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DISC: Deep Image Saliency Computing via
Progressive Representation Learning

Tianshui Chen, Liang Lin, Lingbo Liu, Xiaonan Luo, and Xuelong Li

Abstract— Salient object detection increasingly receives
attention as an important component or step in several pattern
recognition and image processing tasks. Although a variety of
powerful saliency models have been intensively proposed, they
usually involve heavy feature (or model) engineering based on
priors (or assumptions) about the properties of objects and
backgrounds. Inspired by the effectiveness of recently developed
feature learning, we provide a novel deep image saliency comput-
ing (DISC) framework for fine-grained image saliency computing.
In particular, we model the image saliency from both the coarse-
and fine-level observations, and utilize the deep convolutional
neural network (CNN) to learn the saliency representation in
a progressive manner. In particular, our saliency model is built
upon two stacked CNNs. The first CNN generates a coarse-level
saliency map by taking the overall image as the input, roughly
identifying saliency regions in the global context. Furthermore,
we integrate superpixel-based local context information in the
first CNN to refine the coarse-level saliency map. Guided by
the coarse saliency map, the second CNN focuses on the local
context to produce fine-grained and accurate saliency map while
preserving object details. For a testing image, the two CNNs
collaboratively conduct the saliency computing in one shot. Our
DISC framework is capable of uniformly highlighting the objects
of interest from complex background while preserving well object
details. Extensive experiments on several standard benchmarks
suggest that DISC outperforms other state-of-the-art methods
and it also generalizes well across data sets without additional
training. The executable version of DISC is available online:
http://vision.sysu.edu.cn/projects/DISC.

Index Terms— Convolutional neural network (CNN), image
labeling, representation learning, saliency detection.

I. INTRODUCTION

AS psychophysical experiments suggested, humans
appear to perceive surrounding environment almost

effortlessly due to their attentional mechanisms guiding the
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gaze to salient and informative locations in the visual field.
Mimicking such a visual saliency system is a long-standing
research topic both in neuroscience [1] and in computer
vision. Recently, instead of predicting sparse human eye
fixation, many studies in computer vision focus on detecting
the most informative and attention-grabbing regions
(i.e., salient objects) in a scene [2]. These proposed
salient object detection methods [3]–[6] also evolve to target
on uniformly highlighting pixel-accurate saliency values,
which is the aim of this paper. In addition, salient object
detection has the great potential to benefit a wide range of
applications ranging from image/video compressing [7] and
editing [8] to object segmentation and recognition [9].

Due to the lack of a rigorous definition of image saliency,
inferring the accurate saliency assignment for diversified nat-
ural images without a task orientation is a highly ill-posed
problem. Therefore, many works of image saliency detection
usually rely on various priors (or assumptions) for defining
their saliency representations. Fig. 1 shows some examples.
The contrast prior is arguably the most popular one, which
can be further categorized as local contrast and global contrast
according to the context where the contrast is computed.
Local contrast-based methods [10], [11] exploit a pixel/patch
difference in the vicinity to compute the image saliency.
Without considering the global information, these methods,
however, often miss the interior content while emphasizing the
boundaries of salient objects, as shown in Fig. 1(d). In contrast,
global contrast-based methods [12], [13] take the whole image
as input to estimate the saliency of every pixel or image
patch. Some results generated by these methods are shown
in Fig. 1(e). Though the entire salient objects are generally
highlighted, the object structure details may not be well
preserved. The compactness prior [14] is also widely utilized
in image saliency modeling, which suggests the elements of
salient objects tend to be compactly grouped in the image
domain. This prior is shown to better capture object details
compared with the global contrast, but may fail to highlight
the object uniformly, as the examples shown in Fig. 1(f). The
background prior [4], similar with the compactness, tends to
render high saliency values to the regions near the center of
the image. This prior, however, may lead to unreliable results
on detecting salient regions that have similar appearance to
the background, as shown in Fig. 1(g). Some studies used
a combination of different priors (e.g., the compactness and
local contrast priors) to improve the performance, as shown
in Fig. 1(h).

Furthermore, the priors for modeling image saliency can
be derived from higher level knowledge. For example,

2162-237X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1136 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 6, JUNE 2016

Fig. 1. Comparison of image saliency maps generated by several state-of-the-art approaches based on different assumptions, including local/global contrast,
compactness, background priors, and the combination of them. In contrast, the proposed method is capable to produce better fine-grained saliency maps
without any assumption or feature engineering. (a) Image. (b) Ground truth. (c) DISC. (d) Local contrast. (e) Global contrast. (f) Compactness. (g) Background.
(h) Compactness and local contrast.

the human perception suggests that red colored objects are
more pronounced as more than 50% of the cones in human
eyes are red sensitive [15]. Some semantic information
(e.g., object categories and attributes) has also been explored
for completing the saliency models. The integration of these
higher level priors, nevertheless, is usually ad hoc, and one of
the common ways is to calculate the weighted average of the
saliency maps generated from high-level cues and those from
low-level features.

On the other side, several learning-based approaches
have been discussed for the task-driven image saliency
detection. For instance, Liu et al. [11] learned a conditional
random field (CRF) with supervision to detect salient
objects. Jiang et al. [16] proposed to learn the saliency
maps using a random forest regressor. Though impressive
results are achieved, those methods often depend on hand-
crafted features, such as contrast histogram and color spatial
distribution, and the design of these features basically follows
the priors as we discussed above. Besides, most of the
mentioned approaches conduct the saliency learning based
on the oversegmentation of images (i.e., small regions or
superpixels) and, thus, require an additional postrelaxation
step (e.g., local filtering) to smooth the saliency values over
pixels. The step of image segmentation may introduce errors
and degenerate the saliency detection.

Different from those previous works, we present a novel
end-to-end framework for fine-grained image saliency
computing, and formulate it as a progressive representation
learning problem. Our proposed model captures the image
saliency in a coarse-to-fine manner, i.e., exploiting saliency
cues with global and local contexts, respectively. In particular,
the coarse-level image saliency roughly identifies the
locations, scales, and rough regions for the salient objects,
while the object details (e.g., boundaries and subtle structures)
will be rendered by the fine-level saliency map. Instead of

defining two level representations with assumptions or
hand-crafted image descriptors, we aim to learn the feature
transformation directly from raw image pixels.

