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Abstract

This paper investigates how to segment an image into
semantic regions by harnessing an unlabeled image cor-
pus. First, the image segmentation task is recast as a small-
size patch grouping problem. Then, we discover two novel
patch-pair priors, namely the first-order patch-pair density
prior and the second-order patch-pair co-occurrence prior,
founded on two statistical observations from the natural im-
age corpus. The underlying rationalities are: 1) a patch-
pair falling within the same object region generally has
higher density than a patch-pair falling on different objects,
and 2) two patch-pairs with high co-occurrence frequency
are likely to bear similar semantic consistence confidences
(SCCs), i.e. the confidence of the consisted two patches be-
longing to the same semantic concept. These two discrimi-
native priors are further integrated into a unified objective
function in order to augment the intrinsic patch-pair simi-
larities, originally calculated using patch-level visual fea-
tures, into the semantic consistence confidences. Nonneg-
ative constraint is also imposed over the output variables
and an efficient iterative procedure is provided to seek the
optimal solution. The ultimate patch grouping is conducted
by first building a similarity graph, which takes the atomic
patches as vertices and the augmented patch-pair SCCs
as edge weights, and then employing the popular Normal-
ized Cut approach to group patches into semantic clusters.
Extensive image segmentation experiments on two public
databases clearly demonstrate the superiority of the pro-
posed approach over various state-of-the-arts unsupervised
image segmentation algorithms.

1. Introduction
The task of segmenting semantic regions or parsing im-

age is critical since a wide range of image related problems
could in principle take full advantages of the semantically
segmented images, such as content-based image retrieval,
multi-label image annotation and part-based object recogni-
tion [4],[20, 6],[17]. Generally, for one given image, pars-
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Figure 1. Schematic illustration of the proposed approach.

ing it into semantically meaningful elements is not easy,
due to the large intra-object variations. Extra information
beyond individual image is intuitively valuable for solv-
ing this problem. With the proliferation of Internet images
from popular photo sharing websites (e.g. Flickr) and image
search engines (e.g., GOOGLE and BING), one promising
direction is to explore the large-scale image corpus and dis-
cover valuable contextual information for boosting seman-
tic image segmentation [7, 19]. One common strategy is to
search for structurally similar images using certain effective
feature descriptors and utilize the matches to facilitate im-
age segmentation [15, 16]. Despite the impressive results
and successes demonstrated in the past literature, for many
types of images the segmentation quality is still not satis-
fying due to the facts that i) the low-level visual features
may not be powerful enough to capture semantic similarity,
and ii) it is not reasonable, or even impossible, to expect
to always find structurally similar matches from an image
corpus.

To tackle above issues, we present a practical approach
to segment one given image by extracting implicit priors
from an unlabeled image corpus. We first over-segment the
input image into an ensemble of localized atomic patches
and then cast the common image segmentation task as a
patch grouping problem. Within this context, the intrinsic
patch-pair affinity, which is originally calculated as the ap-
pearance similarity based on patch-level features, is aug-
mented into the semantic consistence confidence (SCC),
i.e., the confidence of these two patches belonging to the
same semantic concept, by harnessing two statistical obser-
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vations on the unlabeled image corpus. One is the patch-
pair density prior [13]. We find out that a patch-pair falling
within the same semantic object/class usually have higher
density than a patch-pair consisting of two semantically dif-
ferent patches. The patch-pair densities can be directly cal-
culated from the unlabeled image corpus by matching each
patch-pair in the given image to visually similar patch-pairs
in the unlabeled image corpus. This prior provides a dis-
criminative measurement of semantic consistence for deter-
mining whether two patches belong to the same semantic
object, and the results of our previous work [13] have shown
its great potential with image segmentation task.

The other observation is the patch-pair co-occurrence
prior. Similar to the density prior, it is also founded on
a statistic from the unlabeled image corpus: if two patch-
pairs frequently co-occur within short spatial distance, they
are both likely to bear high semantic consistence confi-
dences, namely, the two patch-pairs are semantically kin-
dred with high probability at the same time. This obser-
vation is intuitively reasonable since the couples of intra-
class patch-pairs generally have dominant population within
the natural image corpus. Beyond the first-order density
prior which describes the relationship of individual patch-
pair itself, patch-pair co-occurrence prior further provide
high-order information for describing the interdependence
among patch-pairs, which can improve the distinctness and
robustness of the desired patch-pair semantic consistence
confidence.

