eiwhc =
exp(êiwhc )∑

w ′,h′ exp(êiw ′h′c )
. (3)

In this way, we can obtain eiwh = {eiwh1, eiwh2, . . . , eiwhC } de-
noting the normalized weight of each neuron of feature vector fiwh .
Finally, we perform weighted average across all locations of each
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Figure 2: An illustration of the semantic guided label regu-
larization. Top: correlations among categories of level li−1
and li . Bottom: si−1 is �rst extended to s′i−1 according to the
structured correlations and si is pulled close to s′i−1 for reg-
ularization.

channel to produce the �nal �ner-grained features

fi =
∑
w,h

eiwh � f̂iwh , (4)

where � denotes the element-wise multiplication operation.
As the feature vector fi pays much attention to the local dis-

criminative regions that may tend to capture subtle di�erence for
distinguishing sub-ordinate categories of a superclass. It may ig-
nore the overall description of the object and some background
information that may provide contextual cues. Thus, we further
extract a feature vector directly from the image feature maps fI
without guidance for complementary. Similarly, we also adopt a
simple transformationψi (·) on fI by

f̂ ′i = ψi (fI ), (5)

where f̂ ′i ∈ R
W ×H×C . Similar to [11], we simply perform average

pooling to obtain the feature vector

f ′i =
1

WH

∑
w,h

f̂ ′iwh . (6)

The obtained feature vectors f ′i , fi and the concatenation of
them [fi , f ′i ] are fed to three classi�ers to predict the score vectors
independently, which are then averaged to produce the �nal score
vector si .
Network details. Similar to recent FGIR works [27, 28], we im-
plement our framework based on the widely used ResNet-50 [11].
Speci�cally, we implement the trunk network with the preceding
41 convolutional layers of the ResNet-50, and the transformations
of ϕi (·), ψi (·) with the following 9 layers of the ResNet-50. We
make the trunk network be shared across di�erent levels to better
balance prediction accuracy and computational e�ciency. φi (·) is
simply implemented by a single fully connected layer that map the
c-dim score vector to a 1,024-dimemsion features and the attention
mechanism ai (·) is implemented by two stacked fully connected
layers, in which the �rst one is c+1,024 to 1,024 followed by the
tanh non-linear function and the second one is 1,024 to c . As we use
the identical architecture with ResNet-50, c is 2,048 in this paper.

3.2 Semantic guided label regularization
The hierarchy encodes rich semantic correlations among categories
across di�erent levels. For example, the ground truth category at
level li is the child sub-category of the ground truth category at
level li−1. This correlation information can e�ectively regularize
semantic space and thus make prediction less ambiguous. These
correlations should also be maintained among predicted categories
of di�erent levels. To this, we incorporate si−1 as soft targets to
regularize label prediction at level li .

Given the predicted score vector si−1 = {si−1,1, si−1,2, . . . , si−1,ni−1 },
a high value si−1,c denotes high con�dence that the object in given
image belongs to category c at level li−1, and the predicted scores
for the corresponding child sub-categories at level li should also
be assigned with high values. To this, we �rst extend si−1 to s′i−1
according to the structured correlations thus that s′i−1 has the same
dimension as si and pull si close to s′i−1, as shown in Fig. 2. Con-
cretely, if category c at level li−1 has k child sub-categories at level
li , we duplicate the score si−1,c by k times. Then we orderly get
these duplicated scores together and re-arrange their subscripts to
obtain the extended score vector s′i−1 = {s

′
i−1,1, s

′
i−1,2, . . . , s

′
i−1,ni }.

To make these two vectors easily comparable, we normalize them
into probability distribution using the softmax function with tem-
perature T

p′Ti−1,c =
exp( s

′
i−1,c
T )∑

c ′ exp(
s ′i−1,c′
T )
,pTi,c =

exp( si,cT )∑
c ′ exp(

si,c′
T )
, (7)

where T is normally set to 1, and we use a high temperature
to produce softer probability distribution over classes in our ex-
periment. In this way, we can obtain two normalized probabil-
ity distributions, i.e., p′Ti−1 = {p

′T
i−1,1,p

′T
i−1,2, . . . ,p

′T
i−1,ni } and pTi =

{pTi,1,p
T
i,2, . . . ,p

T
i,ni }, and de�ne a regularization term as the Kullback-

Leibler divergence from pTi to p′Ti−1

`ri = DKL(p′Ti−1 | |p
T
i ) = −

∑
c
p′Ti−1,c log

pTi,c

p′Ti−1,c
. (8)

As `ri is de�ned on a single sample, we simply sum up `ri over the
training set to de�ne the regularization loss term Lri . As suggested
in [13], when using soft targets that have high entropy, more infor-
mation can be provided than hard target per training sample, and
the gradient between training samples enjoy less variance. Thus, it
can be trained more steadily and using much less training samples.
In our experiments,T is set as 4 to produce a su�ciently soft target.