Inspired by its outstanding performance on the traditional
classification and detection tasks [17], we propose a novel
image saliency model named deep image saliency comput-
ing (DISC) using convolutional neural network (CNN) in
this paper. In particular, our DISC framework is built upon
two stacked CNNs to cope with the coarse-to-fine saliency
representation learning, where the CNN is treated as a feature
extractor and the saliency map is generated by an additional
linear transformation. The CNN architecture, designed accord-
ing to the AlexNet [17], comprises several convolutional layers
and fully connected layers. We define the linear transformation
in the form of support vector machine (SVM) classification,
instead of using a softmax classifier like other CNN-based
approaches. The combination of CNNs and SVMs has been
discussed in [18], but they trained these two models separately.
In contrast, we embed the SVM into the CNN, ensuring joint
optimization for these two components.

We briefly introduce the implementation of our approach
as follows. The first CNN takes the whole image as input
and measures the saliency score of each pixel in a global
context, generating a coarse-level saliency map in a lower res-
olution. However, since the coarse CNN considers the whole
image but pays less attention to local context information, it
may mistakenly highlight some background regions or lose
subtle salient structures. As a result, an incorrect coarse map
will adversely affect the subsequent fine-level map generated
by the second CNN. To address this issue, we utilize the
superpixel-based local context information (SLCI) to further
refine the coarse maps, which helps to keep the consistency of
a spatial structure of the salient objects. The SLCI comprises
two components, namely, intrasuperpixel smoothing (ISS) and
intersuperpixel voting (ISV) that make use of local context
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information in different scales. We formulate them as two
special types of pooling layers and, then, embed them in
the first CNN rather than treating them as a postprocessing
step. The second CNN is guided by the coarse-level saliency
map, measuring the accurate and fine-grained saliency in a
local context. In particular, each pixel is fed to the second
CNN together with its local observed patches from both the
original image and the coarse-level saliency map. To avoid
repeat computation, we load the entire image at a time and,
thus, make the neighboring pixels share their observations
during the learning and inference procedures. Moreover, we
introduce a nonparametric map as an additional input channel
to both CNNs, implicitly taking the spatial regularization (SR)
into account to alleviate overfitting, and show that reasonable
performance improvement can be achieved. Intuitively, we
also refer the first and second CNNs as the coarse-level
and the fine-level CNNs, respectively. The two CNNs are
trained separately with supervision, yet they collaboratively
conduct the inference for a testing image, i.e., producing the
fine-grained saliency map in one shot. Some saliency maps
generated by our approach are shown in Fig. 1(c).

This paper makes three main contributions to the
community.

1) It presents a novel architecture capturing image saliency
via progressive representation learning. This model is
general to be extended to similar tasks, such as scene
parsing.

2) SLCI is integrated in the proposed framework for salient
object structure preserving. It is formulated as two oper-
ations and embedded in the first CNN as ISS and ISV
layers.

3) Extensive experiments on the standard benchmarks of
image saliency detection demonstrate that our pro-
posed method significantly outperforms state-of-the-art
approaches and generalizes well across data sets without
additional training. We also evaluate carefully each com-
ponent of our model, and discuss the key components
that improve the performance.

The remainder of this paper is organized as follows.
Section II presents a review of related work. We then present
our DISC framework in Section III, followed by a description
of the optimization method in Section IV and a description of
domain adaption implementation in Section V. The experimen-
tal results, and analysis are exhibited in Section VI. Finally,
the conclusion is drawn in Section VII.

II. RELATED WORK

According to the objective and the technical components of
this paper, we review the related work into three pipelines:
1) image saliency detection; 2) deep representation learning;
and 3) deep saliency computing.

A. Image Saliency Detection

Existing work of image saliency detection can be broadly
divided into two categories: 1) bottom–up and 2) top–down
approaches.

The bottom–up saliency models mainly focus on explaining
visual attention according to different mathematical principles

or priors. Among them, various contrast-based methods
have been intensively discussed. Itti et al. [10] presented
the center-surround operators based on the multiscale
image segmentation. Zhai and Shah [12] proposed to use
image histograms to compute pixel-level saliency map.
Achanta et al. [13] provided a frequency-tuned method that
directly computed pixel saliency by subtracting the average
image color. Cheng et al. [19] extended image histogram to
3-D color space, and proposed color histogram contrast (HC)
and region contrast (RC). Background information is also
widely explored for saliency modeling, including the boundary
prior and the background-connectivity prior [4]. The com-
pactness prior encourages the salient elements to be grouped
tightly, and it was realized in [14] using two Gaussian filters.
Moreover, several mathematical models have also been utilized
to define the bottom–up saliency models, such as entropy [20]
and Shannon’s self-information [21]. Shen and Wu [15]
proposed to utilize the low-rank representation for saliency
detection, which is based on the assumption that the nonsalient
background usually lies in a low-dimensional subspace, while
the sparse noise indicates the salient regions.

The top–down approaches introduce visual knowledge
commonly acquired through supervised learning to detect
image saliency. Approaches in this category are highly
effective on task-specified saliency detection. For example,
Lin and Lin [22] proposed a computational visual saliency
model based on feature-prior, position-prior, and feature-
distribution, which are learned from support vector regressor,
ground truth of training images, and features in the image
using information theory, respectively. Mai et al. [23] trained
a CRF model to aggregate various saliency map produced
by different methods. Lu et al. [24] proposed a graph-based
method to learn optimal seeds for object saliency. They learned
the combination of different features that best discriminate
between object and background saliency.

