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Abstract

In this paper, we address the large-scale object detec-
tion problem with thousands of categories, which poses se-
vere challenges due to long-tail data distributions, heavy
occlusions, and class ambiguities. However, the dominant
object detection paradigm is limited by treating each ob-
ject region separately without considering crucial semantic
dependencies among objects. In this work, we introduce a
novel Reasoning-RCNN to endow any detection networks
the capability of adaptive global reasoning over all object
regions by exploiting diverse human commonsense knowl-
edge. Instead of only propagating the visual features on
the image directly, we evolve the high-level semantic rep-
resentations of all categories globally to avoid distracted
or poor visual features in the image. Specifically, built on
feature representations of basic detection network, the pro-
posed network first generates a global semantic pool by col-
lecting the weights of previous classification layer for each
category, and then adaptively enhances each object features
via attending different semantic contexts in the global se-
mantic pool. Rather than propagating information from all
semantic information that may be noisy, our adaptive global
reasoning automatically discovers most relative categories
for feature evolving. Our Reasoning-RCNN is light-weight
and flexible enough to enhance any detection backbone net-
works, and extensible for integrating any knowledge re-
sources. Solid experiments on object detection benchmarks
show the superiority of our Reasoning-RCNN, e.g. achiev-
ing around 16% improvement on VisualGenome, 37% on
ADE in terms of mAP and 15% improvement on COCO.

1. Introduction
The large-scale detection [18] refers to recognize and lo-

calize a large number of categories. The severe imbalance
of categories is very common in those tasks (e.g. very few
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Codes and trained model can be found in https://github.com/
chanyn/Reasoning-RCNN.
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Figure 1. An example of how the proposed adaptive global reason-
ing can facilitate large-scale object detection, especially for rare
and tiny categories. Human can still recognize the tiny object in
red frame in (a) as a “CCTV” . This is because: 1) this object looks
familiar to the ”CCTV” in human memory as we saw before in (b),
which inspires our design of Global Semantic Pool; 2) this small
electronic mental object is installed on the building and is watch-
ing the car running on the road. Thus, it is likely to be a CCTV.
Such rich human commonsense can be represented in a knowledge
graph and incorporated into our detection pipeline.

samples for rare classes). Moreover, due to more categories
within one image, problems of heavy occlusion, class ambi-
guities and tiny-size objects become more challenging. Cur-
rent state-of-the-art object detection methods [3, 8, 43] treat
the recognition of each region separately and thus require
high-quality feature representations for each region and suf-
ficient labeled data for each category. However, this is not
the case for the large-scale detection problem and so such
method are inappropriate. Unlike humans who are able to
identify objects even in complex situations, current detec-
tion systems lack the ability to reason with the help of com-
monsense knowledge. Therefore, a key issue is how to en-
dow the current detection system with the power of reason-
ing, in order to mimic human reasoning procedure.
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When identifying an object in a scene, reasoning by hu-
man common sense can help to make a correct recogni-
tion. An example of global knowledge reasoning in Fig-
ure 1 would be to identify the tiny-size objects “CCTV” in
the red frame of upper image (a). Human will first search
his memory for the object in the brain for similar appear-
ance categories (inspiring the design of our Global Seman-
tic Pool), then he will reason by considering global semantic
coherency: this small electronic mental object is installed
on the building and is watching the car running on the road
and thus it is more likely to be a CCTV. Such rich human
commonsense can be represented in a knowledge graph and
incorporated by visual reasoning in the detection pipeline.

Recent works on visual reasoning can be categorized by
different strategies of incorporating knowledge: methods
that rely on human prior knowledge and methods that do
not. For instance, some works model spatial relationship
implicitly from the image itself [5, 19, 47]. These works
learn inter-region relationships in an implicit and uncontrol-
lable way thus their boost of performance is limited. Other
methods try to incorporate human semantic prior knowl-
edge by defining knowledge graphs in the networks [6, 36].
For example, recently an iterative reasoning approach [6]
was proposed to combine both spatial and semantic rela-
tionship reasoning. However, they only consider propa-
gating region-wise feature locally in one image by a fixed
prior knowledge. In other words, their method will still
fail to reason through a bad feature representation when
heavy occlusions and class ambiguities exist in the image
which is very common in large-scale detection. Further-
more, they used a very complicated structure with three rea-
soning modules stacked together by GRU. On the contrary,
our work aims to develop an in-place and simple global rea-
soning network which can not only explicitly incorporate
multiple kinds of commonsense knowledge but also prop-
agate visual information globally from all the categories to
refine both classification and bounding box regression.