Figure 1 demonstrates the entire flowchart of our pro-
posed approach. For a given image, our approach combines
three different sources of information for semantically patch
grouping, including i) the intrinsic patch affinities, ii) the
first-order patch-pair density prior, and iii) the second-order
patch-pair co-occurrence prior. The first one is derived from
the given image itself and serves as a low-level visual rep-
resentation, while the latter two are derived from the auxil-
iary unlabeled image corpus and serve as high-level seman-
tic representations. They are in essence complementary to
each other, and thus the combination of them is expected to
enhance the discriminating capability while describing the
patch-pairs. We formulate the above three diverse cues into
one unified objective function in order to seek the optimal
semantic consistence confidence for every patch-pair. The
patch-pairs with high confidences are most likely to con-
tain semantically identical patches, and vice versa. We fur-
ther utilize the patch-pair confidences to construct the aug-
mented patch similarity graph, on which the popular spec-
tral clustering technique, Normalized Cut [17], is employed
to conduct semantic patch grouping.

It is worthwhile to highlight three aspects of the pro-
posed approach here: i) the proposed patch-pair priors are
simple yet effective in measuring the semantic consistences
of the patch-pairs; 2) the proposed approach can boost sin-

gle image segmentation accuracy with the help of auxiliary
unlabeled image corpus under various conditions, e.g., it
can work well even with a small-size image corpus and 3)
no parametric models from the image corpus are learnt and
thus it is scalable to harness a large-scale image corpus. In
contrast with our previous work [13] that first presents the
first-order patch-pair density prior, this work further pro-
poses a second-order prior and formulate it within a uni-
fied formulation in the framework of nonnegativity analy-
sis. These advantages and extensions shall be further vali-
dated by extensive experiments on publicly available image
databases.

2. Relation with Previous Works
Our approach is closely related to the recent advances

in the community of computer vision. In the literature,
a broad family of approaches to image segmentation has
been proposed. The typical ones include integrating fea-
tures such as brightness, color, or texture over local image
patches and then clustering those features based on fitting
mixture model [21, 3], model-finding [4] or graph partition-
ing [20, 6]. Among them, three algorithms are most widely
used in recent applications, including Tu and Zhu’s data
driven MCMC algorithm (DDMCMC) [20], Comaniciu and
Meer’s Mean Shift [4], and Shi and Malik’s Normalized
Cuts [17]. DDMCMC could achieve high performance but
is usually computationally expensive. Mean Shift and Nor-
malized Cuts are easy to implement and can provide reason-
ably good precision, but often produce artifacts by break-
ing large uniform regions into chunks. Moreover, these ap-
proaches only utilize the information contained in individ-
ual image itself, where the parsing task is painfully under-
constrained and limited to the low segmentation accuracy.

Recently, with the increasing availability of Internet/Web
image set, large database-driven approaches have shown the
great potentials for nonparametric semantic image segmen-
tations task. Shakhnarovich et al. [16] proposed to estimate
the pose of human relying on 0.5 million training examples.
Hays et al. [7] proposed to fill holes on an input image by in-
troducing elements that are likely to be semantically correct
through searching in a large image set. Torralba et al. [19]
proposed to compute a simple sum of squared difference
(SSD) match on the localized image parts, e.g., rectangles,
yet obtained a semantically meaningful parsing. Similarly,
Russell [15] proposed to partition the input image into com-
posite regions and seek their matches from a large unlabeled
image corpus, in order to explain the input image. Neverthe-
less, the major block of applying above algorithms is how
to achieve a good tradeoff between the matching accuracy
and computational cost. In contrast, our approach also uses
the auxiliary image corpus to improve image segmentation
accuracy but can work well on either small or middle size
image set, benefiting from the discovered patch-pair priors
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and the unified objective function which combines multiple
complementary cues.

3. Segment Image with Patch-pair Priors from
an Unlabeled Image Corpus

3.1. Cast Image Segmentation as Patch Grouping

Figure 2. Exemplar images overlaid with over-segmentation re-
sults. Images shown are from the MSRC database [18].