3.3 Optimization
Besides the regularization term, we also employ the cross-entropy
loss with the correct labels as the objective function. We �rst nor-
malize the predicted score vector using exactly the same logits in
softmax function but at a normal temperature of 1, expressed as

pi,c =
exp(si,c )∑
c ′ exp(si,c ′)

. (9)

Then suppose the ground truth label at level li is ci , its loss can be
de�ned as

`ci = −
∑
c

1(c = ci ) logpi,c , (10)



where 1(·) is the indication function that is assigned as 1 if the
expression is true, and assigned as 0 otherwise. We have de�ne
the same loss for the score vectors predicted by the three classi�er,
respectively. Thus, each sample has four losses, and we sum up the
four losses over the training set to de�ne the classi�cation loss Lci .

The proposed framework consists of a trunk network and L
branch network, and it is trained using a weighted combination of
the classi�cation and regularization losses. The training process is
empirically divided into two stages, i.e. level-wise training followed
by joint �ne tuning.
Stage 1: Level-wise training. When training the branch network
of level li , it needs the predicted score vector of level li−1 to de�ne
the regularization loss. Thus, we �rst train the branch networks in
a level-wise manner, from level l1 to lL . As our framework is imple-
mented based on the ResNet-50 [11], we initialize the parameters
with those of the corresponding layers of ResNet-50 pre-trained
on the ImageNet dataset [7]. Concretely, the parameters of the
trunk network are initialized by those of the corresponding 41 con-
volutional layers and the parameters of the transformation ϕi (·)
and ψi (·) are initialized with those of the 9 corresponding layers.
The parameters of other modules, including the attentional mech-
anism ai (·), semantic mapper φi (·) and the three classi�ers, are
automatically initialized with the Xavier algorithm [10]. As the
trunk network is shared by all branch networks, its parameters are
kept �xed at this stage. We train the branch network of level li with
a weighted combination of the classi�cation and regularization
losses

Li = Lci + γL
r
i , (11)

where γ is a balance parameter. As discussed in [13], the magni-
tudes of the gradients produced by Lri are scaled by 1

T 2 , thus it
is important to multiply them by a scale of T 2. Thus, we set γ as
T 2, i.e., 16 in our experiments. Note that we merely use the clas-
si�cation loss Lc1 to train the branch network of level l1, as there
is no guidance to de�ne the regularization loss term at this level.
Similar to previous works [25, 28] on FGIR task, we resize the input
images to 512 × 512 and perform randomly cropping with a size of
448 × 448 and their horizontal re�ections for data augmentation.
Then, we train the branch network using the stochastic gradient
descent (SGD) algorithm with a batch size of 8, a momentum of
0.9 and a weight decay of 0.00005. The initial learning rate is set as
0.001, and it is divided by 10 when the error plateaus.
Stage 2: Joint �ne tuning. After all branch networks are trained,
we jointly �ne tune the entire framework by combining the loss
terms over all granularities

L = Lc1 +
L∑
i=2
Li . (12)

We adopt the same strategies for data augmentation and hyper-
parameter setting as Stage 1 except using a smaller initial learning
rate 0.0001.

4 DATASETS
We construct a new large-scale butter�y (Butter�y-200) dataset
with four-level categories and organize the 200 bird species of the
Caltech-UCSD Birds (CUB) dataset also with four-level categories.
We evaluate our proposed framework, the baseline methods and
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Figure 3: Some samples and their corresponding hierarchi-
cal labels from the family of "Pieridae" in the Butter�y-200
dataset (the �rst two rows) and from the order of "Passeri-
formes" in the CUB dataset (the last two rows).

the existing competitors on these two and the VegFru [14] datasets.
In this section, we �rst introduce these three datasets.

