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Abstract

Existing person re-identification benchmarks and meth-
ods mainly focus on matching cropped pedestrian images
between queries and candidates. However, it is different
from real-world scenarios where the annotations of pedes-
trian bounding boxes are unavailable and the target per-
son needs to be searched from a gallery of whole scene im-
ages. To close the gap, we propose a new deep learning
framework for person search. Instead of breaking it down
into two separate tasks—pedestrian detection and person
re-identification, we jointly handle both aspects in a single
convolutional neural network. An Online Instance Match-
ing (OIM) loss function is proposed to train the network ef-
fectively, which is scalable to datasets with numerous iden-
tities. To validate our approach, we collect and annotate
a large-scale benchmark dataset for person search. It con-
tains 18, 184 images, 8, 432 identities, and 96, 143 pedes-
trian bounding boxes. Experiments show that our frame-
work outperforms other separate approaches, and the pro-
posed OIM loss function converges much faster and better
than the conventional Softmax loss.

1. Introduction

Person re-identification (re-id) [8, 39] aims at match-
ing a target person with a gallery of pedestrian images.
It has many video surveillance applications, such as find-
ing criminals [33], cross-camera person tracking [38], and
person activity analysis [23]. The problem is challeng-
ing because of complex variations of human poses, cam-
era viewpoints, lighting, occlusion, resolution, background
clutter, etc., and thus draws much research attention in re-
cent years [4, 19, 21, 24, 35, 43].

Although numerous person re-id datasets and methods
have been proposed, there is still a big gap between the
problem setting itself and real-world applications. In most
benchmarks [10, 14, 18, 19, 45], the gallery only contains
manually cropped pedestrian images (Figure 1a), while in
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(a) Person re-id: matching with manually cropped pedestrians

(b) Person search: finding from whole scene images

Figure 1. Comparison between person re-identification and
person search. The person search problem setting is closer
to real-world applications and more challenging, as detect-
ing pedestrians would inevitably produce false alarms, mis-
detections, and misalignments.

real applications, the goal is to find a target person in a
gallery of whole scene images, as shown in Figure 1b. Fol-
lowing the protocols of these benchmarks, most of the exist-
ing person re-id methods assume perfect pedestrian detec-
tions. However, these manually cropped bounding boxes
are unavailable in practical applications. Off-the-shelf
pedestrian detectors would inevitably produce false alarms,
misdetections, and misalignments, which could harm the fi-
nal searching performance significantly.

In 2014, Xu et al. [36] made the first step towards clos-
ing this gap. They introduced the person search problem
to the community, and proposed a sliding window search-
ing strategy based on a combination of pedestrian detection
and person matching scores. However, the performance is
limited by the handcrafted features, and the sliding window
framework is not scalable.
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In this paper, we propose a new deep learning frame-
work for person search. Different from conventional ap-
proaches that break down the problem into two separate
tasks—pedestrian detection and person re-identification, we
jointly handle both aspects in a single Convolutional Neural
Network (CNN). Our CNN consists of two parts, given a
whole input gallery image, a pedestrian proposal net is used
to produce bounding boxes of candidate people, which are
fed into an identification net to extract features for compar-
ing with the target person. The pedestrian proposal net and
the identification net adapt with each other during the joint
optimization. For example, the proposal net can focus more
on the recall rather than the precision, as false alarms could
be eliminated through the latter features matching process.
Meanwhile, misalignments of proposals are also acceptable,
as they can be further adjusted by the identification net. To
improve the scalability of the whole system, inspired by re-
cent advances in object detection [27], we encourage both
parts to share underlying convolutional feature maps, which
significantly accelerates the inference procedure.

Traditional re-id feature learning mainly employs pair-
wise or triplet distance loss functions [1, 3, 5, 19]. How-
ever, they are not efficient as only several data samples are
compared at each time, and there are O(N2) potential input
combinations, where N is the number of images. Different
sampling strategies could significantly impact the conver-
gence rate and quality, but finding efficient sampling strate-
gies becomes much more difficult as N increases. Another
approach is learning to classify identities with the Softmax
loss function [35], which effectively compares all the sam-
ples at the same time. But as the number of classes in-
creases, training the big Softmax classifier matrix becomes
much slower or even cannot converge. In this paper, we
propose a novel Online Instance Matching (OIM) loss func-
tion to cope with the problems. We maintain a lookup table
of features from all the labeled identities, and compare dis-
tances between mini-batch samples and all the registered
entries. On the other hand, many unlabeled identities could
appear in scene images, which can be served as negatives
for labeled identities. We thus exploit a circular queue to
store their features also for comparison. This is another ad-
vantage brought by the person search problem setting. The
proposed parameter-free OIM loss converges much faster
and better than the Softmax loss in our experiments.

