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Abstract. Detecting pedestrian has been arguably addressed as a spe-
cial topic beyond general object detection. Although recent deep learning
object detectors such as Fast/Faster R-CNN [1, 2] have shown excellent
performance for general object detection, they have limited success for
detecting pedestrian, and previous leading pedestrian detectors were in
general hybrid methods combining hand-crafted and deep convolutional
features. In this paper, we investigate issues involving Faster R-CNN
[2] for pedestrian detection. We discover that the Region Proposal Net-
work (RPN) in Faster R-CNN indeed performs well as a stand-alone
pedestrian detector, but surprisingly, the downstream classifier degrades
the results. We argue that two reasons account for the unsatisfactory
accuracy: (i) insufficient resolution of feature maps for handling small
instances, and (ii) lack of any bootstrapping strategy for mining hard
negative examples. Driven by these observations, we propose a very sim-
ple but effective baseline for pedestrian detection, using an RPN followed
by boosted forests on shared, high-resolution convolutional feature maps.
We comprehensively evaluate this method on several benchmarks (Cal-
tech, INRIA, ETH, and KITTI), presenting competitive accuracy and
good speed. Code will be made publicly available.

Keywords: Pedestrian Detection, Convolutional Neural Networks, Boosted
Forests, Hard-negative Mining

1 Introduction

Pedestrian detection, as a key component of real-world applications such as
automatic driving and intelligent surveillance, has attracted special attention
beyond general object detection. Despite the prevalent success of deeply learned
features in computer vision, current leading pedestrian detectors (e.g., [3–6])
are in general hybrid methods that combines traditional, hand-crafted features
[7, 8] and deep convolutional features [9, 10]. For example, in [3] a stand-alone
pedestrian detector [11] (that uses Squares Channel Features) is adopted as
a highly selective proposer (<3 regions per image), followed by R-CNN [12]
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(a) Small positive instances (b) Hard negatives

Fig. 1: Two challenges for Fast/Faster R-CNN in pedestrian detection. (a) Small
objects that may fail RoI pooling on low-resolution feature maps. (b) Hard neg-
ative examples that receive no careful attention in Fast/Faster R-CNN.

for classification. Hand-crafted features appear to be of critical importance for
state-of-the-art pedestrian detection.

On the other hand, Faster R-CNN [2] is a particularly successful method for
general object detection. It consists of two components: a fully convolutional
Region Proposal Network (RPN) for proposing candidate regions, followed by
a downstream Fast R-CNN [1] classifier. The Faster R-CNN system is thus a
purely CNN-based method without using hand-crafted features (e.g., Selective
Search [13] that is based on low-level features). Despite its leading accuracy on
several multi-category benchmarks, Faster R-CNN has not presented competitive
results on popular pedestrian detection datasets (e.g., the Caltech set [14]).

In this paper, we investigate the issues involving Faster R-CNN as a pedes-
trian detector. Interestingly, we find that an RPN specially tailored for pedes-
trian detection achieves competitive results as a stand-alone pedestrian detector.
But surprisingly, the accuracy is degraded after feeding these proposals into the
Fast R-CNN classifier. We argue that such unsatisfactory performance is at-
tributed to two reasons as follows.

First, the convolutional feature maps of the Fast R-CNN classifier are of
low solution for detecting small objects. Typical scenarios of pedestrian detec-
tion, such as automatic driving and intellegent surveillance, generally present
pedestrian instances of small sizes (e.g., 28×70 for Caltech [14]). On small ob-
jects (Fig. 1(a)), the Region-of-Interest (RoI) pooling layer [15, 1] performed on
a low-resolution feature map (usually with a stride of 16 pixels) can lead to
“plain” features caused by collapsing bins. These features are not discriminative
on small regions, and thus degrade the downstream classifier. We note that this
is in contrast to hand-crafted features that have finer resolutions. We address
this problem by pooling features from shallower but higher-resolution layers,
and by the hole algorithm (namely, “à trous” [16] or filter rarefaction [17]) that
increases feature map size.
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Fig. 2: Our pipeline. RPN is used to compute candidate bounding boxes, scores,
and convolutional feature maps. The candidate boxes are fed into cascaded
Boosted Forests (BF) for classification, using the features pooled from the con-
volutional feature maps computed by RPN.

