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Saliency Detection on Light Field: A Multi-Cue Approach
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Saliency detection has recently received increasing research interest on using high-dimensional datasets
beyond two-dimensional images. Despite the many available capturing devices and algorithms, there still
exists a wide spectrum of challenges that need to be addressed to achieve accurate saliency detection.
Inspired by the success of the light-field technique, in this article, we propose a new computational scheme
to detect salient regions by integrating multiple visual cues from light-field images. First, saliency prior maps
are generated from several light-field features based on superpixel-level intra-cue distinctiveness, such as
color, depth, and flow inherited from different focal planes and multiple viewpoints. Then, we introduce the
location prior to enhance the saliency maps. These maps will finally be merged into a single map using
a random-search-based weighting strategy. Besides, we refine the object details by employing a two-stage
saliency refinement to obtain the final saliency map.

In addition, we present a more challenging benchmark dataset for light-field saliency analysis, named
HFUT-Lytro, which consists of 255 light fields with a range from 53 to 64 images generated from each
light-field image, therein spanning multiple occurrences of saliency detection challenges such as occlusions,
cluttered background, and appearance changes. Experimental results show that our approach can achieve
0.6–6.7% relative improvements over state-of-the-art methods in terms of the F-measure and Precision
metrics, which demonstrates the effectiveness of the proposed approach.
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1. INTRODUCTION

Saliency detection aims at identifying salient regions or objects that visually stand out
from their neighbors. It is a popular area of study, straddling multiple disciplines from
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cognitive neuroscience to computer vision. In recent years, visual saliency studies have
facilitated a growing range of applications such as tracking [6], person re-identification
[76], and object detection [39].

Most existing works generally fall into two categories. The first one is based on two-
dimensional (2D) visual features, including low-level features such as color, intensity,
orientation [69, 74], Gestalt cues [37], and high-level semantic descriptors [13, 68,
77]. Some popular feature learning techniques, such as convolutional neural networks
(CNNs) [27, 35, 75], sparse coding [32], and hierarchical neuromorphic networks [61],
are also explored to further improve the representation ability of those 2D features for
saliency analysis. Although most 2D saliency analysis methods have shown promising
results on some widely used 2D datasets [10, 20, 21, 36, 51], they hold some idealistic
assumptions, for example, the saliency regions should be occlusion free and should
have a different color from their neighborhood/background, the background should be
relatively simple and smooth, and so on, which may be not suitable for real-world
applications. The other one is three-dimensional (3D) saliency analysis methods [24,
40, 47, 52], which aim to improve the performance by exploiting both depth informa-
tion extracted from RGB-D (or Kinect1) cameras and other 2D features. Along with
these methods, some 3D saliency datasets [24, 40, 62] are presented to evaluate the
effectiveness of 3D saliency detection methods. However, most existing works may be
less effective on cluttered background due to rough depth estimations or when salient
objects are situated at distant locations.

Recently, four-dimensional (4D) saliency analysis methods [29, 30, 73] have emerged
since the introduction of the Lytro camera,2 which explore the light field [25] for saliency
detection. Differing from a regular camera, a Lytro light-field camera can capture a
light field towards the scene in a single shot. The light field can be then used to syn-
thesize a focal stack (a stack of images focusing at different depths) and further an
all-in-focus image (every pixel is mostly in focus) deriving from the focal stack. Li et al.
[30] presented the first and only light-field saliency analysis dataset (LFSD) and de-
veloped the first light-field saliency detection scheme (LFS) in which they employed
the focusness and objectness cues based on the refocusing capability of the light field.
They further proposed a weighted sparse coding framework (WSC) in [29] to learn a
saliency/non-saliency dictionary, which can effectively handle heterogeneous types of
input data, including the light-field data. In [73], Zhang et al. explicitly incorporated
depth contrast to complement the disadvantage of color and employed focusness-based
background priors to improve the performance of saliency detection. We denote this
method as DILF. Although these methods have demonstrated promising performances
by leveraging light-field data, accurate saliency detection in real-world scenarios still
remains a challenge due to intrinsic and extrinsic factors such as illumination, view-
point changes, occlusion, and so on. Thus it is necessary to build a more challenging
light-field dataset and develop a more effective framework for saliency detection to
benefit from the light-field data.

In this article, we propose a new saliency detection scheme that exploits the light-
field cues. The architecture overview of our approach is shown in Figure 1. It should
be mentioned that the light-field data can be converted into various 2D images (e.g.,
focal slices, multiple viewpoints, depth maps, and all-in-focus images) [45]. Therefore,
we can obtain a list of saliency cues from these light-field images, including the color
cue from the all-in-focus image, the depth cue from the depth map, and the flow cues
from the focal stack and multiple viewpoints. Moreover, inspired by the influence of
center bias on gaze behavior [55, 58] and spatial similarity between scanpaths [17],

1www.xbox.com.
2http://www.lytro.com/.
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Fig. 1. An illustration of our multi-cue light-field saliency detection model. First, we generate the all-in-focus
image, depth map, focal stacks, and multi-view cuts (images) from the corresponding light field captured by
a Lytro camera. Light-field flow is estimated from focal slices and multiple viewpoints as a complement to
the other information. We measure saliency by computing weighted local contrast, and the prior saliency
map is refined by employing a structure cue to obtain the final saliency map.

we also incorporate the location prior as a multiplicative weighting factor to enhance
the saliency maps. Then we integrate the saliency values obtained from multiple cues
using a random-search-based strategy, which can efficiently exploit the complementary
of these cues. Finally, we explore a structure-preserving two-stage refinement strategy
to refine the saliency map through graph regularization, which encourages adjacent
superpixels to take similar saliency values and effectively highlights salient regions.
In real-world scenes, these light-field cues are able to complementarily describe the
image data from different perspectives.

Specifically, motivated by the computation of optical flow [9], we compute the light-
field flow of light-field data by detecting focus and perspective variations among mul-
tiple focal images at different depth planes and multiple viewpoints of the same scene,
respectively. The light-field flow can be derived from two components: focusing flow
and viewing flow. They can intrinsically encode depth information between the current
image and neighboring images. The focusing flow describes depth boundaries between
focal slices, and the viewing flow infers depth values from a geometry.

In addition, to better evaluate the existing light-field saliency algorithms, we build a
new light-field dataset in this work, named HFUT-Lytro, with more realistic and less
restrictive image conditions. It is much larger and more challenging than the widely
used light-field saliency dataset LFSD [30]. It contains 255 challenging scenes, with
an average 56 images generated from each light-field scene. These light-field data are
captured by a Lytro camera in both indoor and outdoor environments and have a large
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variance in their appearance and structures. Figure 3 shows some examples from our
dataset.