B. Deep Representation Learning
Recently, representation learning via deep CNNs has

obtained great success in various computer vision tasks, such
as image classification [17], object detection [25], person rei-
dentification [26], [27], and human centric analysis [28], [29].
Many works also apply a multiscale deep network to
various computer vision tasks. Farabet et al. [30] used a
multiscale CNN trained from raw pixels to extract dense
feature for assigning a label to each pixel. However, it is
time-consuming for multiple complex postprocessing required
for accurate prediction. These works utilized multiscale
input to realize multiscale representation learning. Instead,
some works integrated a multiscale structure inside the CNN.
Sermanet et al. [31] incorporated multiscale information inside
the CNN architecture and utilized unsupervised multistage fea-
ture learning for pedestrian detection. It produced features that
extract both global structures and local details, and improved
the performance by a large margin. However, this novel
architecture was difficult to adapt to high-resolution pixelwise
labeling. Nowadays, more works tended to design different
network architectures for different scale representation
learnings. Wang et al. [32] designed a localization network
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Fig. 2. Illustration of our proposed deep saliency computing model. The first CNN takes the whole image data as input and produces coarse map. Guided
by the coarse map, the second CNN takes a local patch as input and generates the fine-grained saliency map.

and a segmentation network to rapidly locate and accurately
segment the object from the images. It outperformed previous
segmentation work on public benchmark both in accuracy
and efficiency. However, it heavily relied on the accuracy of
localization, which is not always satisfied, especially for the
image with more than one object. Sun et al. [33] designed a
cascaded regression framework with three level of CNNs for
facial landmark detection. Eigen et al. [34] proposed a depth
prediction model based on two deep CNNs to estimate the
depth of each image pixel in a coarse-to-fine manner. The
output of the first CNN was concatenated with the output
of the first convolutional layer of the second CNN, and
they are fed into the subsequent layers for accurate depth
prediction.

C. Deep Learning for Saliency Detection

Very recently, deep neural network models are also uti-
lized in image saliency detection [35]–[37]. For example,
He et al. [35] learned the hierarchical contrast features using
CNNs and designed a multiscale architecture with sharing
weights for robust salient region detection. Li and Yu [36]
extracted multiscale deep features using CNNs pretrained on
the ImageNet data set [38], and the multiscale representations
were fused to produce the final saliency score by several fully
connected layers. Wang et al. [37] presented a saliency detec-
tion algorithm by integrating both local estimation and global
search, and utilized two deep neural networks to realize it.
Some other attempts have been made for the application of
human fixation prediction [39]–[42]. Vig et al. [40] com-
bined CNNs and a linear SVM for predicting fixation, and
Kümmerer et al. [41] learned a weight on linear combination
of convolution channels without using fully connected layers.
Using deep architectures, these above-mentioned works mainly
integrated multiscale context information in a straightforward
way (e.g., in parallel). In contrast, we develop our saliency
model following a divide-and-conquer manner, i.e., progres-
sively generating saliency maps, which finely accords with
biological perception and existing coarse-to-fine object detec-
tion models. We also demonstrate the superior performance of
our method over the other existing deep saliency model.

III. DEEP IMAGE SALIENCY COMPUTING FRAMEWORK

In this section, we describe the proposed DISC framework
in detail. We model the fine-level image saliency computing
as a progressive representation learning problem with two
stacked CNNs. The first CNN takes the original image as
input and produces a coarse-level saliency map. Both the
original image and the coarse-level saliency map are then fed
into the second CNN, generating the final fine-level saliency
map. To maintain the spatial structure of salient object for the
coarse map, the SLCI is integrated in the first CNN as an
intrasmoothing layer and an intervoting layer. The pipeline of
DISC is shown in Fig. 2.

A. Progressive Representation Learning

Before delving into the formulation, we present some nota-
tions that would be used later. Let I , C , and F denote the
original image data, coarse-level, and fine-level saliency maps,
respectively; �i (I ) and �i (C) denote the square patches of
I and C centered at pixel i ; Ci and Fi denote the saliency
score of pixel i in saliency maps C and F .

The coarse-level saliency map is generated first. We extract
the feature of the whole image and, then, apply a linear
transformation that assigns a corresponding saliency score to
each pixel, which can be expressed as

Ci = Tc,i (φc(I ))

= wT
c,iφc(I ) + bc,i , i = 1, 2, . . . , Nc (1)

where wc,i and bc,i are the parameters of the linear trans-
form Tc,i for pixel i . Nc is the pixel number of the coarse-
level saliency map. The feature extractor φc is implemented
by a CNN, and the linear transformations {Tc,i }Nc

i=1 are defined
in the form of linear SVMs. We further refine C using SLCI
to get a structure-preserved coarse map C̃ . We describe SLCI
in detail in Section III-B.

To compute the saliency score of each pixel i in the fine
saliency map, we take both the local patch �i (I ) from the
original image and its corresponding patch �i (C̃) from the
coarse-level saliency map as input, and map them to a feature
vector φ f (�i (I ),�i (C̃)). A simple linear transformation T f
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is then utilized to map the feature vector to the corresponding
saliency score

Fi = T f (φ f (�i (I ),�i (C̃)))

= wT
f φ f (�i (I ),�i (C̃)) + b f , i = 1, 2, . . . , N f (2)

where w f and b f are the parameters of the linear transfor-
mation T f . N f is the pixel number of the fine-level saliency
map. Similarly, the feature extractor φ f is implemented by
another CNN. For each CNN, we jointly train the feature
extractor and the classifier for the saliency computing model.

B. Superpixel-Based Local Context Information

As discussed above, the fine-level CNN generates the final
saliency maps guided by the coarse maps. Recall that the
saliency score of each pixel in the fine map is influenced
merely by its small neighborhood from the original image
and the corresponding coarse map. Hence, the accuracy of
fine saliency map depends heavily on the quality of a coarse
saliency map. Note that the first CNN takes the global
information into consideration, but pays less attention to the
nearby local context. We experimentally find that although the
coarse CNN is able to highlight the overall salient regions,
it suffers from two main problems: 1) the generated coarse
maps may confuse some of small foreground or background
regions if they have similar appearance and 2) it may fail
to preserve the structure of the salient objects, especially
when the background is very cluttered. Our aim is to capture
the global information and simultaneously consider nearby
context in order to produce high-quality coarse maps for the
subsequent learning. Therefore, the SLCI, consisting of two
types of superpixel-level refinements called intrasmoothing
and extravoting, is utilized to make better use of local context
information and preserve the spatial structure information.
They are integrated in the first CNN as two pooling layers
for coarse saliency map prediction. Note that the fine CNN
predicts the saliency score of each pixel according to its
neighborhood, and local context has been fully considered
here, so we do not need to use SLCI for the fine CNN.