4.1 Butter�y-200 dataset construction
We select 200 common species of butter�ies and build the hier-
archical structure with 116 genera, 23 subfamilies, and 5 families
according to the insect taxonomy. The butter�y images are col-
lected from two scenarios, natural images with the butter�y in their
natural living environment and standard images with the butter�y
in the form of specimens, as both are widely used in the real-world
applications. The natural images are collected by searching the key-
words of butter�y species names on the internet including Google,
Flicker, Bing, Baidu, etc. The standard images are collected by cap-
turing the samples in Lab. In this way, a large number of candidate
images for each species are collected. To ensure the dataset highly
reliable, the candidate images are carefully identi�ed by four ex-
perts on butter�ies. Currently, we have collected 25,279 butter�y
images of the 200 species, with each species containing 30 images
at least, which are divided into training, validation, and test set for
evaluation. For each species, we randomly select 20% for training,
20% for validation and the rest 60% for test, resulting in a training
of 5,135 images, a validation set of 5,135 images, and a test set of
15,009 images, respectively. Figure 3 shows some samples from the
family of "Pieridae" and their corresponding hierarchical labels.



CUB Butter�y-200
Methods l1: order l2: family l3: genus l4: species l1: family l2: sub-family l3: genus l4: species
Baseline 98.8 95.0 91.5 85.2 98.9 97.6 94.8 85.1

Baseline+backtrack 98.6 95.1 90.9 85.2 98.7 97.2 94.1 85.1
Ours w/o SERL 98.8 95.1 91.9 86.6 98.9 97.4 95.3 85.8
Ours w/o SGLR 98.8 95.6 92.2 86.7 98.9 97.6 95.1 85.5

Ours (full) 98.8 95.7 92.7 88.1 98.9 97.7 95.4 86.1
Table 1: Comparison of the accuracy (in %) of all levels of our HSE framework, two baseline methods, and two variants of our
framework that removes semantic embedding representation learning (Ours w/o SERL) and that removes semantic guided
label regularization (Ours w/o SGLR) on the CUB and Butter�y-200 test sets, respectively.

4.2 Caltech-UCSD birds dataset extenstion
The CUB dataset [39] is the most widely used benchmark for FGIR
task. It covers 200 species of birds and contains 11,788 bird images
that are divided into a training set of 5,994 images and a test set
of 5,794 images. In this work, we build a bird taxonomy hierar-
chy according to the ornithological systematics, which groups the
200 species into 122 genera, 37 families, and 13 orders. We follow
the standard train/test split as [39] for evaluation. Figure 3 also
shows some samples from the order of "Passeriformes" and their
corresponding hierarchical labels.

4.3 VegFru dataset introduction
VegFru [14] is a newly released large-scale dataset for �ne-grained
vegetables and fruits recognition. It covers two-level categories of
25 upper-level categories and 292 subordinate classes. The dataset
contains 160,731 images in total, including a training set of 29,200
images, a validation set of 14,600 images, and a test set of 116,931
images. Similarly, we follow this standard train/val/test splits as [14]
to evaluate our HSE framework and the existing methods for fair
comparison.

5 EXPERIMENT
5.1 Signi�cance of semantic embedding
We �rst implement two baseline methods that use network architec-
ture similar to ours but do not consider the structured correlations
to demonstrate the e�ectiveness of the proposed HSE framework.
Baseline. Similar to our framework, we utilize a trunk network
to extract image features and then utilize four small networks to
predict the category of all levels, separately. For fair comparison,
we also implement the trunk network with the preceding 41 con-
volutional layers of the ResNet-50 and the small network with the
following 9 layers.
Baseline+backtrack. We utilize the baseline methods to predict
the category of the �nest level, and backtrack through the hierarchy
to obtain the categories of the other levels.

We compare the HSE with these two baseline methods on the
CUB and Butter�y-200 datasets in Table 1. Here, we present the
accuracies of all levels for comprehensive comparisons. At level
l1, we �nd the HSE achieves comparable accuracies with those
of the two baseline methods, as there is no semantic guidance at
this level. However, at level l2 to l4, the HSE performs consistently
better than the baseline methods on both datasets. For example
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Figure 4: Analysis of the e�ect of semantic embedding on
network learning. These experiments are conducted on cate-
gories at level l4 on the CUBdataset. (a) and (b) are the curves
of loss v.s. training epoch on the training set and accuracy
v.s. training epoch on the test set, respectively.

on the CUB dataset, the HSE achieves accuracies of 95.7%, 92.7%,
and 88.1%, outperforming the baseline methods by 0.6%, 1.2%, and
2.9%, respectively. It is noteworthy that the improvement is more
obvious for predicting categories of �ner levels, e.g., 1.2% accuracy
improvement at level l3 while 2.9% at level l4 on the CUB dataset.
This phenomenon suggests that incorporating semantic correction
information bene�ts more to challenging tasks.