In summary, this article makes the following contributions. (1) We develop a new
light-field saliency detection scheme that can effectively and efficiently aggregate color,
depth, flow, location, and structure cues from light-field images by using a random
search-based weighting strategy. A two-stage refinement framework is also introduced
to produce more accurate and structure-preserved results. (2) We propose to estimate
the light-field flow from focal and viewpoint sequences to capture depth discontinuities
or depth contrast. To the best of our knowledge, we are the first to explore the light-field
flow for saliency detection. (3) We present a new light-field saliency detection database,
which is the largest and most challenging public dataset for light-field saliency analysis
to date. (4) We provide an extensive experimental evaluation on the proposed dataset
and the existing LFSD dataset [30], which clearly demonstrates the effectiveness of
the proposed saliency detection scheme.

2. RELATED WORK

Saliency detection has been studied extensively in the computer vision community, and
readers may refer to [7, 8, 11] for high-quality surveys. Significant progress has also
been achieved in light-field saliency detection in recent years. In this section, we only
focus on reviewing the most related works.

2.1. Light-field Cameras and Datasets

A light-field imaging system captures not only the projections in terms of intensities
but also the directions of incoming light projecting onto an image sensor. Adelson and
Bergen [3] presented the plenoptic function to describe the light-field information. We
can tell that every 3D point (x, y, z) stores an intensity value, direction, and angle
(θ, φ), wavelength λ, and time t that a human observer could potentially make at a
given moment.3 Subsequently, Levoy and Hanrahan [25] proposed the two-plane pa-
rameterization of the plenoptic function such that each ray is encoded by two parallel
planes to represent spatial and angular information. The additional light directions
allow the image to be re-focused [45] and the depth information of a scene to be esti-
mated [19, 57, 63]. Therefore, light-field (also known as plenoptic) cameras measure
both color and geometric information relative to conventional digital cameras and can
operate under some challenging conditions, for example, in bright sunlight.

With the development of modern camera hardware, it has become possible to capture
light fields in various ways, including using large camera arrays [67], coded aperture
[33], and camera architectures by inserting either a mask [60] or an array of microlenses
[44] in front of the photosensor. A review of light-field acquisition devices can be found
in [65]. Compared to camera arrays, which are expensive and not very practical, a
handheld light-field camera using a microlens array [38, 45], such as Lytro, avoids
synchronization and calibration.

Depending on the applications of light fields, current public light-field datasets can
be roughly divided into three categories: reconstruction, recognition, and detection.
Table I illustrates the main light-field datasets. More information can be found in [64].
At present, LFSD [30] is the only light-field dataset for saliency detection. However,
this dataset is not challenging enough, because images are fairly well constrained
in terms of illumination, camera location, and so on. A typical scene in the dataset
contains only a single centered salient object without occlusions and has very limited
clutter, while, in real-world cases, the scene may undergo substantially more complex
changes. For instance, the scene may consist of multiple salient objects (e.g., a parking

3In this article, we focus on static facts and thus ignore the temporal dimension.
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Table I. Overview of Light Field Datasets

Dataset
Number of light

fields Light-field cameras Applications
The (New) Stanford
Light Field Archive4

22 A camera array, a
gantry and a
microscope

Reconstruction (e.g., [59])

Synthetic Light Field
Archive5

30 POV-Ray Reconstruction and 3D
display (e.g. [41, 66])

Lytro first generation
dataset [43]

30 Lytro Reconstruction (e.g., [43])

LIMU6 25 A ProFUSION25
light-field camera

Object detection (e.g., [56])

Kim et al. [23] 5 A Canon EOS 5D
Mark II camera

Scene reconstruction (e.g.,
[23])

GUC-LiFFAD [50] 80 Lyrto Face recognition (e.g., [50])
LCAV-31 [18] 31 Lytro N/A
TOLF [70] 18 A camera array Object recognition and

segmentation (e.g., [70, 71])
EPFL Light-Field
Image Dataset [54]

118 Lyrto Illum N/A

HCI [64] 13 Blender, Nikon D800
camera and a gantry

Segmentation (e.g., [42])

LFSD [30] 100 Lytro Saliency detection (e.g.,
[29, 30, 73])

HFUT-Lytro 255 Lytro Saliency detection

lot) or brightness variations (e.g., the reflective highlight on an apple). In this work, we
construct a new challenging dataset to facilitate the research and evaluation of visual
saliency models using a lenslet light-field camera.

In contrast to the LFSD dataset [30], our proposed dataset has a larger scale and
is more challenging, with the real-life scenarios at various distances, sensor noises,
unconstrained handheld camera motions, lighting conditions, and so on. Moreover, this
dataset also offers multi-view images with the corresponding camera calibration file,
which are not provided in the LFSD dataset.

2.2. Saliency Detection with Multiple Visual Cues

It has been acknowledged that multiple cues can be explored to benefit saliency de-
tection. For example, Zhao and Koch [74] combined different feature channels (color,
intensity, orientation, and face) across multiple spatial scales in a nonlinear AdaBoost
framework on three 2D datasets. They found that the performance of the saliency
model can be consistently improved by the nonlinear feature integration and a center
bias model. Xu et al. [68] used a linear Support Vector Machine (SVM) classifier to com-
bine pixel-, object-, and semantic-level attributes and demonstrated the importance of
the object- and semantic-level information. Another work by Ma and Hang [40] also
used a linear SVM classifier to integrate low-, mid-, and high-level features to predict
saliency maps on the NCTU-3DFixation dataset. Ren et al. [52] proposed to integrate
depth, orientation, and background priors with the region contrast to produce saliency
maps in a linear manner. Recent progress in CNNs have boosted the performance of
saliency detection by automatically learning hierarchical features. For example, Li and
Yu [27] concatenated CNN features at multiple scales for saliency prediction. Liu et al.
[35] developed a CNN architecture with multiple resolutions to simultaneously learn

4http://lightfield.stanford.edu/lfs.html.
5http://web.media.mit.edu/∼gordonw/SyntheticLightFields/index.php.
6http://limu.ait.kyushu-u.ac.jp/dataset/en/lightfield_dataset.htm.
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early features, bottom-up saliency, and top-down factors and integrated them into the
logistic regression layer to predict eye fixations.

Compared with previous studies, we acquire and integrate visual cues from a single
light-field camera. The integrated visual information allows the visual saliency to be
predicted in a global plenoptic space.