1) Intrasuperpixel Smoothing: ISS aims to assign close
saliency scores to the pixels with similar appearance in local
small regions. We first oversegment the input image using
the entropy rate-based segmentation algorithm [43] to obtain
N small superpixels per image. Let Ri denote the super-
pixel that contains pixel i . Given the prediction map C , the
intrasmoothed saliency map C̃ can be computed by

C̃i = 1

|Ri |
∑

j∈Ri

C j (3)

where | · | is the cardinality of the set. In this way, the saliency
scores of pixels within a superpixel are replaced by the average
score.

2) Intersuperpixel Voting: ISS focuses on saliency score
smoothing in small regions, which can deal with a small-scale
saliency structure. Furthermore, ISV takes larger regions into
account for preserving a large-scale saliency structure, so that
the salient object can be labeled more uniformly. We replace
the saliency score of each region by the weighted average

of the saliency scores of the adjacent superpixels. Given a
superpixel s, we first compute the LAB color histogram hc(s)
and the gradient histogram hg(s) and, then, concatenate them
to build the appearance feature histogram h(s). Let Fs denote
the saliency value of s. The intervoting can be expressed by

C̃s = (1 − λ)Cs + λ
∑

s ′∈D(s)

w(s′) · Cs ′ (4)

where the weight for s′ is defined as

w(s′) = exp (−‖h(s) − h(s′)‖)∑
s ′′∈D(s)

exp (−‖h(s) − h(s′′)‖) (5)

D(s) contains all superpixels that are adjacent to s, and
‖h(s) − h(s′)‖ is the Euclidean distance between feature his-
togram h(s) and h(s′). λ is a scaling factor to balance the two
terms. The voting weights of each region are defined according
to the similarity in the color and structure space, which are two
important cues for saliency computing [6]. We assign a larger
voting weight to the region with similar color and structure
feature to s.

It can be observed that ISS and ISV can be regarded
as two special types of pooling methods. For ISS, the
pooling map is calculated by averaging the predicted map
in small regions with arbitrary shape. For ISV, we calculate
the weighted average of the intrasmoothing response map
in a larger region. We formulate these two operations as
ISS-pooling and ISV-pooling layers and, then, integrate them
as subcomponents in the first CNN. During the training stage,
the gradients are computed according to (3) and (4).

C. Spatial Regularization

In this section, we introduce the SR, which helps to reject
false label assignments and leads to an improvement of the
performance. As suggested in [11], objects near the center of
the image are more likely to be salient. A mass of saliency
detection algorithms, such as [6], [15], and [24], incorporate it
in their saliency computing frameworks as a center-bias prior.
In contrast, we simply average all of the aligned ground truth
saliency map in the training set and take it as an additional
input channel in both training and testing procedures for SR.
We do not use a center-bias prior here for two reasons. First,
previous works formulate the center-bias prior as a parametric
spatial term or a postprocessing step, and inevitably have to
tune the parameters carefully for better performance. Second,
incorporating the center-bias prior may suppress some salient
regions if they appear near the image boundaries. Conversely,
the SR map is considered as an additional input channel, and
fed to the CNNs with three-channels original image data.
In this way, the network is capable to learn saliency repre-
sentation from the original images, while implicitly taking the
SR into account to alleviate overfitting.

D. Network Architecture

As discussed above, two stacked CNNs are adopted for
the coarse-to-fine saliency representation learning. This section
introduces the architectures of DISC.
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Fig. 3. Architecture of the first CNN for coarse-level saliency computing. A 256 × 256 image is convolved with 96 different first layer filters, with a kernel
size of 11 × 11 and a stride of 4. The obtained feature maps are then passed through a rectified linear function, max-pooling operation, and local contrast
normalizations, and similar operations are repeated in the next four convolutional layers. The feature vector φc(I ) of the whole image is then fed into the
fully connected layer that produces the 64 × 64 coarse-level saliency map. This map is further refined by ISS and ISV.

Fig. 4. Architecture of the second CNN for fine-level saliency computing. The network takes 256 × 256 × 5 image data as input and convolves the data
with 96 different first layer filters, with a kernel size of 5 × 5 and a stride of 2. The obtained feature maps are then passed through a rectified linear function,
max-pooling operation, and contrast normalization. The next six convolutional layers take similar operations but with all stride of 1 and output the dense
feature vectors φ f (�i (I ), �i (C))(i = 1, 2, . . . , N f ). The dense feature vectors are fed into the last convolutional layer, producing the 128 × 128 fine-grained
saliency map.

The first CNN takes the whole image as input and produces
the coarse-level saliency map. It contains five convolutional
layers and one fully connected layer, followed by the ISS and
ISV pooling layers, as shown in Fig. 3. It is similar to the
general architecture proposed in [17], but we use four-channel
data as input and replace the last two fully connected layers
by ISS and ISV pooling layers. The input image data contain
three RGB channels of the training image and one channel of
the SR map. The five convolutional layers are served as the
feature extractor, which takes the whole image data of size
256 × 256 × 4 as input and produces a feature vector of
length 7 × 7 × 256. The last fully connected layer computes
the linear transformations of the feature vector and outputs
4096 saliency scores that are rearranged to a coarse-level map
in a lower resolution. The ISS-pooling and ISV-pooling layers
sequentially refine the coarse maps.

The second CNN, guided by the coarse-level map, computes
the saliency score for each pixel based on local observation.
It is designed as a fully convolutional network [44], as shown
in Fig. 4. The input data contains five channels, i.e., three
channels of original images with two channels of the SR
and coarse maps. This network contains eight convolutional
layers and first seven of which are regarded as a feature
extractor. Except for the first convolutional layer, we set the
stride as 1 based upon the following considerations. First, the
feature extractor can produce dense feature vectors for accurate
saliency computing. Second, the local patch for saliency
computing is kept small, ensuring to better preserve the local
details. The last convolutional layer takes the feature vector
of each pixel as input and, then, computes its corresponding
saliency value to form the fine-level saliency representation.