In this paper, we propose a novel Reasoning-RCNN net-
work to endow any detection networks with the capability
of adaptive global reasoning to exploit diverse human com-
monsense knowledge. Unlike some existing works which
only propagate the visual features on the image directly, we
globally evolve the high-level semantic representations of
all categories to avoid distracted or poor visual features in
the image. To achieve this, our method first generates a
global semantic pool over all the categories by collecting
the weights of previous classification layer. Note that this
avoids the computational burden in contrast to traditional
methods [27] that take average or clustering all over the
data for each category. Then a category-wise knowledge
graph is designed to encode certain linguistic knowledge
(e.g. attributes, co-occurrence, and relationships). High-
level semantic contexts of different categories in the global

semantic pool are evolved and propagated according to the
connected nodes in the knowledge graph being considered.
Rather than propagating information from all semantic in-
formation that may be noisy, our adaptive global reasoning
further encodes the current image adaptively by an atten-
tion mechanism [46] to automatically discover most rele-
vant categories for feature evolving regarding each object.
Next, the enhanced categories contexts are mapped back to
the regions by a soft-mapping mechanism which enables
refinement of inaccurate classification results from previ-
ous stage. Finally, each region’s new enhanced features
are concatenated to the original features to improve the per-
formance of both classification and localization in an end-
to-end manner. We experiment with two kinds of knowl-
edge forms in this work: relation knowledge such as co-
occurrence and object-verb-subject relationship, and the at-
tribute knowledge (e.g. color, status).

Our Reasoning-RCNN thus enables adaptive global rea-
soning over categories with certain relations or similar at-
tributes. Recognition of difficult regions with heavy oc-
clusions, class ambiguities and tiny-size problems can thus
be remedied by the enhanced features which contains the
adaptive context from the global semantic pool. Moreover,
the problem of imbalanced categories can then be alleviated
by sharing and distilling essential characteristics among fre-
quent/rare categories.

The proposed Reasoning-RCNN outperforms current
state-of-the-art detection methods, including Faster R-CNN
[43], RetinaNet [31], RelationNet [19], and DetNet [29].
We observe consistent gains on the base detection network
Faster R-CNN on object detection benchmarks, i.e., VG
(1000/3000 categories), ADE (445 categories), MS-COCO
(80 categories), and Pascal VOC (20 categories). In partic-
ular, Reasoning-RCNN achieves around 15% of mAP im-
provement on VG (1000 categories), 16% on VG (3000 cat-
egories), 37% on ADE, 15% on MS-COCO, and 2% on Pas-
cal VOC.

2. Related Work
Object Detection. Object detection is a core problem

in computer vision. Significant progress has been made
in recent years on object detection task using CNN. Mod-
ern object detection methods may be categorized in two
groups: one-stage detection methods such as SSD [33] and
YOLO [41] and two-stage detection methods such as Faster
R-CNN [43] and R-FCN [8]. Usually very few categories
are considered: 20 for PASCAL VOC [9] and 80 for COCO
[32]. These methods are performed separately for each pro-
posal region without any reasoning.

Visual Reasoning. Visual reasoning is intended to com-
bine different information or interactions between objects
or scenes. Examples can be found in the task of classifica-
tion [36], object detection [6] and visual relationship detec-
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Figure 2. The overview of the proposed Reasoning-RCNN object detection framework. The proposed Reasoning RCNN can be stacked
on any existing base detector such as Faster RCNN. The weights of the previous classifier are collected to generate a global semantic pool
over all categories, which is fed into our adaptive global reasoning module. The enhanced category contexts (i.e., output of the reasoning
module) are mapped back to region proposals by a soft-mapping mechanism. Finally, each region’s enhanced features are used to improve
the performance of both classification and localization in an end-to-end manner.

tion [7]. Several aspects such as relationships and shared
attributes among objects can be considered [1, 2, 26, 38].
Other methods [11, 35, 42] rely on finding similarity such
as the attributes in the linguistic space. For incorporat-
ing relationship, most early works use object relations as
a post-processing step [10, 13, 39]. Recent works consider
a graph structure [6, 7, 24, 36] to incorporate knowledge.
In these works, they usually consider region-wise reasoning
which will fall to reasoning through a bad feature represen-
tation when heavy occlusions and class ambiguities exist in
the image which is common in large-scale detection. Our
method propagates over all categories to avoid this problem
and ensure an adaptive global reasoning.