3. OUR APPROACH

In this section, we present an effective and efficient saliency detection scheme using
multiple cues from a Lytro light-field camera. Given a light-field sample, consisting
of an all-in-focus image Iaf , a depth image Idepth, a focal stack, and multi-view cuts
(images), the task is to obtain a saliency map with regard to the all-in-focus image. We
aim to explore multiple saliency cues deriving from the light-field data to detect the
saliency in the all-in-focus image.

We begin with segmenting the all-in-focus image Iaf into a set of non-overlapping
regions/superpixels {spi}M

i=1 by the widely adopted simple linear iterative clustering
(SLIC) algorithm [2], where M = h × w/N is the superpixel number, N is the number
of pixels within each superpixel, and h and w are the height and width of the current
image, respectively. Here, the superpixels usually have a more regular and compact
shape with better boundary adherence than the uniformly segmented regions. In the
following sections, our major goal is to compute the saliency map S(spi) of the superpixel
spi, i = 1, . . . , M. In this work, we use k to index four saliency cues: color cue, depth
cue, and two flow cues (focusing flow and viewing flow).

Our approach mainly consists of the following steps.

(1) First, for each cue, we estimate the superpixel-level feature distinctiveness
dk(spi, spj) between superpixel spi and superpixel spj over the corresponding light-
field image plane, which is described in detail in Section 3.1. Here, the feature
distinctiveness is a pairwise distance that measures the feature difference between
two superpixels/regions in the corresponding feature (cue) space.

(2) Second, we incorporate the location prior [53, 73] into our scheme by computing
two location cues: implicit location �im(spi, spj) in Equation (3) and explicit location
�ex(spi) in Equation (4), where �im(spi, spj) measures the spatial similarity between
two superpixels and �ex(spi) measures the center bias by computing the Gaussian
distance between the centers of the superpixel spi and the all-in-focus image. A
detailed procedure is described in Section 3.2.

(3) Then, we can compute the initial saliency map of each superpixel over all the
feature (cue) spaces by

S∗(spi) =
∑

k

M∑
j=1

ak�ex(spi)�im(spi, spj) dk(spi, spj), j �= i, (1)

where αk > 0 is the weight assigned to the cue k,
∑

k αk = 1.
The basic idea behind Equation (1) is that the superpixel that differs from its

neighboring regions should correspond to high saliency values. In Equation (1),
the implicit location cue �im(spi, spj) is used to weight the feature distinctiveness
dk(spi, spj) by considering that closer regions should have a higher voting weight.
The explicit location cue �ex(spi) also functions as a weight factor by following an
assumption that a region is more likely to be salient if it is close to the center of
the image.

The cue weight αk is determined by a random search of T trials that maximizes
the F-measure defined in Equation (7). In comparison with grid search, random
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ALGORITHM 1: The Proposed Light-field Saliency Detection Approach
Input:
A light-field sample: all-in-focus image, depth map, a stack of focal slices, and multiple
viewpoints;
σμ, σc, σs, σa: radius parameters of Gaussian function;
γ , λ: regularization parameters;
{αk}: light-field cue weights; /* Note that the cue weight αk is optimized by random

search strategy on validation set that maximizes the F-measure defined in
Equation (7). */

β: the trade-off between precision and recall;
Output: The final saliency map Sopt;
1: Over-segment the all-in-focus image to obtain M superpixels {spi}M

i=1;
2: Estimate the feature distinctiveness between two superpixels for each light-field cue by

Equation (2) in Section 3.1;
3: Compute the implicit and explicit location priors by Equation (3) and Equation (4) in

Section 3.2;
4: Obtain the initial saliency map by Equation (1) and normalize it to a range of [0, 1];
5: Refine the initial saliency map by the two-stage refinement strategy in Section 3.3;
Return: Sopt;

search over the same domain is able to achieve a comparable or even better perfor-
mance at a lower computational cost [5].

(4) Next, we normalize the initial saliency map to a range of [0, 1] by N (x) =
x−min(x)

max(x)−min(x) , where x represents the vector of all superpixels’ saliency values. The
normalized initial saliency map is denoted by S(spi). We consider the region in the
whole saliency map that has a larger value than a global threshold to belong to the
salient region based on Otsu’s method [46].

(5) Finally, we apply a two-stage structure-preserving refinement strategy to produce
the final saliency map, which is described in detail in Section 3.3. To make our
approach clearer, we summarize the proposed light-field saliency detection scheme
in Algorithm 1.

3.1. Superpixel-level Intra-cue Distinctiveness

In this subsection, we will introduce how to derive the superpixel-level distinctiveness
of the color, depth, and flow cues from the light-field data. For a cue k, the superpixel-
level distinctiveness is measured by

dk(spi, spj) = ∥∥mk(spi) − mk(spj)
∥∥

2 , j = 1, . . . , M and j �= i, (2)

where spi and spj denote the ith and jth superpixels, respectively, in the corresponding
light-filed image. mk(·) denotes the average feature (color, depth, or flow) values of each
superpixel for cue k. The color, depth, and flow cues are described, respectively, as
follows.

Color. Color is the most widely used cue in saliency detection. It measures how the
intensity of incoming light varies with wavelength. In this work, the color measurement
is derived from the all-in-focus image Iaf in which each pixel is encoded by RGB values.
We first transform the RGB image Iaf into the Lab color space. Then we estimate the
color distinctiveness to characterize common color changes over each channel. The final
color distinctiveness between two superpixels in the all-in-focus image Iaf is equivalent
to the summation of pairwise distances over three color channels, dcolor(spi, spj) =∑

c dcolor
c (spi, spj), where c indexes the three color channels of Lab color space.
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Depth. For a scene with similar foreground and background colors, color cue becomes
less useful. To address this situation, we capture the depth information from the light-
field depth image Idepth. Each pixel in the depth image describes the distance of the
surface of a object from a viewpoint. Based on the observation that the region at a
closer depth range tends to be more salient, we compute the depth distinctiveness
ddepth(spi, spj) between two superpixels from the light-field depth image Idepth using
Equation (2).

Flow. The most significant characteristic of a light-field camera is that it can generate
a stack of images focusing at different depths and multiple viewpoints towards the
scene on a 2D sampling plane in one shot, which allows the estimate of flow field (flow
velocities at horizontal and vertical directions) for the light-field data. Besides, salient
regions usually are closer to the camera than background regions, and, in general,
they will display more apparent motion than background regions, which makes the
flow information of light-field data an effective cue for saliency detection. In this work,
we apply the computational work of optical flow [9] to estimate the light-field flow of 4D
light-filed data. To the best of our knowledge, we are the first to explore the light-field
flow for saliency detection.