As the second CNN focuses on local context, it is intuitive
to crop a local patch for each pixel and compute their
saliency scores separately. However, it is time-consuming
for network training and inference. For example, to get
a 128 × 128 saliency map, 16 384 patches have to be
computed. Note that most area of two adjacent patches is
overlapping. To avoid these redundant computation, the CNN
takes the whole image as input and produces dense outputs.
In this way, the patches with overlap share much intermediate
computation results, significantly reducing the training and
inference time by hundreds of times.

IV. OPTIMIZATION

The two CNNs are trained using the stochastic gradient
descent (SGD) algorithm with hinge loss sequentially.

A. Optimization Formulation

Suppose that there are N training images, the train-
ing sets for the two CNNs are Xc = {(I k, Y k)}N

k=1 and
X f = {(I k, Ck , Y k)}N

k=1, respectively. I k is the four-channel
image data, including three channels of RGB value and a
channel of center-bias map. Y k is the corresponding saliency
map of the kth image. Ck is the coarse map produced by the
first CNN, which would be fed into the second CNN. The
optimization objective is to minimize the total loss

L = Lc + L f (6)

where Lc and L f are the objective functions for the first
and second CNNs, respectively. We optimize the two terms
separately.
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For the first CNN, we formulate the coarse saliency com-
puting for each pixel as a binary classification problem and
utilize hinge loss to optimize the classifier. Thus, Lc can be
defined as

Lc = 1

2

Nc∑

i=1

wT
c,i wc,i

+ C
Nc∑

i=1

N∑

k=1

max
(
1 − Y k

i

(
wT

c,iφc(I k) + bc,i
)
, 0

)2
. (7)

We adopt the hinge loss [45] in the square form for guaran-
teeing it is differential. According to (7), the gradients can be
computed by

∂Lc

∂φc(I k)
= −2C

Nc∑

i=1

N∑

k=1

Y k
i wT

c,i

× max
(
1 − Y k

i

(
wT

c,iφc(I k) + bc,i
)
, 0

)
. (8)

Similarly, the fine-level saliency computing can also be
regarded as a binary classification problem, and the objective
function L f is defined as

L f = 1

2
wT

f w f + C
N∑

k=1

N f∑

i=1

max
(
1 − Y k

i

(
wT

f fi + b f
)
, 0

)2

(9)

where we denote φ f (�i (I ),�i (C)) as fi for simplicity. The
corresponding gradients can be calculated by

∂L f

∂ fi
= −2C

N∑

k=1

N f∑

i=1

Y k
i wT

f max
(
1 − Y k

i

(
wT

f fi + b f
)
, 0

)
.

(10)

The parameters of lower layers are learned by backpropa-
gating the gradients from the top layer, which can be com-
puted by differentiating the objective function with respect
to the activations of the penultimate layer, that is, φc(I k).
According to (7) and (9), the gradients can be expressed
as (8) and (10). From this point on, the backpropagation algo-
rithm is exactly the same as the standard softmax-based deep
networks.

We first remove the ISS and ISV layers from the first CNN
and initial the parameters of the first CNN from a zero-mean
Gaussian distribution. We then train it using SGD with a
backpropagation method. Then, we integrate ISS and ISV
layers in the first CNN and fine-tune it to get the final coarse
model. The parameters of the second CNN are initialized and
trained identically.

V. TASK-ORIENTED ADAPTATION

Task-oriented salient object detection targets on highlighting
specific classes of salient objects. It is significant in the
situation that we are interested merely in some classes of
objects. As stated above, the model trained in a generic salient
object data set is inclined to highlight all the salient objects
in the image, no matter what it is. Taking the first image
in Fig. 5 as an example, the model trained on the MSRA

Fig. 5. Result of task-oriented salient object detection without and with
retraining. (a) Image. (b) Ground truth. (c) With retraining. (d) Without
retraining. All the salient objects are highlighted in (d), but only the specific
object is highlighted after retraining in (c).

data set highlights both the butterfly and the flower, because
both are salient. Hence, such a model cannot be directly used
in a task-oriented task (e.g., only highlighting the butterfly).

Fortunately, it is easy to generalize the model to a task-
oriented task. We first collect a data set of images that contain
the specific classes of object that we are interested in. We then
label the pixels that belong to these specific classes of object
as 1 and others as −1 for each image. Finally, we fine-tune the
model on the collected data set. In this way, only the specific
kinds of objects are highlighted, as shown in Fig. 5.

VI. EXPERIMENTS

A. Experiment Setting

1) Date Set Description: We evaluate our DISC framework
on five public benchmark data sets: 1) MSRA-10k [19];
2) SED1 [46]; 3) ECSSD [47]; 4) PASCAL1500 [48]; and
5) THUR15K [49]. The MSRA-10k contains 10 000 images
from the MSRA data set with pixel-level labeling for salient
objects. Because most images contain only a single object
located near the center of the image and background is
generally clean, the accuracy of recent methods has been
more than 90%, but our DISC model still improves the accu-
racy greatly. The SED1 data set is exploited recently, which
contains 100 images of single objects. The ECSSD contains
1000 diversified patterns in both foreground and background,
which includes many semantically meaningful but structurally
complex images for evaluation. The PASCAL1500, created
from PASCAL VOC 2012 segmentation challenge, is also a
challenging data set, in which images contain multiple objects
appearing at a variety of locations and scales with compli-
cated background. THUR15K consists of 15 000 images, with
6233 pixel-accurate ground truth annotations for five specific
categories: 1) Butterfly; 2) Coffee mug; 3) Dog jump;
4) Giraffe; and 5) Plane.