The contribution of our work is three-fold. First, we pro-
pose a new deep learning framework to search a target per-
son from a gallery of whole scene images. Instead of simply
combining the pedestrian detectors and person re-id meth-
ods, we jointly optimize both objectives in a single CNN
and they better adapt with each other. Second, we propose
an Online Instance Matching loss function to learn identifi-
cation features more effectively, which enables our frame-
work to be scalable to large datasets with numerous identi-

ties. Together with the fast inference speed, our framework
is much closer to the real-world application requirements.
At last, we collect and annotate a large-scale benchmark
dataset for person search, covering hundreds of scenes from
street and movie snapshots. The dataset contains 18, 184
images, 8, 432 identities, and 96, 143 pedestrian bounding
boxes. We validate the effectiveness of our approach com-
paring against other baselines on this dataset. The dataset
and code are made public to facilitate further research1.

2. Related Work

Person re-identification. Early person re-identification
methods addressed the problem by manually designing dis-
criminative features [12,34,42], learning feature transforms
across camera views [25,26,30], and learning distance met-
rics [11,22,24,26,46]. Recent years, many researchers have
proposed various deep learning based methods that jointly
handle all these aspects. Li et al. [19] and Ahmed et al. [1]
designed specific CNN models for person re-id. Both the
networks utilize as input a pair of cropped pedestrian im-
ages and employ a binary verification loss function to train
the parameters. Ding et al. [5] and Cheng et al. [3] ex-
ploited triplet samples for training CNNs to minimize the
feature distance between the same person and maximize the
distance between different people. Apart from using pair-
wise or triplet loss functions, Xiao et al. [35] proposed to
learn features by classifying identities. Multiple datasets
are combined together and a domain guided dropout tech-
nique is proposed to improve the feature learning. Several
recent works addressed on solving person re-id on abnormal
images, such as low-resolution images [20], or partially oc-
cluded images [47].

Concurrent with our prior arXiv submission, Zheng et
al. [44] also contributed a benchmark dataset for person
search. They exploited separate detection and re-id meth-
ods with scores re-weighting to solve the problem, while in
this work we propose a deep learning framework that jointly
handles both aspects.

Pedestrian detection. DPM [7], ACF [6], and Checker-
boards [41] are the most commonly used off-the-shelf
pedestrian detectors. They rely on hand-crafted features and
linear classifiers to detect pedestrians. Recent years, CNN-
based pedestrian detectors have also been developed [37,
40]. Various factors, including CNN model structures,
training data, and different training strategies are studied
empirically in [15]. Tian et al. [31] exploited pedestrian and
scene attribute labels to train CNN pedestrian detectors in a
multi-task manner. Cai et al. [2] proposed a complexity-
aware boosting algorithm for learning CNN detector cas-
cades.

1https://github.com/ShuangLI59/person_search

https://github.com/ShuangLI59/person_search
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Figure 2. Our proposed framework. Pedestrian proposal net generates bounding boxes of candidate people, which are fed
into an identification net for feature extraction. We project the features to a L2-normalized 256-d subspace, and train it with
a proposed Online Instance Matching loss. Both the pedestrian proposal net and the identification net share the underlying
convolutional feature maps.

3. Method

We propose a new deep learning framework that jointly
handles the pedestrian detection and person re-identification
in a single convolutional neural network (CNN), as shown
in Figure 2. Given as input a whole scene image, we first
use a stem CNN to transform from raw pixels to convolu-
tional feature maps. A pedestrian proposal net is built upon
these feature maps to predict bounding boxes of candidate
people, which are then fed into an identification net with
RoI-Pooling [9] to extract L2-normalized 256-d features for
each of them. At inference stage, we rank the gallery peo-
ple according to their feature distances to the target person.
At training stage, we propose an Online Instance Matching
(OIM) loss function on top of the feature vectors to super-
vise the identification net, together with several other loss
functions for training the proposal net in a multi-task man-
ner. Below we will first detail the CNN model structure,
and then elaborate on the OIM loss function.