Few-shot Recognition. Few-shot recognition aims to
understand a new concept with a few annotated examples,
which shares the similar objectives with us. Early works fo-
cus on learning attribute embedding to represent categories
[22, 26]. Most recent works use knowledge graph such
as WordNet [37] to distill information among categories
[36, 48, 49]. Gidaris et al. [14] made use of distilling clas-
sifier weights to help few-shot task. In contrast, our module
benefits from a dynamically updated global semantic pool
and explicit prior knowledge.

3. The Proposed Approach
3.1. Overview

In this paper, we introduce Reasoning-RCNN to develop
a general model with adaptive global reasoning by incor-
porating distinct external knowledge to facilitate large-scale
object detection. An overview of our Reasoning-RCNN can
be found in Figure 2. The proposed Reasoning-RCNN can
be stacked on any one/two-stage modern detection frame-
work. More specifically, we first create a global semantic
pool to integrate high-level semantic representation for each
category by collecting the weights of original classification

layer. Then a category-to-category undirected graph G :
G =< N , E > is defined and shared during training and
testing, whereN are category nodes and each edge ei,j ∈ E
encodes a kind of knowledge between two nodes. The re-
gion features can be enhanced by propagating semantic con-
texts over global semantic pool with a particular knowledge
graph G. Finally, the enhanced features concatenated with
the original features are fed into the bounding box regres-
sion layer and classification layer to obtain better detection
results.

3.2. Adaptive Global Graph Reasoning Module

Our Reasoning-RCNN can be added to any modern dom-
inant detection system for endowing its ability in global rea-
soning. An overview of our adaptive global reasoning mod-
ule can be found in Figure 3. Let f = {fi}Nr

i=1, fi ∈ RD

be the visual features of D dimension extracted from the
backbone network for all Nr = |N | region proposals. Our
method aims to enhance the original region features f by
exploiting certain commonsense knowledge forms such as
pairwise relationship knowledge (e.g. “man rides bicycles”)
or some kinds of attribute knowledge (e.g. “apple is red.”).
Specifically, our global reasoning stage evolves the visual
object reference in the global semantic pool according to the
category-to-category knowledge graph G. Attention mech-
anism is also implemented in order to automatically em-
phasis more informative and relative categories on each im-
age to enable adaptive global reasoning. f is then enhanced
by the evolved features to improve the performance of both
classification and localization.

3.2.1 Global Semantic Pool M

Most existing works [15, 6, 23] usually propagate visual
features locally among regions. However, this diagram
could lead to failure of graph reasoning because of bad
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Figure 3. An overview of our adaptive global reasoning mod-
ule. Global semantic pool M integrates all high-level semantic
representation by the weights of previous detection classifiers for
each category. Global reasoning is then performed by propagat-
ing all semantic representation in M according to certain type of
knowledge graph. Adaptive Attention is calculated using the im-
age features to automatically discovers most relative categories for
adaptive reasoning. The enhanced features are soft-mapped from
categories to the proposals to get the region-wise enhanced fea-
tures f ′. Finally, f ′ concatenated with region proposal features f
are fed into new bbox regression layer and classification layer to
obtain better detection results.

or distracted feature representations when heavy occlusions
and class ambiguities exist in the image which is common in
large-scale detection. Instead, our method try to propagate
information globally over all the categories (not only those
categories appearing in the image). To achieve this, we need
to create a global semantic pool to store high-level seman-
tic representations for all categories. This is analogous to
the memory in the human’s brain when human recalls the
appearance of one particular category.

To generate this kind of global semantic pool, existing
works usually take the average of the features or using the
clustering method to find the center as the reference fea-
tures [27] for each category. However, those approaches
record and collect all the information across the whole data
which is a huge computational burden. Moreover, those
models cannot be trained in an end-to-end style. Inspired
by some works in zero/few-shot problem in which they
try to train a model to fit the weights of the classifier of
an unseen/unfamiliar category [45, 48, 15, 14], we intro-
duce a new way to generate the global semantic pool. The
weights of the classifier for each categories actually con-
tains high-level semantic information since they record the
feature activation trained from all the images. Formally,
let M ∈ RC×D denote the weights of the previous classi-
fiers (parameters) for all the C categories. The global se-
mantic pool of our model can be obtained by copying the
parameters M from the previous classification layer in the
bbox head of the detection networks. Note that the clas-
sifiers are updated in each iteration during training so that
the global semantic pool M becomes more accurate from
time to time. Furthermore, our model can be trained in an

end-to-end style.