2) Evaluation Protocol: We use precision–recall (PR)
curves, F0.3 metric, and mean absolute error (MAE) to
evaluate all the methods. Precision is the fraction of cor-
rect salient pixel assigned number in relation to all the detected
salient pixel number, while recall is the fraction of correct
salient pixel number in relation to the ground truth number.
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Fig. 6. Experimental results on the MSRA-10k data set. (a) PR curve. (b) PR bar with F-measure. (c) MAE for comparing our DISC model against previous
works. Best viewed in color.

Varying the threshold of saliency object segmentation from
0 to 255, we can plot the PR curve.

F0.3 metric applies an image adaptive threshold proposed
in [13]. The adaptive threshold is defined as twice the mean
saliency of the image

T f = 2

W × H

W∑

x=1

H∑

y=1

S(x, y) (11)

where W and H denote the width and height of the image,
respectively, and S(x, y) denotes saliency value of the pixel at
position (x, y). The average precise and the average recall are
obtained with the adaptive threshold above, and the F-measure
is defined as

Fβ2 = (1 + β2)Precision × Recall

β2 × Precision + Recall
. (12)

The same as [13], we set β2 = 0.3 to weigh precision more
than recall.

As indicated in [14], PR curves and F0.3 metric provide a
quantitative evaluation, while MAE provides a better estimate
of the dissimilarity between the continuous saliency map and
the binary ground truth, which is defined as follows:

MAE = 1

W × H

W∑

x=1

H∑

y=1

|S(x, y) − GT (x, y)|. (13)

3) Implementation Details: For the balance between
computational efficiency and accuracy, we resize each input
image to 256 × 256 for both CNNs and the output size of
the first CNN is 64 × 64 while that of the second CNN is
128 × 128. We implement the two CNNs under the Caffe
framework [50], and train them using SGD with the
momentum of 0.9 and the weight decay of 0.0005. The
learning rate for training the first CNN is initialized as 10−6

with a batch size of 32 and that for training the second CNN
is initialized as 10−7 with a batch size of 2. We train the first
CNN for about 90 epochs and the second CNN for roughly
55 epochs, and the training procedure costs nearly two days
in all. During inference, we first assign −1 and 1 for the
pixels with saliency scores smaller than −1 and larger than 1,

respectively, and, then, transform them to [0, 255] via a simple
linear normalization. Our method can calculate a 128 × 128
normalized saliency map within about 75 ms on a single
NVIDIA GeForce GTX TITAN Black. It is relatively time-
saving compared with the previous state-of-the-art approaches.
For example, sparse reconstruction [3] costs about 3.536 s
and hierarchical saliency (HS) [47] runs in about 397 ms on
a desktop with an Intel i7 3.4-GHz CPU and 8-GB RAM.

B. Comparison With the State-of-the-Art Methods

In this section, we evaluate the proposed method on
MSRA-10k [19] data set. In our experiment, we ran-
domly divide MSRA-10k into two subsets, one sub-
set of 9000 images for training and the other subset
of 1000 images for verification. We repeat the experi-
ment for three times, and report the average result. We
compare DISC with 13 recent state-of-the-art approaches:
1) context-based (CB) saliency [51]; 2) dense and sparse
representation (DSR) [3]; 3) graph-based manifold (GM)
ranking [4]; 4) HS [47]; 5) Markov chain (MC) saliency [52];
6) saliency filter (SF) [14]; 7) visual attention mea-
sure (IT) [10]; 8) graph-based visual saliency (GBVS) [53];
9) frequency-tuned saliency (FTS) [13]; 10) spatial-temporal
cues (LC) [12]; 11) HC [19]; 12) RC [19] and SR [54].
We adopt the implementations from the original authors to
generate the results for CB, DSR, SM, HS, MC, and SF and
use the codes provided by [19] to generate the results of LC,
FTS, HC, RC, and SR. The results of IT and GBVS are
produced using the codes provided in [53]. We normalize all
the saliency scores to [0, 255].

The results of PR curve, F0.3 metric, and MAE on
MSRA-10k data set are shown in Fig. 6, respectively. Based
on the PR curve, although some previous methods, such as
DSR, GM, HS, and MC, have achieved more than 93%
accuracy, DISC still has significant improvement over all of
them, reaching 97.3%. On the other side, the minimal recall
value of DISC is 34%, significantly higher than those of
the other methods, because the saliency maps computed by
DISC contain more salient pixels with the saliency scores
of 255. Based on F0.3, our method performs consistently better
than the others, as the precision is comparable with the other
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Fig. 7. Visual comparison with previous methods. The images are taken from MSRA-10k (first two columns), SED1 (third and fourth columns),
ECSSD (fifth and sixth columns), and PASCAL1500 (last two columms). Our DISC model not only highlights the overall objects, but preserves boundary
and structure details.

state-of-the-art result, but the recall is 15.3% higher than the
best previous work. Besides, the MAE of DISC is significantly
lower than the others, which suggests we preserve the details
much better.

Some saliency maps produced by DISC and previous works
are shown in Fig. 7 for visual comparison. It can be seen that
our method not only highlights the overall salient objects, but
also preserves the detail very well.
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Fig. 8. (a) PR curve of DISC and other CNN-based methods on SED1 data
set. (b) PR curve of DISC with and without fine-tuning on THUR data set.
Best viewed in color.

These comparisons suggest that DISC outperforms other
state-of-the-art algorithms by large margins. The main rea-
son for the superior performance is our coarse-to-fine deep
architecture, which is capable of capturing different levels
of image saliency information. More specifically, compared
with the traditional saliency models using handcraft features,
the deep models enable learning very powerful features by
incorporating domain knowledge (i.e., how to define and
model the image saliency) into neural networks and leveraging
the large-scale data for effective learning. Actually, we believe
that is very common reason for the success of deep learning
in several vision tasks.