3.1. Model Structure

We adopt the ResNet-50 [13] as our base CNN model.
It has a 7 × 7 convolution layer in front (named conv1),
followed by four blocks (named conv2 x to conv5 x) each
containing 3, 4, 6, 3 residual units, respectively. We exploit
conv1 to conv4 3 as the stem part. Given an input im-
age, the stem will produce 1024 channels of features maps,
which have 1/16 resolutions of the original image.

On top of these feature maps, we build a pedestrian pro-
posal network to detect person candidates. A 512 × 3 × 3
convolutional layer is first added to transform the features
specifically for pedestrians. Then we follow [27] to asso-
ciate 9 anchors at each feature map location, and use a Soft-
max classifier to predict whether each anchor is a pedestrian
or not, as well as a linear regression to adjust their loca-
tions. We will keep the top 128 adjusted bounding boxes

after non-maximum suppression as our final proposals.
To find the target person among all these proposals, we

build an identification net to extract the features of each pro-
posal, and compare against the target ones. We first exploit
an RoI-Pooling layer [9] to pool a 1024 × 14 × 14 region
from the stem feature maps for each proposal. Then they are
passed through the rest conv4 4 to conv5 3 of the ResNet-
50, followed by a global average pooling layer to summa-
rize into a 2048 dimensional feature vector. On one hand,
as the pedestrian proposals would inevitably contain some
false alarms and misalignments, we use again a Softmax
classifier and a linear regression to reject non-persons and
refine the locations. On the other hand, we project the fea-
tures into a L2-normalized 256 dimensional subspace (id-
feat), and use them to compute cosine similarities with the
target person when doing inference. During the training
stage, we supervise the id-feat with the proposed OIM loss
function. Together with other loss functions for detection,
the whole net is jointly trained in a multi-task learning man-
ner, rather than using the alternative optimizations in [27].

3.2. Online Instance Matching Loss

There are three different types of proposals, labeled iden-
tities, unlabeled identities, and background clutter. Suppose
there are L different target people in the training set, when
a proposal matches a target person, we call it an instance
of the labeled identity, and assign a class-id (from 1 to L)
to it accordingly. There are also lots of proposals predicting
pedestrians correctly, but do not belong to anyone of our tar-
get people. We call them unlabeled identities in such cases.
We demonstrate some examples of labeled and unlabeled
identities in Figure 3 with blue and orange bounding boxes,
respectively. Other proposals are just false alarms on other
objects or background regions. In the proposed loss func-
tion, we only consider the labeled and unlabeled identities,
while leave the other proposals untouched.
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Figure 3. Online Instance Matching. The left part shows the labeled (blue) and unlabeled (orange) identity proposals in
an image. We maintain a lookup table (LUT) and a circular queue (CQ) to store the features. When forward, each labeled
identity is matched with all the stored features. When backward, we update LUT according to the id, pushing new features
to CQ, and pop out-of-date ones. Note that both data structures are external buffer, rather than the parameters of the CNN.

As our goal is to distinguish different people, a natural
objective is to minimize the features discrepancy among the
instances of the same person, while maximize the discrep-
ancy among different people. To fulfill this goal, we need to
memorize the features of all the people. This could be done
offline by doing network forward on all the training images,
but it is not practical when using stochastic gradient descent
(SGD) for optimization. Thus in our approach, we choose
an online approximation instead. Denote the features of a
labeled identity inside a mini-batch by x ∈ RD, where D
is the feature dimension, we maintain a lookup table (LUT)
V ∈ RD×L to store the features of all the labeled identities,
as demonstrated in Figure 3. During the forward propaga-
tion, we compute cosine similarities between the mini-batch
sample and all the labeled identities by V Tx. During back-
ward, if the target class-id is t, then we will update the t-
th column of the LUT by vt ← γvt + (1 − γ)x, where
γ ∈ [0, 1], and then scale vt to have unit L2-norm.