For a light-field image sequence {If }F
f =1 (a stack of focal slices or multiple viewpoints

shown in Figure 1), we describe the light-field flow at the pixel (x, y) by a 3D vector
field (�x,�y, 1), which is the displacement vector between two consecutive images (If
and If +1). Here, F is the number of frames in the current focal stack or viewpoints and
�x and �y are the horizontal and vertical components at the pixel (x, y), respectively.
We then compute the flow displacement (�x,�y) by the optimization algorithm in [9].
Then we can estimate the light-field flow map as the average value of the square root

of flow displacements over all the focal slices or the viewpoints, 1
F

∑F
f =1

√
�x2 + �y2.

We term the light-field flow map derived from the stack of focal slices as focusing flow
and the light-field flow map derived from all the viewpoints as viewing flow. These
light-field flow maps will make a good complement to other saliency cues for better
saliency detection. After obtaining these flow maps, we can calculate the focusing flow
distinctiveness df ocusFlow(spi, spj) and the viewing flow distinctiveness dviewFlow(spi, spj)
between two superpixels using Equation (2), respectively.

3.2. Implicit and Explicit Location Measures

Although the above cues are able to detect salient regions, they mainly rely on the
contrast information, which may be less effective when handling low-contrast images.
Several studies have suggested that the relevance between pixels/regions is increased
when their spatial distance is decreased [53], and people often focus their eyes onto the
center of an image [21, 58]. In this work, we aim to enhance the ability of saliency de-
tection by introducing two location-based saliency priors: implicit location and explicit
location as follows.

Implicit Location. We compute the spatial similarity �im(spi, spj) between the cen-
ters of two superpixels spi and spj by

�im(spi, spj) = exp
(

− 1
2σ 2

u
‖u(spi) − u(spj)‖2

2

)
, (3)

where u(·) = (x/h, y/w)T denotes the normalized center coordinate of the given super-
pixel, where (x, y) denotes the average center coordinates that is computed by averaging
the coordinates of all the pixel within the superpixel, h and w denote the height and
weight of the all-in-focus image, and σu is a radius parameter.
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Explicit Location. We measure the center bias by calculating the distance between
the image centroid uc and the center coordinate u(spi) of superpixel spi. We additionally
exploit the background prior to enhance the center-bias salient locations and suppress
non-salient regions. For this purpose, we calculate the highest background probability
mbg(spi) for each superpixel from the corresponding focal slice based on the method in
[73], and we use this probability to improve the center-bias modeling. Similarly to the
implicit location, we use a Gaussian function to obtain the location weight,

�ex(spi) = exp
(

− 1
2σ 2

c

(
1 − mbg(spi)

)2 ‖uc − u(spi)‖2

)
, (4)

where σc is a radius parameter.
The implicit and explicit location priors function as two spatial weight factors in

Equation (1) to enhance the performance of saliency analysis. With this enhancement
operation, the values of salient regions in images are increased, while the saliency
values of non-salient background regions are decreased.

3.3. Saliency Refinement by Exploring the Structure Cue

Although, by integrating light-field saliency cues, some salient parts of regions can be
identified, the whole object may not be uniformly highlighted, as shown in Figure 1(G).
In addition, the saliency maps usually include fuzzy object boundaries and background
noises. The third column in Figure 10(A) shows four saliency detection results produced
by the proposed scheme based on the integration of color, depth, flow, and location cues.
To alleviate these problems, we further propose to explore the light-field structure cue
to refine the saliency values by considering the interrelationship between adjacent
elements (e.g., neighboring nodes are more likely to share similar visual properties
and saliency values).

We utilize internally homogeneous and boundary-preserving superpixels as basic
representation units and refine the normalized initial saliency map S(spi) by exploring
the salient (foreground) term S(·) and the background (non-salient) term Sbg(·) based
on the boundary connectivity [78]. Specifically, we optimize S(spi) by

min
Sopt1(spi )

M∑
i=1

S(spi)‖Sopt1(spi) − 1‖2 +
M∑

i=1

Sbg(spi)‖Sopt1(spi)‖2 (5)

+
M∑

i, j=1

w(spi, spj)‖Sopt1(spi) − Sopt1(spj)‖2.

Here, the first term defines the cost that encourages a superpixel spi with a large
foreground saliency probability S(spi) to take a large saliency value Sopt1(spi). The
second term defines the background cost with a small saliency value Sopt1(spi). The last
term encourages the adjacent superpixels to have similar saliency values, in which

w(spi, spj) = exp

(
− 1

2σ 2
s

∑
k

dk(spi, spj)

)
+ γ exp

(
− 1

2σ 2
a

dcolor(spi, spj)
)

, (6)

where the first term measures the similarity across different cues, the second term is
the color affinity of every adjacent superpixel pair, γ is a small regularization parame-
ter, and σs and σa modulate the strengths of the weights.

Equation (5) is a nonlinear least-square regression problem, which can be easily
solved to obtain a closed-form solution. While most regions of the salient objects are
detected in this refinement stage (R1), some background regions may not be adequately
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Fig. 2. An illustration of the light-field imaging principle. From left to right: slices at different focusing
planes, a schematic illustration of a light-field camera, and multi-view generation.

suppressed (see the fourth column of Figure 10(C)). To improve the performance, in
the second stage (R2), we follow the general-purpose undirected graph construction
framework [26, 72] by using the region saliency Sopt1 as the new query to construct
a saliency map Sopt2. Finally, the optimized saliency map is obtained by the scalar
production of the two steps of saliency refinement results, that is, Sopt = Sopt1 · Sopt2. As
a result, the saliency of each superpixel, as measured by the edges to which it belongs,
is not only determined by the superpixel itself but also influenced by its associated
structural contexts.

4. HFUT-LYTRO DATASET

This section introduces HFUT-Lytro, a light-field dataset collected using a commer-
cially available first-generation Lytro camera. This camera is composed of a main lens,
a microlens array, and a photosensor [45], as shown in Figure 2(B). Our main focus is
to explore the inherent characteristics of the light-field camera, which can be used to
identify salient regions in real-world sequences. To build this dataset, we initially col-
lect 360 light fields from a variety of indoor and outdoor scenes. A total of 255 samples
are then chosen manually based on at least one of the following criteria: (i) multi-
ple disconnected salient object regions; (ii) various depths such that salient regions
are allowed to be in front of the camera at a distance of 2–3m in real backgrounds;
(iii) more illuminants, such as highlight or dark light; (iv) partially occluded salient
regions; (v) cluttered background or the similar foreground and background; and (vi)
small-scale salient regions.