We partition one image into localized atomic patches for
image representation and thus the task of image segmenta-
tion is recast as grouping the atomic patches into larger-size
semantic regions. Each atomic patch comprises pixels that
are spatially coherent and perceptually similar with respect
to certain appearance features, such as intensity, color and
texture. Many algorithms have been proposed for image
over-segmentation in the past literature, and in this work,
we choose to use the method provided by Ren et al. in [14].
Figure 2 shows some image over-segmentation examples.
We can observe that the localized patches are roughly ho-
mogeneous in size and shape, which simplifies the compu-
tation in later stages. Each image is resized with a ratio
of 400/max(width, height) and partitioned into 40 ∼ 50
patches on average. On an Intel Xeon X5450 workstation
with 3.0GHz CPU and 16GB memory, it takes about 60 sec-
onds to process one image. A basic assumption here is that
every atomic patch is roughly involved within one single ob-
ject/class. Formally, let xi denote the i-th patch within the
given image or any unlabeled image, and xi = {xi1 , xi2}
denote the corresponding pair of patches xi1 and xi2 . We
describe each patch by a Local Binary Pattern (LBP) [1]
descriptor, denoted as fxi . We group every two different
patches within the same image to form one patch-pair from
which one LBP feature is extracted and denoted as fxi .

3.2. I: Intrinsic Patch-pair Affinity

The crucial step of patch grouping is to compute the
semantic consistence confidence (SCC) for every patch-
pair, i.e., the probability of belonging to the same seman-
tic object/class, for every two patches. For a patch-pair
xi = {xi1 , xi2}, the semantic consistence confidence is
closely related with patch-pair affinity wi, which can be es-
timated based on the low-level visual features as follows,

wi = w{xa,xb} = exp{−D(fxa , fxb
)/2σ2}, (1)

where D(·, ·) measures the Euclidean distance between two
feature vectors and σ is the scale parameter. We fix σ to be
1 in this work. Patch-pairs with high affinities are likely to
comprise semantically kindred patches. Let hi denote the
desired semantic consistence confidence for the patch-pair
xi, we have following objective function to optimize:

min
h

∑

i

(hi − wi)2 s.t. h ≥ 0, (2)

which imposes nonnegative constraint on the output vari-
ables in order to make the desired confidences more infor-
mative [10]. Herein, h ∈ Rn is an n-dimensional vector
and n indicates the number of patch-pairs within the given
image.

3.3. II: First-order Patch-pair Density Prior

The patch-pair density prior is founded on the follow-
ing observation: for natural images, semantically kindred
patch-pairs generally possess higher densities than seman-
tically inhomogeneous patch-pairs. The patch-pair density
can be directly estimated from the unlabeled image corpus
using certain density estimation method. Herein, we adopt
the popular Parzen window [5] method. This observation
shows that one patch-pair with low density tends to con-
tain two semantically different patches, and vice verse. For-
mally, let xi be one patch-pair from the input image and
{y1, y2, . . . , yK} denote its K-nearest patch-pairs retrieved
from the unlabeled image corpus. We can estimate the den-
sity of xi, denoted as ci, as follows,

ci ∝ 1
K

K∑

l=1

e−D
2(fxi

,fyl
), (3)

where D denotes the Euclidean distance between two fea-
ture vectors.

As indicated by the density prior, it is natural to en-
force that patch-pairs with higher densities should also bear
higher SCCs and vice versa. Formally, we can derive hi for
the patch-pair xi from ci as follows:

min
h

∑

i

hi(1− ci) s.t. h ≥ 0. (4)

We verify the above prior on the image set from the
MSRC [18] database, where each image is provided with
segmentation groundtruth. We first partition the given im-
age into atomic patches and associate each patch-pair with
a label of ‘inter’ or ‘intra’-object/class according to the
groundtruth. Then, for each patch-pair, a 59-dimensional
LBP descriptor is extracted and K = 1000 nearest patch-
pairs are retrieved from the unlabeled image corpus based
on Euclidean distance. Thus, we estimate the density of
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Figure 3. Density comparison between intra-class (red color) and inter-class (blue color) patch-pairs. The images are from the MSRC
database [18]. See texts for detailed descriptions.

a patch-pair using the Parzen window method and normal-
ize it by the maximum density value within the same im-
age. We plot the normalized densities in descending order.
Figure 3 shows the density comparison between intra-class
patch-pairs (red color) and inter-class (blue color) patch-
pairs in 10 images containing different semantic concepts.
The horizontal axis represents the indices for the top patch-
pair and the vertical axis represents their estimated densi-
ties. We can see that intra-class patch-pairs usually have
much higher densities as compared to the inter-class ones,
which demonstrates the discriminating power of the pro-
posed patch-pair density prior.