3.2.2 Feature Enhanced via Graph Reasoning.

After creating a global semantic pool M ∈ RC×D for all
the C categories, it is natural to propagate the connected
categories of M by the edges E ∈ RC×C in the prior knowl-
edge graph G. Thus, the information is shared and prop-
agate globally across all the C categories according to the
chosen knowledge denoted as EM. To enhance features of
the regions, we still need to find the mapping between the
Nr region proposals and C categories. Intuitively this map-
ping can be easily obtained from the classification results in
the previous stage of the detection networks. Instead of a
hard-mapping directly from region proposal to categories,
we propose a method of soft-mapping which is the clas-
sification probability distribution P ∈ RNr×C over all the
C categories. P ∈ RNr×C can be calculated by soft-max
function over the scores of C categories from previous clas-
sifiers. Then this process can be solved by matrix multipli-
cation: PEMWG, where WG ∈ RD×E is a transforma-
tion weight matrix shared for all graphs and E is the output
dimension of the reasoning module. Note that the global
graph reasoning is based on all categories, which may be
noisy. An adaptive reasoning mechanism is needed to in-
corporate visual patterns of each particular image. That’s
why we further introduce attentional adaptive reasoning.

3.2.3 Adaptive Attention

Given the evolved global features EM, we need to empha-
size informative and relative categories and suppress less
useful ones, thus enables adaptive reasoning for each im-
age. It can be noticed that not all the information of classes
is useful for recognizing items in one particular image. Hu-
mans only consider several potential categories when iden-
tifying items in one scene. In this paper, we make use of
the idea of Squeeze-and-Excitation [20] to further re-scale
the categories being considered. Specifically, in the squeeze
step, we take the whole image feature F ∈ RW×H×D as in-
put and squeeze it into half size by a CNN (with 3×3 kernel,
output channel=D/64) and a global pooling operation. The
excitation stage is a fully-connected layer with input zs ∈
RD/64. Then a soft-max function is applied to obtain the
attention of categories: α = softmax(zsW sM

T ), where
W s ∈ RD/64×D is the weights of the fully-connected layer
and α ∈ RC . Then the enhanced features f ′ with adaptive
reasoning can be solved by:

f ′ = P (α⊗ EM)WG, (1)

where � is the channel-wise product and the rest is the
matrix multiplications. f ′ ∈ RNr×E are the enhanced fea-
tures withE dimension via adaptive global graph reasoning.
Flowchart of the adaptive global reasoning can be found in
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Figure 4. Detailed flowchart of the adaptive global reasoning. The
global reasoning is performed on global semantic pool M accord-
ing to the prior knowledge graph edge E . An image-wise adap-
tive attention α is calculated from a Squeeze-and-Excitation of the
image base features to emphasize relative categories. Then the
adaptive global reasoning with α is obtained by the channel-wise
product. Then a soft-mapping from categories to regions is per-
formed according to P . Final enhanced feature f ′ is obtained by a
matrix multiplication with a fully-connected weights WG.

Figure 4. Finally, the enhanced features f ′ will be con-
catenated to the original region features f . [f ; f ′] will be
fed into the bounding box regression layer and classifica-
tion layer to obtain final detection results. Note that the
f ′ is a distilled information across the categories with con-
nected edges such as similar attributes or relations. Thus,
the problem of few training samples is alleviated by shar-
ing the common features between similar categories. Those
proposal regions with heavy occlusions, class ambiguities
and the tiny-size problem can also be remedied by adding
and discovering adaptive contexts from the global semantic
pool guided by external knowledge.

3.3. Model Specification with Relation Knowledge.

The Reasoning-RCNN is flexible enough to incorpo-
rate arbitrary types of knowledge. Here, we take relation-
ship knowledge as an example to illustrate how different
commonsense knowledge G is specified to obtain distinct
graph reasoning behaviors. We also explore another type of
knowledge, i.e. the attribute knowledge in the Experiments.

Relationship knowledge GR as one kind of G denotes
the pairwise relationship between categories, such as the
“subject-verb-object” relationship (e.g. drive, run), spatial
relationship (e.g. on, near). The global semantic pool will
be enhanced with high-level semantic correlations between
categories. First, we calculate a C × C frequent statistics
matrix Rc either from the semantic information or simply
from the occurrence among all categories pairs. Then, we
add the transpose (Rc)

T back to Rc. Finally, a column-

row normalization is performed to get GR: eRij =
Rc

ij√
DiiDjj

,

where Dii =
∑C

j=1R
c
ij . Note that we already include a lot

of spatial relationships such as “along”, “on”, and “near”
and that’s why we don’t consider spatial relationship sepa-
rately in this paper.