The light field is the total spatio-angular distribution of light rays passing through
the free space and can be parameterized in a two-plane parametrization LF(x, y, s, t)
[25]: the viewpoint plane (s, t) and the image plane (x, y). For each sample in this
dataset, multiple images with different regions in focus are obtained from the Lytro
camera based on the digital refocusing technique [45]. We show three focal slices
corresponding to different depth planes in Figure 2(A). Then, a single all-in-focus image
with sharp focus at every pixel can be created by combining these focal images [4], and
the depth of each ray of light can be estimated by measuring pixels in the focus images
[57]. Moreover, multi-view images are generated by scanning all the spatial locations
at any given viewpoint, as shown in Figure 2(C). For example, the view marked in red
is generated from all the spatial coordinates (x, y) at the given viewpoint (s, t). In our
case, each light-field sample in the proposed dataset contains 49 sub-aperture images,
which have a 7 × 7 angular resolution and 328 × 328 pixels of spatial resolution.

Six examples from our dataset are shown in Figure 3. Figures 3(A) and (F) illustrate
all-in-focus images and depth maps generated by Lytro Desktop 3.07, Figures 3(B)–(D)

7https://www.lytro.com/desktop.
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Fig. 3. Examples in the HFUT-Lytro dataset.
From (A) to (G): all-in-focus images, focal
slices sampled from different depth planes, cen-
ter viewing images, depth maps, and human-
masked ground truths.

Fig. 4. Saliency detection results of different
methods on the LFSD dataset. From top to
bottom: all-in-focus images, ground-truth maps,
and saliency maps obtained by our approach,
WSC [29], DILF [73], and LFS [30].

show three slices focusing at different depth planes generated by the Lfptools.8 Fig-
ure 3(E) gives the center-viewing image from multi-view samples using the decoding
method proposed in [15]. We create ground truths by human subjects. Five subjects,
3 males and 2 females, are asked to draw bounding contours around the objects/regions
that attract them in the image. It is noticed that some regions marked by the subjects
have inconsistencies in terms of being salient ground truths such as the regions where
there are multiple objects in the scene. Hence, we set the pixel value to 1 if at least
3 subjects agree that it belongs to a salient region and zero otherwise. Since one should
respond uniformly within the whole region [28], finally, one participant uses Adobe
Photoshop to segment the salient region maps manually from each image. Figure 3(G)
shows the corresponding ground-truth saliency maps.

5. EXPERIMENTS

In this section, we first introduce the datasets and metrics used for the evaluation
and the implementation details in Section 5.1. We then compare our approach with
state-of-the-art methods on two datasets in Section 5.2. In Section 5.3, we investigate
the effects of different light-field cues for saliency detection and verify the effectiveness
of multi-cue fusion methods and superpixel segmentation.

5.1. Experimental Settings

5.1.1. Datasets. To evaluate the performance of the proposed saliency detection ap-
proach, we perform extensive evaluations on the proposed HFUT-Lytro dataset and
the LFSD dataset [30].

HFUT-Lytro. This dataset contains 255 light fields. As previously mentioned, most
scenes contain multiple objects appearing at a variety of locations and scales with

8https://github.com/nrpatel/lfptools.
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complicated background clutter, which makes this dataset more challenging for
saliency detection.

LFSD. This dataset consists of 100 light fields of different scenes. It was originally
designed for saliency detection captured with a Lytro camera. Most of the scenes contain
only one salient object with high contrast and constrained depth ranges.

5.1.2. Evaluation Criteria. We utilize four metrics for quantitative performance evalua-
tions: Precision and Recall (PR) curve, average precision (AP), F-measure, and Mean
Absolute Error (MAE). A PR curve is obtained by binarizing the saliency map using
different thresholds (ranging from 0 to 255), resulting in a pair of precision and recall
values when the binary mask is compared against the ground truth. The curves are
averaged over each dataset. The precision score reflects the constancy of the saliency
map in predicting the locations within the ground truth. A high precision score shows
that most of the predicted locations are true positives. However, high compactness in
the predicted locations will result in a low recall, which indicates minimal coverage of
the regions enclosed by the salient region’s boundary. AP is defined as the area under
the PR curve. Following [7], we use the PASCAL evaluation protocol [16] to evaluate
this performance.

The F-measure summarizes precision and recall information in a single value. Tra-
ditional F1-measure may have limitations in several cases, since recall and precision
are evenly weighted [49]. Therefore, we use the general Fβ measure to characterize the
tradeoff between precision and recall such that

Fβ = (1 + β2)P × R
β2 × P + R

. (7)

As suggested in [1, 14], we set β2 = 0.3 to weight precision more than recall. P and
R are the precision and recall rates obtained by an adaptive threshold that is twice
the mean saliency of the image [1], that is, Th = 2

h×w

∑∑
Sopt. Using this method, we

obtain average precision and recall over each dataset. We following the same settings
in [31] in our implementation.

MAE provides a better estimate of the dissimilarity between the continuous saliency
map Sopt and the binary ground-truth GT [48], which is defined as

MAE = 1
h × w

∑ ∑
|Sopt − GT |. (8)

5.1.3. Implementation Details. In our experiments, each input all-in-focus image is nor-
malized to have zero mean and unit variance. The pixel number N within each super-
pixel is set to 400. We use the code provided by [34] to compute the light-field flow and
set the parameter λ = 0.012. γ is empirically set to 0.1, and the parameters of the RBF
are set as follows: σμ = 2/3, σc = 1, and σa = 1. σs is adaptively determined using the
method in [78]. The weight vector α is set to [0.50, 0.17, 0.23, 0.10] and [0.54, 0.33, 0.13]
after 100 trials of the random search on the HFUT-Lytro and LFSD datasets, respec-
tively (note that there is no viewing flow information supported by the LFSD dataset).

5.2. Comparison with State-of-the-art Methods

We compare the proposed approach with three recent state-of-the-art methods, LFS
[30], WSC [29], and DILF [73], on the LFSD and HFUT-Lytro datasets. We use either
the implementations with recommended parameter settings provided by the authors
or the results provided by the authors for comparisons.

5.2.1. Quantitative Results. The PR curves of all the methods on the two datasets are
shown in Figure 5. The results show that our method achieves a higher precision
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Fig. 5. The PR curves obtained by different methods on the HFUT-Lytro (left) and LFSD (right) datasets.