3.4. III: Second-order Patch-pair Co-occurrence
Prior

� 

� � � �

�

�
� ��

� ��

� ��
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Figure 4. Spatial histogram.
The second-order patch-pair prior indicates that, if two

patch-pairs from the given image co-occur with high fre-
quency in an unlabeled image corpus, they are likely to bear
similar semantic consistence confidences. For every two
patch-pairs in the given image, we first compute their visu-
ally K-nearest patch-pairs from the unlabeled image corpus
respectively, and then identify their co-occurring neighbors
within a given spatial distance. We use the spatial histogram
[11] for spatial relationships computation. As illustrated in
Figure 4, let x′i and x′j denote the retrieved neighbors of the
patch-pairs xi and xj respectively. The spatial histogram
centered at x′i with respect to patch-pair xj is defined as
H(x′i, xj)(d) = mk,j , where the spatial radius d defines
the supporting region of the histogram and mk,j denotes
the number of x′j falling in the supporting region. The ulti-
mate co-occurrence frequency of xi and xj is calculated as∑

x′i
H(x′i, xj). Here, we set d as the product of the size of

patch-pair x′i and one constant factor, which is fixed to be

4 empirically, for the sake of both robustness and computa-
tional efficiency.

Let Pi,j denote the co-occurrence frequency between
patch-pairs xi and and xj , we can extend Eq. (4) to impose
our proposed co-occurrence prior, as follows:

min
h

β

2

∑

i,j

(hi − hj)2Pij + α
∑

i

hi(1− ci), h ≥ 0. (5)

where α and β are tunable parameters. Herein, minimiz-
ing the first term, which relates the difference of two de-
sired patch-pair confidences with their co-occurrence fre-
quency, enforces that two frequently co-occurred patch-
pairs are likely to bear similar semantic SCCs, while com-
bining the first and the second terms into one objective func-
tion can further guarantee that those frequently co-occurred
intr-class patch-pairs possess high SCCs at the same time.

We also verify the statistical observation of patch-pair
co-occurrence prior on the MSRC [18] database. Ev-
ery patch-pair of the given image is described by a 59-
dimensional LBP descriptor extracted from the image re-
gions covered by these two patches. We first retrieve for
each patch-pair 1000 visually similar patch-pairs from the
unlabeled image corpus based on Euclidean distance, and
then compute the co-occurrence frequencies of every cou-
ple of patch-pairs, using the spatial histogram. We normal-
ize each co-occurrence frequency by the maximum value
within the same image, and plot the normalized frequencies
in descending order. Figure 5 shows the comparison be-
tween the couples of intra-class patch-pairs (red color) and
the couples of inter-class patch-pairs (blue color) from 10
images containing different semantic concepts. The hori-
zontal axis represents the indices of patch-pair couples and
the vertical axis represents their normalized co-occurrence
frequencies. We can observe that the intra-class patch-pair
couples usually have higher co-occurrence frequencies as
compared to their counterparts, which well validates the
proposed second-order patch-pair prior.

3.5. Unified Formulation

For each patch-pair of the given image, our intermediate
goal is to augment its feature-based affinity into a seman-
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Figure 5. Co-occurrence frequency comparison between the couples of intra-class patch-pairs (red color) and the couples of inter-class
patch-pairs (blue color). The images are from MSRC database [18]. The horizontal axis means the indices of patch-pair couples and the
vertical axis means their normalized co-occurrence frequencies.

tic consistence confidence by harnessing both the first-order
and the second-order patch-pairs priors. Integrating the Eqs.
(2) and (5), we define a unified objective function to opti-
mize the SCCs as follows,

min
h

L(h) = β
2

∑
i,j(hi − hj)2Pij + α

∑
i hi(1− ci) (6)

+1
2

∑
i(hi − wi)2, s.t. h ≥ 0,

where h, c, w ∈ Rn. The goal of the above objective func-
tion is to optimize the semantic consistence confidence for
every patch-pair with in the input image. It is worthy noting
that, since the intrinsic patch-pair affinity wi is generally
more informative than the corresponding patch-pair density
ci, we usually use a looser/smaller regularization parameter
α.