Second, in pedestrian detection the false predictions are dominantly caused
by confusions of hard background instances (Fig. 1(b)). This is in contrast to
general object detection where a main source of confusion is from multiple cat-
egories. To address hard negative examples, we adopt cascaded Boosted Forest
(BF) [18, 19], which performs effective hard negative mining (bootstrapping)
and sample re-weighting, to classify the RPN proposals. Unlike previous meth-
ods that use hand-crafted features to train the forest, in our method the BF
reuses the deep convolutional features of RPN. This strategy not only reduces
the computational cost of the classifier by sharing features, but also exploits the
deeply learned features.

As such, we present a surprisingly simple but effective baseline for pedes-
trian detection based on RPN and BF. Our method overcomes two limitations
of Faster R-CNN for pedestrian detection and gets rid of traditional hand-crafted
features. We present compelling results on several benchmarks, including Cal-
tech [14], INRIA [20], ETH [21], and KITTI [22]. Remarkably, our method has
substantially better localization accuracy and shows a relative improvement of
40% on the Caltech dataset under an Intersection-over-Union (IoU) threshold of
0.7 for evaluation. Meanwhile, our method has a test-time speed of 0.5 second
per image, which is competitive with previous leading methods.

In addition, our paper reveals that traditional pedestrian detectors have been
inherited in recent methods at least for two reasons. First, the higher resolution
of hand-crafted features (such as [7, 8]) and their pyramids is good for detect-
ing small objects. Second, effective bootstrapping is performed for mining hard
negative examples. These key factors, however, when appropriately handled in
a deep learning system, lead to excellent results.

2 Related Work

The Integrate Channel Features (ICF) detector [7], which extends the Viola-
Jones framework [23], is among the most popular pedestrian detectors without
using deep learning features. The ICF detector involves channel feature pyramids
and boosted classifiers. The feature representations of ICF have been improved
in several ways, including ACF [8], LDCF [24], SCF [11], and many others, but
the boosting algorithm remains a key building block for pedestrian detection.



4

Driven by the success of (“slow”) R-CNN [12] for general object detection,
a recent series of methods [11, 4, 5] adopt a two-stage pipeline for pedestrian
detection. In [3], the SCF pedestrian detector [11] is used to propose regions,
followed by an R-CNN for classification; TA-CNN [4] employs the ACF detector
[8] to generate proposals, and trains an R-CNN-style network to jointly optimize
pedestrian detection with semantic tasks; the DeepParts method [5] applies the
LDCF detector [24] to generate proposals and learns a set of complementary
parts by neural networks. We note that these proposers are stand-alone pedes-
trian detectors consisting of hand-crafted features and boosted classifiers.

Unlike the above R-CNN-based methods, the CompACT method [6] learns
boosted classifiers on top of hybrid hand-crafted and deep convolutional features.
Most closely related to our work, the CCF detector [25] is boosted classifiers
on pyramids of deep convolutional features, but uses no region proposals. Our
method has no pyramid, and is much faster and more accurate than [25].

3 Approach

Our approach consists of two components (illustrated in Fig. 2): an RPN that
generates candidate boxes as well as convolutional feature maps, and a Boosted
Forest that classifies these proposals using these convolutional features.

3.1 Region Proposal Network for Pedestrian Detection

The RPN in Faster R-CNN [2] was developed as a class-agnostic detector (pro-
poser) in the scenario of multi-category object detection. For single-category
detection, RPN is naturally a detector for the only category concerned. We spe-
cially tailor the RPN for pedestrian detection, as introduced in the following.

We adopt anchors (reference boxes) [2] of a single aspect ratio of 0.41 (width
to height). This is the average aspect ratio of pedestrians as indicated in [14].
This is unlike the original RPN [2] that has anchors of multiple aspect ratios.
Anchors of inappropriate aspect ratios are associated with few examples, so
are noisy and harmful for detection accuracy. In addition, we use anchors of 9
different scales, starting from 40 pixels height with a scaling stride of 1.3×. This
spans a wider range of scales than [2]. The usage of multi-scale anchors waives
the requirement of using feature pyramids to detect multi-scale objects.