C. Comparison With CNN-Based Methods

To further demonstrate the effectiveness of the proposed
architecture, we provide the results of comparison between
DISC and other CNN-based methods: 1) S-3CNN [36];
2) LEGS [37]; and 3) an FCN-based method. S-3CNN and
LEGS are two recent-public works, which utilize a multi-
scale CNN structure for salient object detection. The fully
convolutional network (FCN) [44] takes input of arbitrary
size and produces a correspondingly sized dense label map,
and it has shown convincing results for pixelwise label-
ing, such as semantic image segmentation. Thus, we also
apply the FCN to salient object detection for compari-
son. We adopt the trained models and source codes pro-
vided by the original authors to generate the results for
S-3CNN and LEGS. For FCN-based method, we utilize
the best FCN-VGG16-8s architecture and train it using
9000 images of MSRA-10K data set. Since the training data
sets are quite different, we test all the methods on SED1 data
set, which has no overlap with all the data sets used for models
training, for fair cross-data set comparison. The experiments
are all carried out on a single NVIDIA GeForce GTX TITAN
Black, and the results are shown in Fig. 8(a) and Table I.
DISC performs consistently better than other CNN-based
methods, and the running time is 75 ms per image, dramati-
cally faster than S-3CNN and LEGS while slightly faster than
the FCN-based method. It demonstrates the effectiveness and
efficiency of our coarse-to-fine architecture.

D. Performance of Generalization

In this section, we evaluate the generalization performance
of DISC. It is a labor-intensive and time-consuming job to
collect enough labeled data to learn particular model for

TABLE I

PR WITH F -MEASURE, MAE, AND RUNNING TIME OF DISC AND OTHER
THREE CNN-BASED METHODS ON SED1 DATA SET

TABLE II

F-MEASURE AND MAE WITH AND WITHOUT FINE-TUNING ON THE

ECSSD AND PASCAL DATA SETS

each scenario. Therefore, transferring a learned model to
current scenario without significant degradation is a more
practical method. To assess how well our model generalized
to other data sets, we evaluate DISC on three data sets,
i.e., SED1, ECSSD, and PASCAL1500. As discussed in
experiment setting, the images of three data sets are collected
in three different scenarios. We directly test the performance
on these three data sets with the model learned on MSRA-10K.
The results are shown in Fig. 9. Although the model is trained
on the other data set, it outperforms all other previous methods
based on the three evaluation metrics. It is amazing because
the three data sets are significantly different both in salient
objects and background, which demonstrate the excellent
generalization ability of DISC.

E. Fine-Tuning on Other Data Sets

Although the result is quite outstanding on the ECSSD
and PASCAL1500 data sets without fine-tuning, we retrain
on these two data sets to get better result. We do not retrain
our model on the SED1 data set, because it contains only
100 images and is too small for retraining. We randomly select
600 images from ECSSD and 1000 images from PASCAL1500
for fine-tuning, respectively, and the rest is for testing.
As shown in Fig. 10 and Table II, the result after fine-tuning
is slightly better than before. There are two factors that lead
to such phenomenon. The first is the generalization ability
of DISC is excellent, and it can deal with variable situations
as discussed before. The second is that the samples for fine-
tuning may be insufficient.

F. Task-Oriented Adaptation

We select the 6233 images with pixel-accurate ground truth
annotations to evaluate the performance of our model with
task-oriented adaptation. We divide the 6223 images into
two parts: 1) 5233 images for fine-tuning and 2) 1000 images
for testing. We first produce the saliency maps for the
1000 testing images with the model learned on the MSRA-10k
data set. Then, we fine-tune DISC with the 5233 training
images. The PR curves with and without fine-tuning are shown
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Fig. 9. Experimental results on (a) SED1, (b) ECSSD, and (c) PASCAL1500 data sets compared with previous works. PR curves (the first row), PR bar
with F-measure (the second row), and MAE (the third row) show superior generalization ability of a DISC framework. Note that our method still achieves
the state-of-the-art performance when it is learned on a small-scale set (i.e., MSRA-10k) without fine-tuning on the target data sets. Best viewed in color.

Fig. 10. Experimental results of fine-tuning on the ECSSD and PASCAL1500
data sets. PR curve of our DISC framework with and without fine-tuning (FT)
on (a) ECSSD and (b) PASCAL1500. Best viewed in color.

in Fig. 8(b), while the corresponding PR with F-measure and
MAE is listed in Table III. Since the ground truth only labels
the specific objects, but the model without retaining highlights
all the salient objects, the precision of result without fine-
tuning is very low. After fine-tuning, the precision improves

TABLE III

PR WITH F -MEASURE AND MAE WITH AND WITHOUT FINE-TUNING
ON THE THUR DATA SET

significantly, while the recall keeps nearly the same. It suggests
that the pixel number we mislabel as saliency decreases.
In the other word, we do only highlight the specific classes of
objects, ignoring others.

G. Evaluation and Analysis

In this section, we would like to analyze and discuss each
component of the proposed model so as to evaluate the actual
contribution of corresponding component.
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Fig. 11. Visual comparison of coarse maps and fine maps (with and without
guidance). The samples are taken from the MSRA and ECSSD data sets.
(a) Image. (b) Ground truth. (c) Fine map with guidance. (d) Coarse map.
(e) Fine map without guidance.

TABLE IV

PR WITH F -MEASURE AND MAE COARSE MAPS AND FINE MAPS

(WITH AND WITHOUT GUIDANCE) ON THE MSRA DATA SET

1) Contribution of Progressive Representation Learning:
The progressive representation learning framework is designed
to learn the saliency representation in a coarse-fine manner,
with the coarse representation capturing the object loca-
tion and global structural information, while the fine rep-
resentation further refining the object details. We evaluate
the contribution of our progressive representation learning
framework by comparing its performance with those when
using only coarse representation, and using the fine maps
without guidance. We show some examples of these three
methods in Fig. 11. It is clear that the coarse maps are
capable of highlighting the locations and shapes of the salient
objects roughly, but the details, especially object boundaries
and subtle structures, are easily lost. Overall, these coarse
maps are well suited to help learn the fine representation.
In contrast, generating the fine maps without guidance usually
has two main drawbacks. First, it may miss the interior
contents while emphasizing the boundaries of salient objects
if the background is relatively clean (e.g., first two exam-
ples in Fig. 11). Second, it is likely to mistakenly highlight
some of the background regions particularly when the back-
ground is cluttered (e.g., the last two examples in Fig. 11).
The proposed DISC framework combines the advantage of
coarse and fine maps, producing more accurate and structure-
preserved results. We also present the quantitative comparisons
in Fig. 12(a) and Table IV. They show that the performance
of our results dramatically suppresses the results of coarse
maps and fine maps without guidance. This comparison well
demonstrates the effectiveness of progressive representation
learning.