We can further rewrite Eq. (6) as

min
h

L(h) = β
2 Tr(hT Lh) + αhT (1− c) (7)

+1
2‖h− w‖2, s.t. h ≥ 0,

where L = D − P,D = diag{. . . ,∑j Pij , . . .} and L in-
dicates the Laplacian matrix of matrix P ∈ Rn×n. The
objective function defined in Eq.(7) is quadratic and convex
with respect to h, but there does not exist a closed-form so-
lution due to the nonnegative constraint. In the next section,
we shall develop an efficient iterative procedure which is
scalable to the case with large number of patch-pairs.

3.6. Ultimate Image Segmentation

Suppose the patch-pair confidences are derived from Eq.
(7) for one given image, our ultimate solution to patch
grouping starts with constructing a similarity graph, each
vertex of which represents one atomic patch. Two vertices
are connected if the corresponding confidence hi is greater
than zero or a certain threshold, and the edge is weighted by
hi. The task of patch grouping can then be cast into finding
a partition of the graph such that the edges between differ-
ent groups have low weights while edges within a group
have high weights. This problem can be solved by employ-
ing various spectral clustering techniques. In this work, we

choose the popular Normalized Cut method [17], owning
to its advantages in both efficiency and robustness against
noises.

4. Multiplicative Iterative Solution
As aforementioned, we utilize iterative procedure, in-

stead of general constrained quadratic optimization solver,
for optimizing the problem (7).

Let ψi be the Lagrange multiplier for constraints hi ≥ 0,
and ψ = [ψi], the Lagrange L is then

L(h) =
β

2
Tr(hT Lh) + αhT (1− c) (8)

+
1
2
‖h− w‖2 + Tr(ψhT )

Thus the partial derivative of L with respect to h is

∂L
∂h

= βLh + α(1− c) + (h− w) + ψ. (9)

Along with the Karush-Kuhn-Tucker (KKT) condition
[8] of ψihi = 0, we get the following equation,

β(Lh)ihi + α(1− c)ihi + (hi − wi)hi = 0. (10)

which leads to the following multiplicative update rule:

hi ← hi
wi

(βLh + α(1− c) + h)i
. (11)

As the objective function is convex, the update rule
Eq. (11) will converge to the global minimum of the prob-
lem (7). Related proofs can be referred to the past literature
[9], or the general solution to the nonnegative second-order
optimization problems proposed by Liu et al. [12].

5. Experiments
In this section, we evaluate the effectiveness of the dis-

covered patch-pair priors and the proposed unified formu-
lation for semantic image segmentation on several publicly
available databases.
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5.1. Databases

We use two publicly available databases, namely,
MSRC [18] and COREL CDs [22] 1. The MSRC database
contains 590 images from 23 categories/labels with region-
level ground-truths. The other database is from the widely
used COREL collection and we use the subset provided
in [22], which includes 800 images from 11 labels and
provides the corresponding region-level ground-truth. We
evenly partition each database into a testing set and another
set used as the unlabeled image corpus. We resize all im-
ages with a ratio of 400/max(width, height). In addition,
we use the 23 labels provided in MSRC database as query
keywords on Microsoft BING image search engine to as-
semble an additional unlabeled image corpus. For each la-
bel/keyword, the top 100 online images returned by BING
are downloaded. Thus, we obtain a corpus of 2300 im-
ages in total. We partition each image into a set of atomic
patches using the method introduced in Section 2.1 and
combine every two patches within the same image to form
the patch-pair set. Each patch or patch-pair is described by a
59-dimensional Local Binary Pattern (LBP) descriptor [1].
Note that we choose to use one single feature type, rather
than the combination of various features which has shown
to be more effective for image problems in the past litera-
ture, because feature extraction, although important, is not
the studying focus of this work.