Following [2], we adopt the VGG-16 net [10] pre-trained on the ImageNet
dataset [26] as the backbone network. The RPN is built on top of the Conv5 3
layer, which is followed by an intermediate 3×3 convolutional layer and two
sibling 1×1 convolutional layers for classification and bounding box regression
(more details in [2]). In this way, RPN regresses boxes with a stride of 16 pixels
(Conv5 3). The classification layer provides confidence scores of the predicted
boxes, which can be used as the initial scores of the Boosted Forest cascade that
follows.

It is noteworthy that although we will use the “à trous” [16] trick in the
following section to increase resolution and reduce stride, we keep using the
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same RPN with a stride of 16 pixels. The à trous trick is only exploited when
extracting features (as introduced next), but not for fine-tuning.

3.2 Feature Extraction

With the proposals generated by RPN, we adopt RoI pooling [1] to extract
fixed-length features from regions. These features will be used to train BF as in-
troduced in the next section. Unlike Faster R-CNN which requires to feed these
features into the original fully-connected (fc) layers and thus limits their dimen-
sions, the BF classifier imposes no constraint on the dimensions of features. For
example, we can extract features from RoIs on Conv3 3 (of a stride = 4 pixels)
and Conv4 3 (of a stride = 8 pixels). We pool the features into a fixed resolution
of 7×7. These features from different layers are simply concatenated without
normalization, thanks to the flexibility of the BF classifier; on the contrast, fea-
ture normalization needs to be carefully addressed [27] for deep classifiers when
concatenating features.

Remarkably, as there is no constraint imposed to feature dimensions, it is
flexible for us to use features of increased resolution. In particular, given the fine-
tuned layers from RPN (stride = 4 on Conv3, 8 on Conv4, and 16 on Conv5), we
can use the à trous trick [16] to compute convolutional feature maps of higher
resolution. For example, we can set the stride of Pool3 as 1 and dilate all Conv4
filters by 2, which reduces the stride of Conv4 from 8 to 4. Unlike previous
methods [17, 16] that fine-tune the dilated filters, in our method we only use
them for feature extraction, without fine-tuning a new RPN.

Though we adopt the same RoI resolution (7×7) as Faster R-CNN [2], these
RoIs are on higher-resolution feature maps (e.g., Conv3 3, Conv4 3, or Conv4 3
à trous) than Fast R-CNN (Conv5 3). If an RoI’s input resolution is smaller
than output (i.e., < 7 × 7), the pooling bins collapse and the features become
“flat” and not discriminative. This problem is alleviated in our method, as it is
not constrained to use features of Conv5 3 in our downstream classifier.

3.3 Boosted Forest

The RPN has generated the region proposals, confidence scores, and features,
all of which are used to train a cascaded Boosted Forest classifier. We adopt
the RealBoost algorithm [18], and mainly follow the hyper-parameters in [6].
Formally, we bootstrap the training by 6 times, and the forest in each stage
has {64, 128, 256, 512, 1024, 1536} trees. Initially, the training set consists of all
positive examples (∼50k on the Caltech set) and the same number of randomly
sampled negative examples from the proposals. After each stage, additional hard
negative examples (whose number is 10% of the positives, ∼5k on Caltech) are
mined and added into the training set. Finally, a forest of 2048 trees is trained
after all bootstrapping stages. This final forest classifier is used for inference.
Our implementation is based on [28].

We note that it is not necessary to handle the initial proposals equally, be-
cause our proposals have initial confidence scores computed by RPN. In other
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words, the RPN can be considered as the stage-0 classifier f0, and we set
f0 = 1

2 log s
1−s following the RealBoost form where s is the score of a pro-

posal region (f0 is a constant in standard boosting). The other stages are as in
standard RealBoost.

3.4 Implementation Details

We adopt single-scale training and testing as in [15, 1, 2], without using feature
pyramids. An image is resized such that its shorter edge has N pixels (N=720
pixels on Caltech, 600 on INRIA, 810 on ETH, and 500 on KITTI). For RPN
training, an anchor is considered as a positive example if it has an Intersection-
over-Union (IoU) ratio greater than 0.5 with one ground truth box, and oth-
erwise negative. We adopt the image-centric training scheme [1, 2], and each
mini-batch consists of 1 image and 120 randomly sampled anchors for comput-
ing the loss. The ratio of positive and negative samples is 1:5 in a mini-batch.
Other hyper-parameters of RPN are as in [2], and we adopt the publicly available
code of [2] to fine-tune the RPN. We note that in [2] the cross-boundary anchors
are ignored during fine-tuning, whereas in our implementation we preserve the
cross-boundary negative anchors during fine-tuning, which empirically improves
accuracy on these datasets.