4. Experiments

Dataset and Evaluation. Experiments on Reasoning-
RCNN have been conducted on large-scale object detection
benchmarks with a large number of classes: Visual Genome
(VG) [25], ADE [50]. Additionally, we also evaluate on
PASCAL VOC 2007 [9] and MSCOCO 2017 [32] to show
the performance on common categories (20/80 categories).
The task is to localize an object and classify it, which is
different from the experiments with given ground truth lo-
cations [6]. For Visual Genome, we use the latest release
(v1.4), and synsets [44] instead of the raw names of the
categories due to inconsistent label annotations, following
[21]. We consider two sets of target classes: 1000 most
frequent categories and 3000 most frequent categories, re-
sulting in two settings VG1000 and VG3000. We split the re-
maining 92.9K images with objects on these class sets into
87.9K and 5K for training and testing, respectively. In term
of ADE dataset, we use 20.1K images for training and 1K
images for testing, following [6]. To validate the generaliza-
tion capability of models, 445 classes that overlap with VG
dataset are selected as targets. Since ADE is a segmentation
dataset, we convert segmentation masks to bounding boxes
for all instances. We also evaluate our Reasoning-RCNN on
PASCAL VOC 2007 (20 categories) and MSCOCO 2017
(80 categories) which is prepared following the same proto-
cols in [8]. For PASCAL VOC, training is performed on the
union of VOC 2007 trainval and VOC 2012 trainval (10K
images) and evaluation is on VOC 2007 test (4.9K images).
MSCOCO 2017 contains 118k images for training, 5k for
evaluation.

For VG, ADE, COCO evaluation, we adopt the met-
rics from COCO detection evaluation criteria [32] which is
mean Average Precision(mAP) across IoU thresholds from
0.5 to 0.95 with an interval of 0.05 and Average Recall
(AR) with different number of given detection per image
({1, 10, 100}) and different scales (small, medium, big).
For PASCAL VOC, we only report mAP scores using IoU
thresholds at 0.5 for the purpose of comparison with other
existing methods.

Knowledge Graph Construction. We apply general
knowledge graphs for experiments on all datasets. A com-
mon sense knowledge graphs is generated with the help of
the statistics of the annotations in the VG dataset. Specif-
ically, for relationship knowledge graph GR, we use top
200 most frequent relationship annotations in VG such as
location relationship, subject-verb-object relationship, and



% Method AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL #. param
V

G
1
0
0
0

Light-head RCNN[28] 6.2 10.9 6.2 2.8 6.5 9.8 14.6 18.0 18.7 7.2 17.1 25.3 74.5M

Cascade RCNN[3] 6.5 12.1 6.1 2.4 6.9 11.2 15.3 19.4 19.5 6.1 19.2 27.5 91.2M

Faster-RCNN[43] 6.2 11.3 5.9 1.8 5.9 11.4 14.2 17.8 17.8 4.4 16.1 27.6 54.1M

Reasoning-RCNNR 8.1+1.9 13.5+2.2 8.5+2.6 3.4+1.6 8.3+2.4 14.0+2.6 18.6+4.4 23.4+5.6 23.5+5.7 8.8+4.4 21.7+5.6 32.9+5.7 57.5M

Faster-RCNN w FPN[30] 7.1 12.7 7.2 3.9 7.6 11.1 14.8 19.7 19.9 10.6 18.8 24.9 61.4M

Reasoning-RCNNR w FPN 8.2+1.1 13.3+0.6 8.5+1.3 4.4+0.5 8.9+1.3 12.9+1.8 16.4+2.4 22.2+2.5 22.5+2.4 12.3+1.7 22.1+3.3 27.1+2.2 63.6M

V
G

3
0
0
0

Light-head RCNN[28] 3.0 5.1 3.2 1.7 4.0 5.8 7.3 9.0 9.0 4.3 10.3 15.4 78.6M

Cascade RCNN[3] 3.8 6.5 3.4 1.9 4.8 4.9 7.1 8.5 8.6 4.2 9.9 13.7 97.3M

Faster-RCNN[43] 3.7 6.4 3.8 1.7 4.6 7.6 8.5 10.5 10.5 4.1 11.6 18.2 58.2M

Reasoning-RCNNR 4.5+0.8 7.3+0.9 4.7+0.9 2.2+0.5 5.5+0.9 9.0+1.4 10.6+2.1 12.9+2.4 12.9+2.4 5.4+1.3 13.8+2.2 21.9+3.7 65.8M