Table II. The Precision, Recall, F-measure, AP, and MAE Obtained
by Different Methods on the HFUT-Lytro and LFSD Datasets

(Bold: Best; Underline: Second Best)

Dataset Metric Ours DILF[73] WSC[29] LFS[30]
Precision 0.5928 0.5186 0.5254 0.4753

Recall 0.6726 0.7147 0.6673 0.5354
HFUT-Lytro F-measure 0.6095 0.5537 0.5525 0.4880

AP 0.6354 0.6221 0.4743 0.4718
MAE 0.1388 0.1578 0.1454 0.2214

Precision 0.8542 0.8271 0.8076 0.8115
Recall 0.7397 0.7916 0.6783 0.6083

LFSD F-measure 0.8247 0.8186 0.7735 0.7534
AP 0.8625 0.8787 0.6832 0.8161

MAE 0.1503 0.1363 0.1453 0.2072

in almost the entire recall range on the HFUT-Lytro dataset. On the LFSD dataset,
DILF outperforms our approach. Furthermore, the results of the precision, recall, F-
measure, AP, and MAE metrics are shown in Table II. Our approach performs favorably
against the state-of-the-art methods in most cases. More specifically, our approach
outperforms all the other methods in terms of the F-measure and precision metrics.
On average, our approach obtains improved performances of 5.6% and 0.6% over the
best-performing state-of-the-art algorithm (DILF) in terms of F-measure and performs
better than the second-best method by 6.7% and 2.7% according to the precision score
on the HFUT-Lytro and LFSD datasets, respectively. One explanation for this is that
most methods that utilize color and/or depth cues suffer from low precision, since
it is sometimes difficult to distinguish salient regions and distractors with similar
appearances. Therefore, the distractors will also pop out along with the salient regions,
leading to a decreased precision. By combining the results from Figure 5 and Table II,
we can see that our approach can yield more significant improvements on the more
challenging HFUT-Lytro dataset.

5.2.2. Qualitative Results. For an intuitive comparison, we provide several representa-
tive saliency maps generated by our approach and other state-of-the-art methods on the
LFSD and HFUT-Lytro datasets in Figure 4 and Figure 6, respectively. Clearly, most of
the saliency detection methods can handle images with relatively simple backgrounds
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Fig. 6. Saliency detection results of different methods on the HFUT-Lytro dataset. From top to bottom:
all-in-focus images, ground-truth maps, and saliency maps obtained by our approach, WSC [29], DILF [73],
and LFS [30].

and homogeneous objects, as shown in Figure 4(A). However, our approach is capable of
handling various challenging cases. For example, although the contrast between objects
and backgrounds is very high in Figure 4(B) and Figure 6(A), some methods cannot ac-
curately highlight the salient regions due to background noise, whereas our approach
can effectively address this issue. The proposed approach also performs better than
other methods, even when the salient regions are distracted by background illumina-
tion and shadow artifacts, as shown in Figure 4(C) and Figures 6(B) and (C). Moreover,
in the cases where salient regions are distracted from a cluttered background or have
similar appearance with backgrounds (such as Figures 4(D)–(F) and Figures 6(D)–(F)),
our approach is able to highlight the salient parts more coherently and provides a bet-
ter prediction. Moreover, our approach still performs well when the background prior
is invalid to a certain extent, for example, multiple objects are present in the same
scene (Figures 6(G) and (H)), the salient objects are located at the distant depth levels
(Figure 6(I)), are very small (Figures 6(B) and (J)), or are occluded by nearby objects
(Figure 6(K)).

5.3. Analysis of the Proposed Approach

In this section, we evaluate our approach from multiple perspectives. In the following
experiments, the contribution of each component in our approach is discussed.

5.3.1. On the Contribution of Individual Cues. We first evaluate each individual cue sep-
arately. For each cue, we set its weight to one and the weights of other cues to zero
using the same scheme described in Section 3. The results are shown in Figure 7 and
Figure 8.

We can observe in Figure 8 that the color cue quantitatively performs much better
than the other cues in terms of precision, recall, F-measure, and MAE on the HFUT-
Lytro dataset. However, the performance of the depth cue is slightly better than that
of the color cue on the LFSD dataset in Figure 7. We also noticed that the depth cue is
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Fig. 7. Quantitative and qualitative comparisons of saliency maps from our framework with individual
light-field cues and their refinements on the LFSD dataset. (A) PR curves of individual saliency maps
(dashed line) and their refinements (solid line); (B)–(E) quantitative results of individual saliency maps (left)
and their refinements (right) for each metric; (F) all-in-focus images and the corresponding ground-truth
saliency maps; (G)–(J) color-, depth-, focusing flow-, and position-driven saliency maps and their refined
versions with the structure cue.

Fig. 8. Quantitative and qualitative comparisons of saliency maps from our framework with individual
light-field cues and their refinements on the HFUT-Lytro dataset. (A) PR curves of individual saliency maps
(dashed line) and their refinements (solid line); (B)–(E) quantitative results of individual saliency maps (left)
and their refinements (right) for each metric; (F) all-in-focus images and the corresponding ground-truth
saliency maps; (G)–(K) color-, depth-, focusing flow-, viewing flow-, and position-driven saliency maps and
their refined versions with the structure cue.

essential for certain images. Two such examples are shown in the first two examples
of Figure 7. In the first sample image, the interesting object has similar colors with
background so the color cue cannot provide enough discriminative information. And
the second example shows that the complex-textured background makes it hard for
the model to locate the salient object without depth information. The depth cue helps
to allocate them and, consequently, the accuracy of the saliency model is significantly
improved in these cases. However, if the object has a more complex pattern with a large
size (i.e., the number of superpixels of the object is more than that of the background),
the depth fails to predict the saliency region of the object, as shown in the third example
of Figure 7. In this case, color and focusing flow cues can detect object boundaries based
on the color variations and depth discontinuity to form a coarse saliency map. Then
the refinement is capable of rendering a uniform saliency map while suppressing the
background, leading to salient objects being popped out. On the other hand, we observe
that some images are especially hard to predict using the depth cue. Two examples
are shown in Figure 8. A group of pots in the second example are located at large
depth planes. Even though the color cue can recognize the five pots, the depth feature
only detects the nearer pot to the observers. A similar phenomenon appears on the
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Fig. 9. PR-curve and qualitative comparisons of saliency maps with and without the flow cue. (A) Qualitative
comparison of saliency maps. From left to right: all-focus images, ground truth, w/o the flow cue, and w/ the
flow cue; (B) HFUT-Lytro dataset; (C) LFSD dataset.