5.2. Baselines and metrics

We adopt the widely used Normalized Cuts (NCut) [17]
to perform patch clustering on the similarity graphs ob-
tained by four different methods. The first one is to di-
rectly calculate the appearance similarity between every
two different patches based on Gaussian similarity function.
We denote this original affinity graph as G-I for ease of
representation. The second graph is based on the seman-
tic consistence confidence values from Eq. (7). We de-
note this graph as G-II. In order to evaluate how individual
components, i.e. patch-pair density prior or patch-pair co-
occurrence prior, take effects on the ultimate segmentation
results, we set the tuning parameters α in Eq. (7) to be 0
and solve the equation to construct the patch affinity graph
G-III, without considering the patch-pair density prior. Sim-
ilarly, we set the parameter β to be 0 to obtain another patch
affinity graph G-IV, without considering the patch-pair co-
occurrence prior. Thus, we compare four algorithms, in-

1We did not use the popular PASCAL dataset, since it is designed for
given object segmentation (for the given 20 categories and supervised) and
the labeled background parts still include many other object categories be-
yond the given 20 categories, thus our proposed segmentation algorithm
shall further segment the background category into many regions and the
provided ground-truths do not make sense in our scenario. We also did not
use the Berkeley dataset, because most of the segments in groundtruth are
not specified to one certain label, which is not applicable for our proposed
approach.

cluding NCut+G-I, NCut+G-II, NCut+G-III and NCut+G-
IV, all of which work on the over-segmented images. We
also use the patch-pair affinities calculated by above four al-
gorithms, to directly predict whether two patches belong to
the same semantic region, and compute the ROC curves for
each affinity graph. Such a comparison can provide an over-
all picture at how the graphs obtained by different methods
contribute to patch-pair classification.

Moreover, we implement three popular segmentation al-
gorithms, namely, Multi-scale Normalized Ncut (MNCut)
[17], Mean Shift [4] and the Graph-based segmentation pro-
posed by Felzenszwalb et al. in [6]. All above three algo-
rithms directly work on the original images. Note that in
this work, we focus unsupervised scenarios and hence do
not compare our method with the supervised segmentation
algorithms.

We perform various image segmentation algorithms un-
der a variety of scale parameters and report the best result.
This evaluation strategy is also used in previous works, e.g.
[2]. For NCut based algorithms, the number of segments
is set within {2, 3, . . . , 15}. The minimum region size of
MeanShift algorithm is set within {1500, 2000, . . . , 5000}
pixels. In implementation of our approach, the regulariza-
tion parameters β and α are fixed at 0.5 and 0.2 respectively.

Two popular metrics [2] are used in this work for mea-
suring the image segmentation performance. 1) Segment
covering rate (CR). We define the covering rate of one seg-
mentation S by the other segmentation S′ as C(S′− >
S) = 1

N

∑
R∈S |R|maxR′∈S′ O(R, R′), where N is the

number of segments within S and O(R, R′) = |R ⋂
R′|

|R ⋃
R′| .

Herein R indicates one semantic region. This metric indi-
cates how well the segmentation S can be explained by an-
other segmentation S′. We evaluate different segmentation
algorithms by calculating the covering of the ground truth
segmentation by the derived segmentation. 2) Variation
of information (VI), which measures the distance between
two segmentations in terms of their average conditional en-
tropy given by V I(C, C ′) = H(C) + H(C ′)− 2I(C,C ′),
where H and I represent respectively the entropies and mu-
tual information between two clusterings of data C and C ′.
Smaller value of VI indicates better performance.

5.2.1 Results and analysis

Qualitative evaluations: We evaluate all the algorithms on
an Intel Xeon X5450 workstation with 3.0 GHz CPU and
16 GB memory. The algorithms are implemented on MAT-
LAB platform. Generally, it takes about 10 seconds to
process one image for our proposed algorithm given that
the features of atomic patches or patch-pairs have been ex-
tracted offline. We show some exemplar comparison results
of semantic image segmentation in Figures 6 and 7. The
images are from the testing subsets of MSRC and COREL

2254



����� ����� ��������� �� !��"!#� $ ��� ��� %���&'(� %�)��

Figure 6. Exemplar comparison of segmentation results by various
approaches on MSRC database [18].
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Figure 7. Exemplar comparison of segmentation results by various
approaches on COREL database [22].

databases, respectively. In the figures, each row shows
the original image in column 1 and the corresponding seg-
mentation results obtained by algorithm Ncut+G-II, Felzen-
szwalb et al. [6], MeanShift [4] and MNcut [17] in columns
2, 3, 4 and 5, respectively. Different semantic regions are
indicated with different colors. For each algorithm, the best
segmentation results in terms of CR metric are reported
while exploring different scale parameters. For algorithm
Ncut+G-II, the unlabeled image corpus used here is from
the BING Search Engine. These comparison under various
conditions well validate the effectiveness of our approach.