Faster-RCNN w FPN[30] 3.7 6.5 3.7 2.1 4.9 6.8 7.6 9.8 9.9 6.8 11.8 14.6 63.4M

Reasoning-RCNNR w FPN 4.3+0.6 6.9+0.4 4.6+0.9 3.2+1.1 6.0+1.1 7.9+1.1 8.5+0.9 11.1+1.3 11.2+1.3 8.3+1.5 13.7+1.9 16.2+1.6 68.2M

A
D

E

Light-head RCNN[28] 7.0 11.7 7.3 2.4 5.1 11.2 9.6 13.3 13.4 4.3 10.4 20.4 72.4M

Cascade RCNN[3] 9.1 16.8 8.9 3.5 7.1 15.3 12.1 16.4 16.6 6.4 13.8 25.8 89.5M

Faster-RCNN[43] 8.7 15.5 8.9 3.6 6.9 14.1 11.7 15.9 16.0 6.3 13.9 23.9 52.9M

Reasoning-RCNNR 11.5+2.8 18.8+3.3 11.9+3.0 4.6+1.0 9.1+2.2 18.9+4.8 14.8+3.1 19.9+4.0 19.9+3.9 8.2+1.9 17.0+3.1 30.5+6.6 55.3M

Faster-RCNN w FPN[30] 11.3 19.7 11.7 5.9 10.8 17.3 13.4 19.9 20.2 12.9 20.2 28.5 60.8M

Reasoning-RCNNR w FPN 15.5+4.2 24.6+4.9 16.3+4.6 8.8+2.9 15.5+4.7 23.5+6.2 17.5+4.1 25.9+6.0 26.6+6.4 17.2+4.3 27.6+7.4 35.4+6.9 62.6M

Table 1. Main results of test datasets on VG1000 , VG3000 and ADE. “Reasoning-RCNNR” is our full model empowered with relation
knowledge. #. parameters is the number of parameters for the model.

% Method backbone #. param (M) time (ms) mAP

PA
SC

A
L

V
O

C

SMN[5] ResNet-101 66.7 - 67.8

R-FCN[8] ResNet-101 54.0 111.1 80.5

DSSD513[12] ResNet-101 - 156.2 81.5

Faster-RCNN[43] ResNet-101 52.0 56.4 80.8

Reasoning-RCNNA ResNet-101 53.6 58.8 81.9

Reasoning-RCNNR ResNet-101 53.6 58.8 82.5

M
S

C
O

C
O

Relation Network[19] ResNet-101-FPN 62.8 - 38.8

RetinaNet[31] ResNet-101-FPN 56.9 200 39.1

DetNet[29] DetNet-59-FPN - - 40.2

Faster-RCNN[43] ResNet-101 52.2 64.9 34.9

Reasoning-RCNNA ResNet-101 53.8 69.1 39.2

Reasoning-RCNNR ResNet-101 53.8 69.1 40.5

Faster-RCNN w FPN[30] ResNet-101-FPN 60.4 73.0 37.3

Reasoning-RCNNR w FPN ResNet-101-FPN 61.5 75.3 42.9

Mask-RCNN w FPN[16] ResNet-101-FPN 63.4 86.6 39.4

Reasoning-RCNNR w Mask ResNet-101-FPN 64.5 89.4 43.2

Table 2. Comparison of mean Average Precision (mAP) on PAS-
CAL VOC and MSCOCO. “Reasoning-RCNNA”/“Reasoning-
RCNNR” are the Faster-RCNN adding our model with At-
tribute/Relation knowledge.

count frequent statistics of each pair. We match the cat-
egories of ADE, COCO and VOC with VG to obtain their
corresponding knowledge graph in order to validate the gen-
eralization capability of the common knowledge.

We also consider attribute knowledge in this paper. The
attribute knowledge graph GA is defined as the similarity
among categories according to their attributes such as col-
ors, size, materials among object categories. We consider
the top 200 most frequent attributes annotations in VG such

as color, material,and status of the categories (C = 3000),
and count their frequent statistics as the class-attribute dis-
tribution table. Then the pairwise Jensen–Shannon (JS) di-
vergence between probability distributions Pci and Pcj of
two classes ci and cj can be measured as the edge weights
of two classes : eAci,cj = JS(Pci ||Pcj ).