third sample image, in which the animal is too small and located in the further depth
plane so the depth cue misidentifies some regions. Besides, the color cue points out
the shadow in the scene. We find such phenomena also have connections with the
characteristics of the datasets. Salient objects in the LFSD dataset are closer to the
camera. This leads to more accurate and useful depth estimation for saliency detection.
However, in the HFUT-Lytro dataset, salient objects have wider depth ranges. Thus,
depth estimation could be inaccurate, and they could treat closer regions as salient
regions. By examining these predicted saliency maps, we can see that the flow features
are critical to the specific cases. Moreover, the location saliency maps based on the
Gaussian function have a similar appearance but different resolutions and aspect
ratios. Note that the aliasing effect is caused by thresholding the saliency maps. We also
illustrate the comparison of saliency detection with and without structure-cue-based
saliency refinement for individual cue. We find that the refinement leads to a better
saliency detection performance in all metrics. It is also clear from visual comparisons
that the structure cue is able to highlight the salient object parts more coherently for
each other cue and achieves a better prediction, especially on complex scenes with
cluttered background.

From the results in Figure 5, Figure 7, and Figure 8, we can see that the cue inte-
gration yields better results than using any individual cue alone. Different visual cues
provide complementary supporting information to saliency detection.

5.3.2. Evaluation on the Flow Cue. Here, we evaluate the contribution of the flow cue to
the accuracy of the overall combination. For this purpose, we simply remove this cue
from the full scheme with the other cues left unchanged with equal weights for fair
comparison. Hence, the more the performance is decreased, the more important the flow
cue is to the overall accuracy. Some saliency maps generated with and without light-
field flow cues are shown in Figure 9(A), and the resulting quantitative comparisons
are shown in Figures 9(B) and (C).

It can be seen from Figures 9(B) and (C) that the performance of saliency detection
significantly degrades after removing the flow cue from the combination, especially on
the HFUT-Lytro dataset. This well demonstrates the effectiveness of flow information
in the visual saliency measurement. We also observe in Figure 9(A) that the flow cue
does not respond against the textured background but can detect the depth boundary.
Hence, when all cues are combined, this boundary is assigned a higher probability of
being saliency pixels than the neighboring background.
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Fig. 10. PR-curve and qualitative comparisons of saliency maps with and without refinement. (A) Qualita-
tive comparison of saliency maps. From left to right: all-focus images, ground truth, w/o refinement, w/ R1,
and w/ R2; (B) HFUT-Lytro dataset; (C) LFSD dataset.

Fig. 11. Performance comparison of different multi-cue integration methods on the HFUT-Lytro and LFSD
datasets. Here, we illustrate the PR curves and F-measures.

5.3.3. Evaluation on the Structure Cue. We evaluate the contribution of our graph-based
refinement framework at different stages. Results are shown in Figure 10. From Fig-
ure 10(A), it is clear that the coarse saliency maps without refinement seem to capture
the saliency location and global structural information (like shapes of the salient ob-
jects roughly), but the details, especially object boundaries and subtle structures, are
easily lost and even mistakenly highlight some of the background regions particularly
when the background is cluttered. Meanwhile, our approach with the second-stage
refinement (R2) will lead to a better performance than only one stage (R1), especially
on the challenging HFUT-Lytro dataset, as shown in Figures 10(B) and (C). Overall,
our saliency refining strategy plays a crucial role in capturing the semantic object
properties by introducing more spatial structural information.

5.3.4. On the Integration of Multiple Cues. To assess the benefit of the random search (RS)
for multi-cue integration in the proposed scheme, we compare different fusion methods
in Figure 11. Here, we introduce two other cue integration models as baselines: the
adaptively weighted fusion strategy (SACS) [12] and the SVM-based learning mecha-
nism [22]. In the RS method, we optimize the cue weights by using all the data (RS-all)
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Fig. 12. Precision, recall, F-measure, and qualitative comparisons of saliency maps with and without SLIC.
(A) Qualitative comparison of saliency maps. From left to right: all-focus images, ground truth, w/o SLIC,
and w/ SLIC (N = 400); ((B) and (C)) Quantitative results on the HFUT-Lytro and LFSD datasets w.r.t.
different numbers of pixels within each superpixel. 0 indicates regular grid sampling.

Table III. Computational Time of Our Approach and the State-of-the-art
Methods for Processing One Image

Methods Our approach DILF [73] WSC [29] LFS [30]
Runtime (seconds) 4.2 0.9 8.5 8.1

or the validation set (RS-val). In the SVM method, we learn the model parameters us-
ing the validation set with linear (SVM-linear) or RBF (SVM-RBF) kernels to classify
regions as salient vs. non-salient. We randomly sample a validation set (40% of the
data in each dataset) for parameter learning. After this stage, the optimal parameters
are computed to yield saliency maps on the remaining data. We repeat this procedure
3 times and report the average results.

It is fairly clear from Figure 11 that the random search method significantly out-
performs other methods. In this case, the saliency model built on randomly selected
parameters is able to better reflect the prior knowledge of any given scene and capture
the saliency priors, which results in the good performance.

5.3.5. Evaluation on SLIC. To validate the effectiveness of SLIC, we simply replace SLIC
with a regular grid sampling strategy and assign every light-field cue an equal weight
without random search for fair comparison and measure the saliency maps generated
with different numbers of pixels within each superpixel. Resulting comparisons are pro-
vided in Figure 12. It can be seen that the removal of SLIC leads to poor performance.
This is not surprising, because regular grid segmentation ignores local structural con-
straints. The results also show that the setting of N = 400 leads to an overall better
performance on the two datasets.

5.3.6. On the Computational Cost of the Approach. In terms of computation complexity,
we compare the average runtime for each sample among different light-field saliency
detection methods. We run the implementations by Matlab on an Intel i7 3.1GHz CPU
PC with 16GB RAM. Table III shows the time cost of our approach compared with
other state-of-the-art methods [29, 30, 73]. It can be seen that our approach consumes
a smaller amount of computing time than the WSC [29] and LFS [30] and a bit more
than DILF [73].

6. CONCLUSIONS

In this article, we propose a light-field saliency detection approach. In particular, we
design a simple yet effective multi-cue scheme to encode the saliency priors in various
visual channels, including color, depth, flow, and location. We investigate these visual

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 13, No. 3, Article 32, Publication date: July 2017.