Apart from labeled identities, many unlabeled identi-
ties are also valuable for learning feature representations.
They can be safely used as negative classes for all the
labeled identities. We use a circular queue to store the
features of these unlabeled identities that appear in recent
mini-batches. Denote the features in this circular queue by
U ∈ RD×Q, where Q is the queue size, we can also com-
pute their cosine similarities with the mini-batch sample by
UTx. After each iteration, we push the new feature vectors
into the queue, while pop the out-of-date ones to keep the
queue size unchanged.

Based on these two data structures, we define the prob-
ability of x being recognized as the identity with class-id i

by a Softmax function

pi =
exp(vTi x/τ)∑L

j=1 exp(v
T
j x/τ) +

∑Q
k=1 exp(u

T
k x/τ)

, (1)

where higher temperature τ leads to softer probability dis-
tribution. Similarly, the probability of being recognized as
the i-th unlabeled identity in the circular queue is

qi =
exp(uTi x/τ)∑L

j=1 exp(v
T
j x/τ) +

∑Q
k=1 exp(u

T
k x/τ)

. (2)

OIM objective is to maximize the expected log-likelihood

L = Ex [log pt] , (3)

and its gradient with respect to x can be derived as

∂L
∂x

=
1

τ

(1− pt)vt − L∑
j=1
j 6=t

pjvj −
Q∑

k=1

qkuk

 . (4)

It can be seen that our OIM loss effectively compares
the mini-batch sample with all the labeled and unlabeled
identities, driving the underlying feature vector to be similar
with the target one, while pushing it away from the others.

Why not Softmax loss? A natural question here is that
why not learning a classifier matrix with a conventional
Softmax loss to predict the class-id. There are mainly two
drawbacks. First, large-scale person search datasets would
have a large number of identities (more than 5, 000 in our
training set), while each identity only has several instances



and each image only contains a few identities. We need
to learn more than 5, 000 discriminant functions simultane-
ously, but during each SGD iteration we only have positive
samples from tens of classes. The classifier matrix suffers
from large variance of gradients and thus cannot be learned
effectively, even with proper pre-training and high momen-
tum. Second, we cannot exploit the unlabeled identities
with Softmax loss, as they have no specific class-ids.

Although our OIM loss formulation is similar to the Soft-
max one, the major difference is that the OIM loss is non-
parametric. The LUT and circular queue are considered as
external buffer, rather than the network parameters. The
gradients directly operate on the features without the trans-
formation by a classifier matrix. The potential drawback of
this non-parametric loss is that it could overfit more easily.
We find that projecting the features into a L2-normalized
low-dimensional subspace helps reduce overfitting.

Scalability. Computing the partition function in Eq (1)
and Eq (2) could be time consuming when the number
of identities increases. To overcome this problem, we
can approximate the denominators by sub-sampling the la-
beled and unlabeled identities, which results in optimizing
a lower-bound of Eq (3).

4. Dataset
We collect and annotate a large-scale person search

dataset to evaluate of our proposed method. We exploit two
data sources to diversify the scenes. On one hand, we use
hand-held cameras to shoot street snaps around an urban
city. On the other hand, we collect from movie snapshots
that contain pedestrians, as they could enrich the variations
of viewpoints, lighting, and background conditions. In this
section, we will show the basic statistics of our dataset, as
well as define the evaluation protocols and metrics.

4.1. Statistics

After collecting all the 18, 184 images, we first densely
annotate all the 96, 143 pedestrians bounding boxes in these
scenes, and then associate the person that appears across
different images, resulting in 8, 432 labeled identities. The
statistics of two data sources are listed in Table 1. We did
not annotate those people who appear with half bodies or
abnormal poses such as sitting or squatting. Moreover, peo-
ple who change clothes and decorations in different video
frames are not associated in our dataset, since person search
problem requires to recognize identities mainly according
to their clothes and body shapes rather than faces. We en-
sure that the background pedestrians do not contain labeled
identities, and thus they can be safely served as negative
samples for identification. Note that we also ignore the
background pedestrians whose heights are smaller than 50
pixels, as they would be hard to recognize even for human
labelers. The height distributions of labeled and unlabeled

Source / Split # Images # Pedestrians # Identities

StreetSnap 12,490 75,845 6,057
Movie&TV 5,694 20,298 2,375

Training 11,206 55,272 5,532
Test 6,978 40,871 2,900

Overall 18,184 96,143 8,432

Table 1. Statistics of the dataset with respect to data sources
and training / test splits.
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Figure 4. The height distributions of labeled and unlabeled
identities in our dataset.

identities are demonstrated in Figure 4. It can be seen that
our dataset has rich variations of pedestrian scales.