Quantitative Evaluations: We report in Table 1 the ac-
curacy comparison among various image segmentation al-
gorithms on both MSRC and COREL databases. Further-
more, Figure 8 shows the ROC curves obtained by directly
applying the affinity values in G-I, G-II, G-III, and G-IV
for patch classification. The horizontal axes indicates the
false positive rates and the vertical axes indicates the true
positive rates. Herein, G-II, G-III and G-IV are computed
by using the unlabeled image corpus from the BING search

Table 1. Performance comparison of various algorithms on MSRC
and COREL databases. The best results achieved are indicated
with bold font in each column.

MSRC Corel CDs
Metrics CR (%) VI CR (%) VI

Mean Shift [4] 41.90 2.50 50.69 1.92
Felzenszwalb et al. [6] 51.02 2.08 60.94 1.61

MNCut [17] 59.22 1.66 68.73 1.24
NCut+G-I [17] 58.33 1.60 68.08 1.20
Unlabeled Image Corpus from the Evaluation Databases

NCut+G-II 64.66 1.47 75.03 1.03
NCut+G-III 61.07 1.54 70.53 1.15
NCut+G-IV 61.45 1.53 72.13 1.07

Unlabeled Image Corpus from the BING Search Engine
NCut+G-II 65.24 1.45 75.28 1.03
NCut+G-III 61.32 1.55 70.70 1.14
NCut+G-IV 61.55 1.54 72.01 1.08

engine. From these results, we can obtain the following ob-
servations. 1) The proposed solution, namely NCUT+G-
II, achieves much better performances on both databases
as compared to other baselines. For example, the covering
rates of NCut+G-II on the MSRC and COREL databases are
65.24% and 75.28%, which outperform NCut+G-I with the
margins of 6.91 and 7.20 percentages, respectively. Similar
improvements can also be achieved in terms of VI metric.
This clearly demonstrates the effectiveness of the proposed
approach which employs the auxiliary patch-pair priors for
semantically patch grouping. 2) The segmentation results
achieved by the algorithm NCut+G-II using the online im-
ages as unlabeled image corpus are slightly better than that
using the images from the same database. This is due to
the fact that larger image corpus usually provides more ro-
bust statistical information for our proposed patch-pair pri-
ors. It is worthy noting that although the search results re-
turned by the BING search engine contain large variations,
our approach can still achieve high-quality image segmenta-
tion. 3) Algorithm NCut+G-II achieves better performance
than algorithms NCut+G-III and NCut+G-IV while the lat-
ter two algorithms achieve better performances than other
four baselines, on both databases. These comparisons well
justify the effectiveness of the proposed patch-pair priors
for semantic image segmentation.

In addition, it is worthy highlighting following discus-
sions. 1) The newly discovered priors can be used, but
not limited to, in the formulation of this work to help im-
prove segmentation accuracies. Also, it is easy to com-
bine our discovered priors with any other state-of-the-art
models or algorithms to obtain better segmentation perfor-
mance. 2) We did not try to combine the edge/boundary
information, which has been widely used in past efforts on
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Figure 8. ROC curves. We apply various affinity graphs for directly patch classification on (a) MSRC database [18] and (b) COREL
database [22].

image segmentation problem, because this work focuses on
region/patch grouping problem. However, our proposed pri-
ors and formulation can be easily extended to integrate such
important information for further boosting segmentation ac-
curacy.

6. Conclusions
In this work, we reported two discriminative priors, i.e.,

patch-pair density prior and patch-pair co-occurrence prior,
and showed how these priors from unlabeled image corpus
can boost semantic image segmentation. Also, a unified for-
mulation was developed to combine the discovered patch-
pair priors mined from the auxiliary unlabeled image cor-
pus and the intrinsic feature-based patch-pair affinities ex-
tracted from the given image itself. The objective function
is optimized by efficiently and scalable multiplicative up-
dating rules. Significant improvements on image segmen-
tation accuracies were achieved on two image evaluation
sets. In contrast with previous efforts, our work suggests
two simple yet informative patch-pair priors and a unified
formulation, both of which can be used for other kinds of
image applications, such as part-based object recognitions
and image retrieval.
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