2) Contribution of Superpixel-Based Local Context Infor-
mation: In this section, we analyze the contribution of SLCI.

TABLE V

PR WITH F -MEASURE AND MAE WITH AND WITHOUT SLCI
ON THE MSRA DATA SET

TABLE VI

PR WITH F -MEASURE AND MAE OF OUR METHOD TRAINED

WITH AND WITHOUT SR ON THE MSRA DATA SET

Here, we simply remove the ISS and ISV pooling layers
from the first CNN and, then, retrain two networks. Some
saliency maps generated with and without SLCI are shown
in Fig. 13. We first compare the results of the coarse maps.
It can be seen that the removal of SLCI leads to poor structure-
preserved performance. This is not surprising because the first
CNN has to learn the coarse saliency representation based
solely on the visual cues while neglecting local structural
constraints. As a result, it inevitably confuses some small
regions from salient objects or background that appear similar,
and also produces counterintuitive structures or shapes for the
target objects [see Fig. 13(f)]. Aided by the SLCI, the local
structural information can be better preserved. As discussed in
Section VI-G1, the fine map depends heavily on the quality
of the coarse map. Thus, the corresponding fine maps also
suffer from similar problems above. We propose to embed the
SLCI into the first CNN, which improves structure-preserved
performance, as shown in Fig. 13(c) and (e). Meanwhile,
quantitative comparisons on three metrics are provided in
Fig. 12(b) and Table V, which show the performance is better
than that without SLCI.

3) Contribution of Spatial Regularization: Figs. 6 and 9
have shown that the recall of DISC is significantly higher
than the previous best approaches, while the precision keeps
comparable with them. This indicates more salient regions are
recalled by DISC, and one possible reason is that the boundary
exclusion problem is alleviated. Furthermore, we also evaluate
the contribution of SR by comparing the performance of
DISC with and without SR. We exclude the SR input channel
in both CNNs while remaining the network architectures
unchanged and, then, retrain both of the CNNs. To analyze
the effectiveness of SR, we average the feature maps of the
first convolutional layer, as shown in Fig. 14. We find that the
averaged maps without SR seem to focus only on the object
contours, and SR helps to highlight the object more uniformly.
Meanwhile, the performance consistently outperforms that
without SR according to three evaluation metrics, as shown
in Fig. 12(c) and Table VI.

4) Hinge Loss Versus Cross Entropy Loss: We finally
present the experimental results that evaluate the benefit
of hinge loss. For each CNN, we first connect a sigmoid
layer with the top layer, and replace the hinge loss with
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Fig. 12. (a) PR curve of coarse maps and fine maps (with and without guidance) on the MSRA-10k data set. (b) PR curve of our DISC with and without
SLCI on the MSRA-10k data set. (c) PR curve with and without SR on the MSRA-10k data set. (d) PR curve of our method trained with hinge loss versus
cross entropy loss on the MSRA-10k data set. Best viewed in color.

Fig. 13. Visual comparison of coarse/fine maps with and without SLCI. The
samples are taken from the MSRA-10k and ECSSD data sets. (a) Image.
(b) Ground truth. (c) Fine map with SLCI. (d) Fine map without SLCI.
(e) Coarse map with SLCI. (f) Coarse map without SLCI.

Fig. 14. Visual comparison of feature map of the first convolutional layer
with and without SR. The samples are taken from the MSRA-10k data sets.
(a) Image. (b) Ground truth. (c) Feature map with SR. (d) Feature map
without SR.

the cross entropy loss, with the other layers left unchanged.
Accordingly, the label of pixels belonging to salient object is
set as 1, while others are set as 0. We then retrain two CNNs
for comparison. The results on the MSRA data set are shown
in Fig. 12(d) and Table VII. The performance of our method
trained with hinge loss is slightly better than that trained
with cross entropy loss. In addition, we experimentally find
a relative decrease by 8% of MAE with hinge loss compared
with cross entropy loss, which improves the visual quality of
the generated saliency maps.

TABLE VII

PR WITH F -MEASURE AND MAE OF OUR DISC MODEL TRAINED WITH

HINGE LOSS AND CROSS ENTROPY LOSS

Fig. 15. Some samples that challenge our proposed DISC framework.
(a) Image. (b) Ground truth. (c) Fine map. (d) Coarse map.

H. Limitation

In Fig. 15, we present some unsatisfying results generated
by DISC. As discussed in Section III-B, the accuracy of fine
saliency maps is influenced deeply by the quality of coarse
saliency maps. In the experiment, we find that two situations
will result in a poor quality coarse map. First, the coarse
map fails to distinguish some foreground regions from the
background when they are similar in appearance (see the first
example). Second, it cannot effectively extract the foreground
from cluttered background (see the second example). The
SLCI will help preserve the structure of the target object, but
it still cannot work well for complex background. The main
limitation of our method seems to be the dependence of coarse
maps. This problem could be tackled by incorporating high-
level knowledge, such as object semantic shapes, to further
refine the coarse saliency map.

VII. CONCLUSION

In this paper, we have presented an effective learning frame-
work for accurate image saliency computing. Compared with
existing image saliency models, our framework achieves supe-
rior performance without relying on any feature engineering
or heuristic assumption about image saliency. Two deep CNNs
are utilized in a progressive manner to directly map the image
data to detail-preserved image saliency maps. The proposed
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deep architecture is very general and can be borrowed into
other similar vision tasks. Extensive experimental evaluation
on five public benchmarks has validated the advantages of our
approach.

There are several possible directions in which we intend to
extend this paper. The first is to study our model in the context
of generic objectness detection, which aims to fast generate
a batch of hypotheses of object localizations. Second, our
approach can be revised to adapt to video data, and combined
with the current research of video tracking algorithms.
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