4.2. Evaluation Protocols and Metrics

We split the dataset into a training and a test subset, en-
suring no overlapped images or labeled identities between
them. Table 1 shows the statistics of these two subsets. We
divide the test identity instances into queries and galleries.
For each of the 2, 900 test identities, we randomly choose
one of his/her instances as the query, while the correspond-
ing gallery set consists of two parts—all the images contain-
ing the other instances and some randomly sampled images
not containing this person. Different queries have different
galleries, and jointly they cover all the 6, 978 test images.

To better understand how gallery size would affect the
person search performance, we define a set of protocols
with gallery size ranging from 50 to 4000. Taking gallery
size of 100 as an example, as each image approximately
contains 6 pedestrians, then our task is to find the target
person among about 600 people. This setting is compa-
rable with existing person re-id datasets (e.g., CUHK-03,
VIPeR) in terms of the number of gallery pedestrians, and is
even more challenging as there could be thousands of back-
ground clutter bounding boxes distracting our attentions.

We employ two kinds of evaluation metrics—cumulative
matching characteristics (CMC top-K) and mean averaged
precision (mAP). The first one is inherited from the person
re-id problem, where a matching is counted if there is at



least one of the top-K predicted bounding boxes overlaps
with the ground truths with intersection-over-union (IoU)
greater or equal to 0.5. The second one is inspired from
the object detection tasks. We follow the ILSVRC object
detection criterion [29] to judge the correctness of predicted
bounding boxes. An averaged precision (AP) is calculated
for each query based on the precision-recall curve, and then
we average the APs across all the queries to get the final
result.

5. Experiments
To evaluate the effectiveness of our approach and study

the impact of various factors on person search performance,
we conduct several groups of experiments on the new
dataset. In this section, we first detail the baseline meth-
ods and experiment settings in Section 5.1. Then we com-
pare our joint framework with the baselines of using sepa-
rate pedestrian detection and person re-identification in Sec-
tion 5.2. Section 5.3 shows the effectiveness of our pro-
posed Online Instance Matching (OIM) loss. At last, we
present the influence of various factors, including detection
recall and gallery size.

5.1. Experiment Settings

We implement our framework based on Caffe [16, 32]
and py-faster-rcnn [9, 27]. ImageNet-pretrained ResNet-
50 [13] are exploited for parameters initialization. We fix
the first 7×7 convolution layer and the batch normalization
(BN) layers as constant affine transformations in the stem
part, while keep the other BN layers as normal in the identi-
fication part. The temperature scalar τ in Eq. (1) and Eq. (2)
is set to 0.1, the size of the circular queue is set to 5, 000.
All the losses have the same loss weight. Each mini-batch
consists of two scene images. The learning rate is initialized
to 0.001, dropped to 0.0001 after 40K iterations, and kept
unchanged until the model converges at 50K iterations.

We compare our framework with conventional meth-
ods that break down the problem into two separate tasks—
pedestrian detection and person re-identification. Three
pedestrian detection and five person re-id methods are used
in our experiments, resulting in 15 baseline combinations.
For pedestrian detection, we directly use the off-the-shelf
deep learning CCF [37] detector, as well as two other de-
tectors specifically fine-tuned on our dataset. One is the
ACF [6], and the other is Faster-RCNN (CNN) [27] with
ResNet-50, which is equivalent to our framework but with-
out the identification task. The recall-precision curve of
each detector on our dataset are plotted in Figure 5. We also
use the ground truth (GT) bounding boxes as the results of
a perfect detector.