To delve deep into the e�ect of semantic embedding on network
learning, we further present the curve of loss v.s. training epoch on
the training set and the curve of accuracy v.s. training epoch on the
test set in Fig 4. These experiments are conducted on recognizing
the category of l4 on the CUB dataset. Compared with the baseline,
the HSE can be trained more stably and converged faster.

The foregoing comparisons with the baseline methods demon-
strate the e�ectiveness of the HSE as a whole. Actually, the HSE
incorporates the semantic correlation information from two as-
pects, i.e., semantic embedding representation learning (SERL) and
semantic guided label regularization (SGLR). Here, we further con-
duct ablative studies to assess the actual contributions of these two
components.
Contribution of semantic guided label regularization (SGLR).
We �rst evaluate the contribution of SGLR by comparing the perfor-
mance with and without regularization loss. Speci�cally, we simply
remove the regularization loss terms of each level with others keep
�xed and re-train the model in an identical way. As shown in Table
1, removing this term leads to an obvious drop in performance over
all levels on both datasets.
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Figure 5: Sample number of inter-superclass and intra-
superclass errors of our framework with and without SGLR
on the (a) CUB and (b) Butter�y-200 datasets.

We further analyze how SGLR improves the performance. When
the category of an image is wrongly predicted, we denote it as an
inter-superclass error if the wrongly predicted category and ground
truth category do not belong to the same superclass, and denote it
as an intra-superclass error if they belong to the same superclass.
As discussed before, SGLR regularizes label prediction thus that the
predicted category at level li tends to be the child sub-category of
the predicted category at level li−1. Thus, this tends to help correct
the inter-superclass error. To validate this, we present the sample
number of inter-superclass and the intra-superclass errors at level
l4 of our HSE with and without SGLR on both datasets. As shown
in Fig. 5, introducing SGLR mainly reduces the sample number of
inter-superclass error (17.5% relative reduction on the CUB dataset
and 13.5% on the Butter�y-200 dataset), �nely in accordance with
our motivation.
Contribution of semantic embedding representation learn-
ing (SERL). Here, we evaluate the bene�t of SERL. To this, we
remove the feature embedding module (i.e., ϕi and ai ) and simply
use the feature without guidance for recognition. To ensure fair
comparisons, we also re-train the model with both of the classi�ca-
tion and regularization losses. Similarly, the performance at each
level su�ers from an evident drop on both datasets.

As discussed before, SERL helps to attend regions that help to dis-
tinguish sub-ordinate categories of the predicted superclass of the
higher level. Here, we visualize the attentional regions learned by
our HSE framework in Fig. 6. At each row, we present some samples
of a speci�c species, and the �rst two species belong to the same
genus while the last two belong to another genus. For the samples
from di�erent species of the same genus, our framework actually
attends discriminative regions to better distinguish these species.
For example, to di�erentiate the species of “Bohemian Waxwing”
and “Cedar Waxwing” that belong to the genus of “Phoebastria”,
the HSE pay much attention to the throat and wing tail regions
that provide most discriminative information.

5.2 Comparison with state-of-the-art methods
In this subsection, we compare the HSE framework with existing
state-of-the-art methods on the CUB [39] and VegFru [14] datasets.
Here, we evaluate on recognizing the categories of the �nest level
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Figure 6: Visualization of the attentional regions learned by
the HSE framework. At each row, we present some samples
of a speci�c species, and the �rst two species belong to the
same genus while the last two belong to another genus.

(200 species on CUB and 292 subcategories on VegFru) as existing
methods primarily report their results of this level.
Comparison on Caltech-UCSD birds dataset. CUB dataset is
the most widely used benchmark for FGIR task, and most works
have reported their results on this dataset. We compare our HSE
framework with 17 state-of-the-art methods, including Deep Lo-
calization, Alignment and Classi�cation (DeepLAC) [24], Semantic
Part Detection and Abstraction (SPDA-CNN) [46], Part-RCNN [47],
Part Alignment-based (PA-CNN) [20], Pose Normalized CNN (PN-
CNN) [1], Picking Deep Filter Responses (PDFR) [48], Multiple
Granularity (MG-CNN) [40], Spatial Transformer (ST-CNN) [17],
Bilinear-CNN (B-CNN) [25], Compact Bilinear CNN (CB-CNN) [9],
Two-Level Attention Network (TLAN) [43], Diverse Attention Net-
work (DAN) [49], Fully Convolutional Attentional Network (FCAN) [28],
Recurrent Attention (RA-CNN) [8], Combine Vision and Language
(CVL) [12], Attribute-Guided Attention Localization (AGAL) [27],
Multi-Attentional CNN (MA-CNN) [50]. Among these methods,
some use merely image-level labels (i.e., image-level setting), and
some also use bounding box/parts annotations (i.e., box-level set-
ting); thus we also present these information for fair and direct
comparisons.