Saliency Detection on Light Field: A Multi-Cue Approach 32:19

cues in the context of a contrast-based saliency measurement where superpixels are
used as direct inputs to the cue distinctiveness to detect the saliency presence of a
superpixel. To integrate the saliency information from multiple perspectives, a random
search method is employed to weight different saliency cues. Finally, we explore the
structure cue to refine the object details and improve the accuracy of the saliency map.
Our scheme does not involve any object detection or training process. To better analyze
the effects of these visual cues and evaluate the proposed scheme, we collect light-field
sequences of real-world scenes to construct a larger database with a set of light-field
images and salient region annotations.

Extensive experimental comparisons have demonstrated that our approach signifi-
cantly outperforms other advanced methods [29, 30, 73]. It yields a better performance
by effectively exploring the complementation of multiple cues. Our multi-cue approach
also offers novel insights for the understanding of light fields, which may potentially
be useful in a wide variety of applications such as face detection [50], object recognition
[70], and scene reconstruction [23].
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[21] Tilke Judd, Frédo Durand, and Antonio Torralba. 2012. A Benchmark of Computational Models of
Saliency to Predict Human Fixations. Technical Report. MIT.

[22] Tilke Judd, Krista Ehinger, Fredo Durand, and Antonio Torralba. 2009. Learning to predict where
humans look. In Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2106–
2113.

[23] Changil Kim, Henning Zimmer, Yael Pritch, Alexander Sorkine-Hornung, and Markus H. Gross. 2013.
Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Graph. 32, 4 (2013),
73–1.

[24] Congyan Lang, Tam V. Nguyen, Harish Katti, Karthik Yadati, Mohan Kankanhalli, and Shuicheng
Yan. 2012. Depth matters: Influence of depth cues on visual saliency. In Proceedings of the European
Conference on Computer Vision. Springer, Berlin, 101–115.

[25] Marc Levoy and Pat Hanrahan. 1996. Light field rendering. In Proceedings of the 23rd Annual Confer-
ence on Computer Graphics and Interactive Techniques. ACM, 31–42.

[26] Changyang Li, Yuchen Yuan, Weidong Cai, Yong Xia, and David Dagan Feng. 2015. Robust saliency
detection via regularized random walks ranking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2710–2717.

[27] Guanbin Li and Yizhou Yu. 2015. Visual saliency based on multiscale deep features. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 5455–5463.

[28] Jian Li, Martin D. Levine, Xiangjing An, Xin Xu, and Hangen He. 2013a. Visual saliency based on
scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 35, 4 (2013),
996–1010.

[29] Nianyi Li, Bilin Sun, and Jingyi Yu. 2015. A weighted sparse coding framework for saliency detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 5216–5223.

[30] Nianyi Li, Jinwei Ye, Yu Ji, Haibin Ling, and Jingyi Yu. 2014. Saliency detection on light field. In
Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitionComputer Vision and
Pattern Recognition. IEEE, 2806–2813.

[31] Xi Li, Yao Li, Chunhua Shen, Anthony Dick, and Anton Van Den Hengel. 2013b. Contextual hypergraph
modelling for salient object detection. In Proceedings of the IEEE International Conference on Computer
Vision. IEEE, 3328–3335.

[32] Xiaohui Li, Huchuan Lu, Lihe Zhang, Xiang Ruan, and Ming-Hsuan Yang. 2013c. Saliency detection
via dense and sparse reconstruction. In Proceedings of the IEEE International Conference on Computer
Vision. IEEE, 2976–2983.

[33] Chia-Kai Liang, Tai-Hsu Lin, Bing-Yi Wong, Chi Liu, and Homer H. Chen. 2008. Programmable aper-
ture photography: Multiplexed light field acquisition. ACM Trans. Graph. 27, 3 (2008), 55.

[34] Ce Liu. 2009. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis.
Ph.D. Dissertation. Massachusetts Institute of Technology.

[35] Nian Liu, Junwei Han, Dingwen Zhang, Shifeng Wen, and Tianming Liu. 2015. Predicting eye fixations
using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 362–370.

[36] Tie Liu, Zejian Yuan, Jian Sun, Jingdong Wang, Nanning Zheng, Xiaoou Tang, and Heung-Yeung Shum.
2011. Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2 (2011), 353–367.

[37] Yao Lu, Wei Zhang, Cheng Jin, and Xiangyang Xue. 2012. Learning attention map from images. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 1067–1074.

[38] Andrew Lumsdaine and Todor Georgiev. 2009. The focused plenoptic camera. In Proceedings of the
International Conference on Computational Photography. IEEE, 1–8.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 13, No. 3, Article 32, Publication date: July 2017.

http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html


Saliency Detection on Light Field: A Multi-Cue Approach 32:21

[39] Ping Luo, Yonglong Tian, Xiaogang Wang, and Xiaoou Tang. 2014. Switchable deep network for pedes-
trian detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 899–906.

[40] Chih-Yao Ma and Hsueh-Ming Hang. 2015. Learning-based saliency model with depth information. J.
Vis. 15, 6 (2015), 1–22.

[41] Kshitij Marwah, Gordon Wetzstein, Yosuke Bando, and Ramesh Raskar. 2013. Compressive light field
photography using overcomplete dictionaries and optimized projections. ACM Trans. Graph. 32, 4
(2013), 46.

[42] Hajime Mihara, Takuya Funatomi, Kenichiro Tanaka, and Hiroyuki Kubo. 2016. 4D light field seg-
mentation with spatial and angular consistencies. In Proceedings of the International Conference on
Computational Photography. IEEE, 1–8.

[43] Antoine Mousnier, Elif Vural, and Christine Guillemot. 2015. Partial light field tomographic recon-
struction from a fixed-camera focal stack. arXiv preprint arXiv:1503.01903 abs/1503.01903 (2015).

[44] Ren Ng. 2006. Digital Light Field Photography. Ph.D. Dissertation. Stanford University.
[45] Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz, and Pat Hanrahan. 2005. Light Field

Photography with a Hand-held Plenoptic Camera. Technical Report 2. Stanford University Computer
Science.

[46] Nobuyuki Otsu. 1975. A threshold selection method from gray-level histograms. Automatica 11, 285–
296 (1975), 23–27.

[47] Houwen Peng, Bing Li, Weihua Xiong, Weiming Hu, and Rongrong Ji. 2014. RGBD salient object
detection: A benchmark and algorithms. In Proceedings of the European Conference on Computer Vision.
Springer, Berlin, 92–109.
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