Implementation Details. We treat the state-of-the-art
Faster-RCNN with FPN[4, 30] as our baseline and im-
plement Reasoning-RCNN stacked on it in Pytorch[40].
ResNet-101 [17] pretrained on ImageNet [44] is used as our
backbone network. Horizontal image-flipping and multi-
scaling augmentations are adopted in training. Following
[43], RPN is applied to all the feature maps. The param-
eters before conv1 is fixed, same with [30]. We sampled
a minibatch containing 512 region proposals after NMS,
each of which is positive if it has an IoU> 0.7 with the
ground-truth regions and it is negative if the IoU< 0.3. Af-
ter ROI Align, proposals features are avg-pooled and feed to
2 shared FC layers to become the input of the final classifier
(D = 1024). At the testing time, we keep 2000 region pro-
posals after NMS with IoU threshold> 0.6. Hard example
mining is not used in the all experiments. Unless otherwise
noted, settings are the same for all experiments.

For our reasoning stage stacked on Faster-RCNN with
FPN, we use same operation (average global pooling and
shared 2 FC layer ) for re-extract region proposal visual
feature f . The hyperparameter is E = 256 of WG for
any knowledge which is considered sufficient to contain
the enhanced feature. We apply synchronized SGD with
a weight decay of 0.0001 and momentum of 0.9 to optimize
all models. The initial learning rate is 0.02, reduce two
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Figure 5. Qualitative result comparison on VG1000 between Faster-RCNN and our Reasoning-RCNN. Objects with occlusion, ambiguities
and rare category can be detected by our method.

times (×0.01) after 8 and 11 epochs. We train 32 epochs
with mini-batch size of 2 for baseline Faster R-CNN with
FPN (Further training after 12 epochs won’t increase the
performance of baseline.). For Reasoning-RCNN, we use
12 epochs of the baseline as pretrained model and train an-
other 16 epochs with the same settings.

4.1. Comparison with state-of-the-art

We report the result comparisons on VG1000 with 1000
categories , VG3000 with 3000 categories and ADE dataset
in Table 1. We compare with Light-head RCNN[28], Faster-
RCNN with FPN [30], three-stage Cascade-RCNN of base-
line Faster-RCNN[3] using the public released code. Same
settings of hyper-parameters are used for all experiments
unless specifically mentioned in our paper. As can be
seen, the Reasoning-RCNN with relation knowledge out-
performs the baseline Faster-RCNN[43] on all dataset. Our
Reasoning-RCNN achieves an overall AP of 8.1% com-
pared to 6.2% by Faster R-CNN on VG1000, 4.5% com-
pared to 3.7% on VG3000, and 11.5% compared to 8.7% on
ADE, respectively. Significant performance gap can also
be observed for those rare categories with very few sam-
ples (See Supplementary materials for details). Moreover,
our Reasoning-RCNN achieves significant gains on both
classification and localization accuracy than the baseline on
all cases (i.e. different scales and overlaps). This verifies
the effectiveness of incorporating adaptive global reason-
ing into local region recognition in large-scale object de-
tection task. Compare to [6], they report a performance
gain (AP) of 13% on VG and 20% on ADE compared to
the same baseline on the task of only classification based
on the ground-truth bounding box. Our method achieves
around 30% improvement on VG and 32% on ADE on the
harder task of object detection (both localization and clas-
sification). Moreover, A negative correlation between the
average AP gain of our method with baseline Faster-RCNN
and the category frequency is shown in Figure 7.

We also evaluate on PASCAL VOC and MS COCO
datasets with only 20/80 categories to compare with the

state-of-art methods. The result can be found in Table 2
and the accuracy numbers of the competing methods are
directly from the original paper. For PASCAL VOC, we
compare with the Spatial Memory Network[5], R-FCN[8]
, and DSSD513[12]. As can be seen, our method per-
forms 1.7% better than the baseline Faster-RCNN and all
the other competitors. For MS COCO, comparison is made
among Faster-RCNN with FPN[30], Relation Network[19],
RetinaNet[31] and DetNet[29]. Our method with FPN
boosts the mAP from 37.3% to 42.9% and outperform
all the other methods. Note that our method can achieve
higher performance with auxiliary segmentation task. This
demonstrates the Reasoning-RCNN can strongly improve
the power of feature representation, due to its ability of
global adaptive reasoning. Furthermore, from the compar-
ison of computation cost, the computation overhead is rel-
atively small (less than 2% parameter size and 3 ms) with
with input-size of 800×800 pixels on Titan XP for FPN on
MS COCO.