With the fine-tuned RPN, we adopt non-maximum suppression (NMS) with
a threshold of 0.7 to filter the proposal regions. Then the proposal regions are
ranked by their scores. For BF training, we construct the training set by selecting
the top-ranked 1000 proposals (and ground truths) of each image. The tree depth
is set as 5 for the Caltech and KITTI set, and 2 for the INRIA and ETH set,
which are empirically determined according to the different sizes of the data sets.
At test time, we only use the top-ranked 100 proposals in an image, which are
classified by the BF.

4 Experiments and Analysis

4.1 Datasets

We comprehensively evaluate on 4 benchmarks: Caltech [14], INRIA [20], ETH
[21] and KITTI [22]. By default an IoU threshold of 0.5 is used for determining
True Positives in these datasets.

On Caltech [14], the training data is augmented by 10 folds (42782 images)
following [3]. 4024 images in the standard test set are used for evaluation on
the original annotations under the “reasonable” setting (pedestrians that are at
least 50 pixels tall and at least 65% visible) [14]. The evaluation metric is log-
average Miss Rate on False Positive Per Image (FPPI) in [10−2, 100] (denoted
as MR−2 following [29], or in short MR). In addition, we also test our model on
the new annotations provided by [29], which correct the errors in the original
annotations. This set is denoted as “Caltech-New”. The evaluation metrics in
Caltech-New are MR−2 and MR−4, corresponding to the log-average Miss Rate
on FPPI ranges of [10−2, 100] and [10−4, 100], following [29].
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(c) 100 proposals

Fig. 3: Comparison of RPN and three existing methods in terms of proposal
quality (recall vs. IoU) on the Caltech set, with on average 1, 4 or 100 proposals
per image are evaluated.

The INRIA [20] and ETH [21] datasets are often used for verifying the gen-
eralization capability of the models. Following the settings in [30], our model is
trained on the 614 positive and 1218 negative images in the INRIA training set.
The models are evaluated on the 288 testing images in INRIA and 1804 images
in ETH, evaluated by MR−2.

The KITTI dataset [22] consists of images with stereo data available. We
perform training on the 7481 images of the left camera, and evaluate on the
standard 7518 test images. KITTI evaluates the PASCAL-style mean Average
Precision (mAP) under three difficulty levels: “Easy”, “Moderate”, and “Hard”1.

4.2 Ablation Experiments

In this subsection, we conduct ablation experiments on the Caltech dataset.

Is RPN good for pedestrian detection?
In Fig. 3 we investigate RPN in terms of proposal quality, evaluated by the

recall rates under different IoU thresholds. We evaluate on average 1, 4, or 100
proposals per image2. Fig. 3 shows that in general RPN performs better than
three leading methods that are based on traditional features: SCF [11], LDCF
[24] and Checkerboards [31]. With 100 proposals per image, our RPN achieves
>95% recall at an IoU of 0.7.

More importantly, RPN as a stand-alone pedestrian detector achieves an MR
of 14.9% (Table 1). This result is competitive and is better than all but two state-
of-the-art competitors on the Caltech dataset (Fig. 4). We note that unlike RoI
pooling that may suffer from small regions, RPN is essentially based on fixed-
size sliding windows (in a fully convolutional fashion) and thus avoids collapsing
bins. RPN predicts small objects by using small anchors.

1 http://www.cvlibs.net/datasets/kitti/eval object.php
2 To be precise, “on average k proposals per image” means that for a dataset with M

images, the top-ranked kM proposals are taken to evaluate the recall.
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method RoI features MR (%)

RPN stand-alone - 14.9

RPN + R-CNN raw pixels 13.1

RPN + Fast R-CNN Conv5 3 20.2

RPN + Fast R-CNN Conv5 3, à trous 16.2

RPN + BF Conv5 3 18.2

RPN + BF Conv4 3 12.6

RPN + BF Conv5 3, à trous 13.7

Table 1: Comparisons of different classifiers and features on the Caltech set.
All methods are based on VGG-16 (including R-CNN). The same set of RPN
proposals are used for all entries.