For person re-identification, we use several popular re-
id feature representations, including DenseSIFT-ColorHist
(DSIFT) [42], Bag of Words (BoW) [43], and Local Max-
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Figure 5. Recall-Precision curves of different detectors.
APs are listed in the legend.

imal Occurrence (LOMO) [21]. Each feature representa-
tion is used in conjunction with a specific distance metric,
including Euclidean, Cosine similarity, KISSME [17], and
XQDA [21], where KISSME and XQDA are trained on our
dataset. Moreover, by discarding the pedestrian proposal
network in our framework and training the remaining net to
classify identities with Softmax loss from cropped pedes-
trian images, we get another baseline re-id method (IDNet).
This training scheme has been exploited in [35] to learn
discriminative re-id feature representations. In our exper-
iments, when training IDNet with detector boxes, we found
that adding background clutter as a unique class improves
the result, while adding unlabeled identities does not.

The following results are reported using the protocol
with gallery size equal to 100 if not specified.

5.2. Comparison with Detection and Re-ID

We first compare our proposed person search framework
(with or without using unlabeled identities) with other 15
baseline combinations that break down the problem into
separate detection and re-identification tasks. The results
are summarized in Table 2. Our method outperforms the
others by large margin. Comparing with CNN+IDNet, the
gain comes from the joint optimization of the detection and
identification parts, as well as the effective use of unlabeled
identities in the OIM loss.

From Table 2 we can also see that different detectors af-
fect the person search performance significantly for each
re-id method. Directly using an off-the-shelf detector may
not be a good choice when applying existing re-id meth-
ods in the real-world person search applications. Otherwise
the detector could become a bottleneck that diminishes the
returns of better re-id methods.

On the other hand, the relative performance of differ-
ent re-id methods are consistent across all the detectors. It
implies that existing person re-id datasets could still guide
us to design better feature representations, but it may lose
some valuable data, such as unlabeled identities and back-
ground clutter, which come with the person search datasets.



CMC top-1 (%) CCF ACF CNN GT

DSIFT+Euclidean 11.7 25.9 39.4 45.9
DSIFT+KISSME 13.9 38.1 53.6 61.9
BoW+Cosine 29.3 48.4 62.3 67.2
LOMO+XQDA 46.4 63.1 74.1 76.7
IDNet 57.1 63.0 74.8 78.3

Ours (w/o unlabeled) — — 76.1 78.5
Ours — — 78.7 80.5

mAP (%) CCF ACF CNN GT

DSIFT+Euclidean 11.3 21.7 34.5 41.1
DSIFT+KISSME 13.4 32.3 47.8 56.2
BoW+Cosine 26.9 42.4 56.9 62.5
LOMO+XQDA 41.2 55.5 68.9 72.4
IDNet 50.9 56.5 68.6 73.1

Ours (w/o unlabeled) — — 72.7 75.5
Ours — — 75.5 77.9

Table 2. Comparisons between our framework and separate
pedestrian detection + person re-id methods.

Another interesting phenomenon is that although IDNet
and LOMO+XQDA have similar performance when using
GT or fine-tuned ACF and CNN detectors, IDNet is signif-
icantly better when using off-the-shelf CCF detector. We
observe that the CCF detection results contain many mis-
alignments. Hand-crafted features in such cases are not as
robust as the IDNet counterpart.

5.3. Effectiveness of Online Instance Matching

We validate the effectiveness of the proposed Online In-
stance Matching (OIM) loss by comparing it against Soft-
max baselines with or without pretraining the classifier ma-
trix. The training identification accuracy and test person
search mAP curves are demonstrated in Figure 6. First, we
can see that using Softmax loss without pretraining classi-
fier remains at low accuracy during the whole process. This
phenomenon verifies our analysis in Section 3.2 that learn-
ing a large classifier matrix is difficult. Even with proper
pretraining, the training accuracy still improves slowly, and
the test mAP keeps at around 60%.

On the contrary, the proposed OIM loss starts with a low
training accuracy but converges much faster and also con-
sistently improves the test performance. The parameter-free
OIM loss learns features directly without needing to learn
a big classifier matrix. Moreover, the mismatch between
training and test criterion no longer exists, as both are com-
puted based on the inner product of L2-normalized feature
vectors, which represents the cosine similarity.