Figure 5 shows qualitative results comparison between
the baseline model and our Reasoning-RCNN (more exam-
ples in Supplementary material.). The results show that the
baseline model tends to ignore rare categories and ambi-
guity objects. For example, it can not detect “stove” in first
image and “remote control” in the fourth image. Reasoning-
RCNN tend to detect all similar objects, such as “cabinet”
in the first image, “giraffe” in the third image. Besides, in
the 2nd, 5th image, our Reasoning-RCNN can detect “hat”,
“man”, ”hand” and “camera” with obscure and occlusion.
More examples and results can be found in supplementary
materials.

4.1.1 Generalization capability

From Table 1 and Table 2, the external knowledge graph
from VG can actually help to improve the performance of
ADE, COCO and PASCAL VOC. Therefore, any datasets
with overlap categories can share the existing knowledge
graph. Besides, our module can be added to diverse detec-



tion systems easily.

Visualization of enhanced feature by relation knowledge (t-SNE method)

Figure 6. 3-D visualization of f ′r by t-SNE method [34]. The
squared regions are enlarged in bottom panels. The categories with
relation are closed to each other. This verifies that our method
has global reasoning power over categories according to certain
knowledge.
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Figure 7. Correlation between performance gains of AP with base-
line Faster-RCNN and the category frequencies on VG1000.

4.2. Ablation Studies

To perform a detailed component analysis, we conducted
the ablative experiments on MSCOCO.

The effect of commonsense knowledge. Table 3 shows
that commonsense knowledge is the most vital component
for passing information among categories. If we replace
commonsense knowledge with a identity matrix, perfor-
mance decreases 3.4% mAP on MSCOCO.

The effect of global semantic pool M. Adaptive global
reasoning among global semantic pool M can significantly
improve the mAP by 2.7. It can be found that the recall for
small region boost significantly (about 11% on ARS com-
pared to pass information among region feature).

The effect of adaptive attention α. We also conduct
experiment without adaptive attention, and regard uniform

% Method and Modifications mAP AP50 ARS ARM

M
S-

C
O

C
O

Reasoning-RCNNR with FPN 42.9 61.8 40.2 63.9
Identity co-occurrence

39.5−3.4 58.3−3.5 36.4−3.8 60.1−3.8

knowledge graph
Use region feature instead

40.2−2.7 59.0−2.8 36.2−4.0 61.4−2.5

of global semantic pool
No adaptive attention 40.9−2.0 59.5−2.3 37.3−2.9 61.6−2.3

Uniform attention weights 41.5−1.4 60.6−1.2 37.5−2.7 61.5−2.4

Table 3. Ablation Studies based on modifications of our final
model on MSCOCO. Reasoning-RCNNR with FPN is our final
model. The backbones are ResNet-101 with FPN.

weight of categories ( 1
C ) as attention. Note that these two

attention mechanisms lead to reason same information per
image during testing. The results show the image-wise at-
tention mechanism helps more effective propagation across
the graph by discovering more relevant categories, and in-
crease the overall AP by 1.4% to 2%.

4.3. Analysis of feature interpretability

To better understand the enhanced feature representa-
tions that our Reasoning-RCNN actually learned, we record
the output f ′r for our method with relation knowledge and
its corresponding real labels from each region of 10000
VG1000 images. Then we take average according to the la-
bels and use the t-SNE [34] clustering method to visualize
them as shown in Figure 6. From two enlarged regions, we
can see that features f ′r of categories which have the spatial
relationship or co-occurrence relationship such as “things
on the street” and “foods in the table” are closed to each
other. And this speaks well our knowledge reasoning stage
successfully incorporates the prior relation knowledge and
leads to interpretable feature learning. More gradient vi-
sualization results are included in Supplementary materials
for better understanding the method.

5. Conclusion

We present a novel adaptive global reasoning network
named Reasoning-RCNN. By propagating over a global se-
mantic pool, our Reasoning-RCNN enhances the feature ex-
pressions for both classification and localization and coor-
dinate with visual patterns adaptively in each image. We in-
stantiate our method with two kinds of prior knowledge, e.g.
relationship and attribute. The solid and consistent detec-
tion improvements of the Reasoning-RCNN on all datasets
suggest the adaptive global reasoning is required to advance
large-scale object detection. For future works, extensions
can be made for embedding our reasoning framework into
other tasks such as instance-level segmentation.
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