RoI features time/img MR (%)

Conv2 2 0.37s 15.9

Conv3 3 0.37s 12.4

Conv4 3 0.37s 12.6

Conv5 3 0.37s 18.2

Conv3 3, Conv4 3 0.37s 11.5

Conv3 3, Conv4 3, Conv5 3 0.37s 11.9

Conv3 3, (Conv4 3, à trous) 0.51s 9.6

Table 2: Comparisons of different features in our RPN+BF method on the Cal-
tech set. All entries are based on VGG-16 and the same set of RPN proposals.

How important is feature resolution?

We first report the accuracy of (“slow”) R-CNN [12]. For fair comparisons,
we fine-tune R-CNN using the VGG-16 network, and the proposals are from the
same RPN as above. This method has an MR of 13.1% (Table 1), better than its
proposals (stand-alone RPN, 14.9%). R-CNN crops raw pixels from images and
warps to a fixed size (224×224), so suffers less from small objects. This result
suggests that if reliable features (e.g., from a fine resolution of 224×224) can be
extracted, the downstream classifier is able to improve the accuracy.

Surprisingly, training a Fast R-CNN classifier on the same set of RPN pro-
posals actually degrades the results: the MR is considerably increased to 20.2%
(vs. RPN’s 14.9%, Table 1). Even though R-CNN performs well on this task,
Fast R-CNN presents a much worse result.

This problem is partially because of the low-resolution features. To show this,
we train a Fast R-CNN (on the same set of RPN proposals as above) with the
à trous trick adopted on Conv5, reducing the stride from 16 pixels to 8. The
problem is alleviated (16.2%, Table 1), demonstrating that higher resolution can
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method RoI features bootstrapped? MR (%)

RPN + Fast R-CNN Conv5 3, à trous 16.2

RPN + Fast R-CNN Conv5 3, à trous X 14.3

RPN + BF Conv5 3, à trous X 13.7

Table 3: Comparisons of with/without bootstrapping on the Caltech set.

be helpful. Yet, this result still lags far behind the stand-alone RPN or R-CNN
(Table 1).

The effects of low-resolution features are also observed in our Boosted Forest
classifiers. BF using Conv5 3 features has an MR of 18.2% (Table 1), lower than
the stand-alone RPN. Using the à trous trick on Conv5 when extracting features
(Sec. 3.2), BF has a much better MR of 13.7%.

But the BF classifier is more flexible and is able to take advantage of features
of various resolutions. Table 2 shows the results of using different features in our
method. Conv3 3 or Conv4 3 alone yields good results (12.4% and 12.6%), show-
ing the effects of higher resolution features. Conv2 2 starts to show degradation
(15.9%), which can be explained by the weaker representation of the shallower
layers. BF on the concatenation of Conv3 3 and Conv4 3 features reduces the MR
to 11.5%. The combination of features in this way is nearly cost-free. Moreover,
unlike previous usage of skip connections [27], it is not necessary to normalize
features in a decision forest classifier.

Finally, combining Conv3 3 with the à trous version of Conv4 3, we achieve
the best result of 9.6% MR. We note that this is at the cost of extra computation
(Table 2), because it requires to re-compute the Conv4 features maps with the à
trous trick. Nevertheless, the speed of our method is still competitive (Table 4).

How important is bootstrapping?

To verify that the bootstrapping scheme in BF is of central importance (in-
stead of the tree structure of the BF classifiers), we replace the last-stage BF
classifier with a Fast R-CNN classifier. The results are in Table 3. Formally, af-
ter the 6 stages of bootstrapping, the bootstrapped training set is used to train
a Fast R-CNN classifier (instead of the final BF with 2048 trees). We perform
this comparison using RoI features on Conv5 3 (à trous). The bootstrapped Fast
R-CNN has an MR of 14.3%, which is closer to the BF counterpart of 13.7%,
and better than the non-bootstrapped Fast R-CNN’s 16.2%. This comparison
indicates that the major improvement of BF over Fast R-CNN is because of
bootstrapping, whereas the shapes of classifiers (forest vs. MLP) are less impor-
tant.
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Fig. 4: Comparisons on the Caltech set (legends indicate MR).
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Fig. 5: Comparisons on the Caltech set using an IoU threshold of 0.7 to deter-
mine True Positives (legends indicate MR).