Under the box-level setting, the previous well-performing meth-
ods include PN-CNN and B-CNN that achieve accuracies of 85.4%
and 85.1%. However, PN-CNN requires strong supervision of both
human-de�ned bounding box and ground truth parts while B-CNN
relies on a very high-dimension feature representation (250k di-
mensions). Under the image-level setting, most works resort to
attentional model that automatically search the discriminative re-
gions and aggregate deep features of these regions for classi�cation.
For example, MA-CNN learns to attend multiple discriminative
regions, and adopt a CNN to extract the global feature from the
whole and multiple part-CNNs to extract the local feature from
each attentional regions. It achieves an accuracy of 86.5%, which
is the best among existing methods. Di�erent from these methods,
our HSE framework requires no bounding box and part annotations
and does not use multiple CNN to extract local and global features.



Methods BA PA Acc. (%)
Part-RCNN [47]

√ √
76.4

DeepLAC [24]
√ √

80.3
SPDA-CNN [46]

√ √
85.1

PN-CNN [1]
√ √

85.4
Part Alignment-CNN [20]

√
82.8

CB-CNN w/ bbox [9]
√

84.6
FCAN w/ bbox [28]

√
84.7

B-CNN w/ bbox [25]
√

85.1
AGAL w/ bbox [27]

√
85.5

TLAN [43] 77.9
DVAN [49] 79.0

MG-CNN [40] 81.7
B-CNN w/o bbox [25] 84.1

ST-CNN [17] 84.1
FCAN w/o bbox [28] 84.3

PDFR [48] 84.5
CB-CNN w/o bbox [9] 85.0

RA-CNN [8] 85.3
AGAL w/o bbox [27] 85.4

CVL [12] 85.6
MA-CNN [50] 86.5

Ours 88.1
Table 2: Comparisons of our HSE framework with existing
state of the arts on recognizing categories of level l4 on the
CUB dataset. BA and PA denote bounding box annotations
and part annotations, respectively.

√
indicates correspond-

ing annotations are used during training or test.

Instead, it embeds structure information of category hierarchy to
learn �ne-grained feature representation and regularize label pre-
diction, leading to obvious performance improvement, i.e., 88.1% in
accuracy.

Note that our HSE introduces extra guidance of the category
hierarchy. However, this hierarchy can be easily obtained from the
literature of taxonomy or retrieved from the Wikipedia. Besides,
we also compare with existing methods that also rely on extra
supervisions, like AGAL requiring attribute annotations and CVL
depending on sentence description. Our HSE achieves an accuracy
of 88.1%, much better than theirs, i.e., 85.5% and 85.6%, respectively.
Comparison onVegFru dataset.VegFru is a newly released large-
scale dataset for �ne-grained vegetables and fruits recognition, and
some works also report their results on this dataset. Here, we also
present comparisons with the baseline and existing methods on this
dataset in Table 3. As shown, the HSE also signi�cantly outperforms
all these methods.

6 CONCLUSION
Fine-grained categories naturally form a hierarchy with di�erent
levels of concept abstraction, and this hierarchy encodes rich corre-
lations among categories across di�erent levels. In this work, we
investigate simultaneously predicting categories of all levels in the
hierarchy and integrating this structured correlation information
into the deep neural network by developing a novel Hierarchical

Methods Acc. (%)
Baseline 87.1

CB-CNN [9] 82.2
HybridNet [14] 83.5

Ours (full) 89.4
Table 3: Comparison of accuracy of our HSE framework, ex-
isting state-of-the-artmethods, and the baselinemethods on
the VegFru dataset.

Semantic Embedding (HSE) framework. Speci�cally, the HSE or-
derly predicts the score vector for each level, and at each level,
it incorporates the predicted score vector of the higher level to
guide learning �ner-grained feature representation and simultane-
ously regularize label prediction during training. To evaluate the
HSE framework, we extend the Caltech-UCSD birds with four-level
categories and construct a butter�y dataset also with four-level
categories. Extensive experiments and thorough analysis on these
two and the VegFru datasets demonstrate the superiority of the
proposed HSE framework over the baseline methods and existing
competitors.
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