We further evaluate the impact of OIM loss on the stan-
dard person re-identification task. We train two differ-
ent base CNNs, Inception [35] (from scratch) and ResNet-
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Figure 6. Comparisons between using the proposed Online
Instance Matching (OIM) and Softmax loss (with and with-
out pretraining the Softmax classifier) in our framework.
The final accuracies and mAPs are shown in the legends.

Network Loss CUHK03 Market1501 Duke

Inception Softmax 73.2 75.8 54.4
Inception OIM 77.7 77.9 61.7
ResNet-50 Softmax 70.8 81.4 62.5
ResNet-50 OIM 77.5 82.1 68.1

Table 3. CMC top-1 accuracy (%) of using Softmax or OIM
loss for standard person re-id task.

50 [13] (ImageNet pretrained), with either Softmax loss
or OIM loss, on three large-scale person re-id datasets,
CUHK03 [19], Market1501 [43], and Duke [28, 48]. Fol-
lowing their own protocols, we evaluate the CMC top-1
accuracy of using different loss functions, as listed in Ta-
ble 3. OIM loss consistently outperforms Softmax loss, re-
gardless of which base CNN is used. We refer readers to
Open-ReID2 benchmarks for more details.

Sub-sampling the identities. As the number of identi-
ties increases, the computation time of the OIM loss could
become the bottleneck of the whole system. Thus we pro-
posed in Section 3.2 to approximate Eq. (1) and Eq. (2) by
sub-sampling both the labeled and unlabeled identities in
the denominators. We validate this approach here by train-
ing the framework with sub-sampling size of 10, 100, and
1000. The test mAP curves are demonstrated in Figure 7a.

2https://github.com/Cysu/open-reid

https://github.com/Cysu/open-reid
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Figure 7. Test mAP curves of different factors. The final mAPs are shown in the legend if applicable.

Dimension N/A 128 256 512 1024

top-1 (%) 59.3 65.9 78.7 78.2 78.5
mAP (%) 54.2 62.1 75.5 75.3 75.7

Table 4. Comparisons among different dimensions of L2-
normalized feature subspace. N/A means that we directly
use the L2-normalized 2048-d global pooled feature vector.

In general, sub-sampling a small number of identities re-
laxes the training objective, which leads to slightly inferior
performance but much faster convergence rate. This indi-
cates that our framework is scalable to larger datasets with
even more identities by using proper sub-sampling rate.

Low-dimensional subspace. We further investigate how
the dimension of the L2-normalized feature vector affects
the person search performance. The results are summarized
in Table 4. We observe that using the 2048-d global pooled
feature vector directly with L2-normalization leads to lower
training error, but its test performance is 20% worse. This
suggests that projecting the features into a proper low-rank
subspace is very important to regularize the network train-
ing. In our experiments, 256 to 1024 dimensions have simi-
lar test performance, and we choose 256-d to accelerate the
computation of feature distances.

5.4. Factors for Person Search

Detection Recall. We investigate how detection re-
calls would affect the person search performance by using
LOMO+XQDA as the re-id method and setting different
thresholds on detection scores. A lower threshold reduces
misdetections (increases the recall) but results in more false
alarms. We choose the recall rates ranging from 30% to the
maximum value of each detector. The final person search
mAP under each setting is demonstrated in Figure 7b. An
interesting observation is that higher recall does not nec-
essarily lead to higher person search performance, which
means re-id method could still get confused on some false

alarms. This again indicates that we should not focus solely
on training re-id methods with manually cropped pedestri-
ans, but should consider the detections jointly under the per-
son search problem setting.

Gallery size. Person search could be more challenging
as the gallery size increases. We evaluate several methods
under different test gallery sizes from 50 to full set of 6, 978
images, following the protocols defined in Section 4.2. The
test mAPs are demonstrated in Figure 7c. Note that for
each test query, the corresponding gallery images are ran-
domly sampled from the whole set. All test images are cov-
ered even with small gallery sizes. The performance gaps
among different methods are reduced as the gallery size in-
creases, indicating all the methods may suffer from some
common hard samples, and we could further improve the
performance with hard example minings.

6. Conclusion
In this paper, we propose a new deep learning frame-

work for person search. It jointly handles detection
and identification in a single CNN. An Online Instance
Matching loss function is proposed to train the network
effectively. Its non-parametric nature enables faster yet
better convergence, which is validated through series of
experiments.
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