4.3 Comparisons with State-of-the-art Methods

Caltech Fig. 4 and 6 show the results on Caltech. In the case of using original
annotations (Fig. 4), our method has an MR of 9.6%, which is over 2 points
better than the closest competitor (11.7% of CompactACT-Deep [6]). In the case
of using the corrected annotations (Fig. 6), our method has an MR−2 of 7.3%
and MR−4 of 16.8%, both being 2 points better than the previous best methods.

In addition, expect for CCF (MR 18.7%) [25], ours (MR 9.6%) is the only
method that uses no hand-crafted features. Our results suggest that hand-crafted
features are not essential for good accuracy on the Caltech dataset; rather, high-
resolution features and bootstrapping are the key to good accuracy, both of
which are missing in the original Fast R-CNN detector.

Fig. 5 shows the results on Caltech where an IoU threshold of 0.7 is used to
determine True Positives (instead of 0.5 by default). With this more challeng-
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Fig. 6: Comparisons on the Caltech-New set (legends indicate MR−2 (MR−4)).

method hardware time/img (s) MR (%)

LDCF [24] CPU 0.6 24.8

CCF [25] Titan Z GPU 13 17.3

CompACT-Deep [6] Tesla K40 GPU 0.5 11.7

RPN+BF [ours] Tesla K40 GPU 0.5 9.6

Table 4: Comparisons of running time on the Caltech set. The time of LDCF
and CCF is reported in [25], and that of CompactACT-Deep is reported in [6].

ing metric, most methods exhibit dramatic performance drops, e.g., the MR of
CompactACT-Deep [6]/DeepParts [5] increase from 11.7%/11.9% to 38.1%/40.7%.
Our method has an MR of 23.5%, which is a relative improvement of ∼40%
over the closest competitors. This comparison demonstrates that our method has
a substantially better localization accuracy. It also indicates that there is much
room to improve localization performance on this widely evaluated dataset.

Table 4 compares the running time on Caltech. Our method is as fast as
CompACT-Deep [6], and is much faster than CCF [25] that adopts feature pyra-
mids. Our method shares feature between RPN and BF, and achieves a good
balance between speed and accuracy.

INRIA and ETH Fig. 7 and 8 show the results on the INRIA and ETH
datasets. On the INRIA set, our method achieves an MR of 6.9%, considerably
better than the best available competitor’s 11.2%. On the ETH set, our result
(30.2%) is better than the previous leading method (TA-CNN [4]) by 5 points.
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Fig. 8: Comparisons on the ETH dataset (legends indicate MR).

KITTI Table 5 shows the performance comparisons on KITTI. Our method
has competitive accuracy and fast speed.

5 Conclusion and Discussion

In this paper, we present a very simple but effective baseline that uses RPN
and BF for pedestrian detection. On top of the RPN proposals and features,
the BF classifier is flexible for (i) combining features of arbitrary resolutions
from any layers, without being limited by the classifier structure of the pre-
trained network; and (ii) incorporating effective bootstrapping for mining hard
negatives. These nice properties overcome two limitations of the Faster R-CNN
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method mAP on Easy mAP on Moderate mAP on Hard Times (s)

R-CNN 61.61 50.13 44.79 4

pAUCEnstT 65.26 54.49 48.60 60

FilteredICF 67.65 56.75 51.12 2

DeepPart 70.49 58.67 52.78 1

CompACT-Deep 70.69 58.74 52.71 1

Regionlets 73.14 61.15 55.21 1†

RPN+BF [ours] 77.12 61.15 55.12 0.6

Table 5: Comparisons on the KITTI dataset collected at the time of submission
(Feb 2016). The timing records are collected from the KITTI leaderboard. †:
region proposal running time ignored (estimated 2s).

system for pedestrian detection. Our method is a self-contained solution and
does not resort to hybrid features.

Interestingly, we show that bootstrapping is a key component, even with the
advance of deep neural networks. Using the same bootstrapping strategy and
the same RoI features, both the tree-structured BF classifier and the region-
wise MLP classifier (Fast R-CNN) are able to achieve similar results (Table 3).
Concurrent with this work, an independently developed method called Online
Hard Example Mining (OHEM) [32] is developed for training Fast R-CNN for
general object detection. It is interesting to investigate this end-to-end, online
mining fashion vs. the multi-stage, cascaded bootstrapping one.
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