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Abstract

Despite the recent success of stereo matching with con-
volutional neural networks (CNNs), it remains arduous to
generalize a pre-trained deep stereo model to a novel do-
main. A major difficulty is to collect accurate ground-
truth disparities for stereo pairs in the target domain. In
this work, we propose a self-adaptation approach for CNN
training, utilizing both synthetic training data (with ground-
truth disparities) and stereo pairs in the new domain (with-
out ground-truths). Our method is driven by two empirical
observations. By feeding real stereo pairs of different do-
mains to stereo models pre-trained with synthetic data, we
see that: i) a pre-trained model does not generalize well to
the new domain, producing artifacts at boundaries and ill-
posed regions; however, ii) feeding an up-sampled stereo
pair leads to a disparity map with extra details. To avoid
i) while exploiting ii), we formulate an iterative optimiza-
tion problem with graph Laplacian regularization. At each
iteration, the CNN adapts itself better to the new domain:
we let the CNN learn its own higher-resolution output; at
the meanwhile, a graph Laplacian regularization is imposed
to discriminatively keep the desired edges while smoothing
out the artifacts. We demonstrate the effectiveness of our
method in two domains: daily scenes collected by smart-
phone cameras, and street views captured in a driving car.

1. Introduction
Stereo matching is a classic yet important problem for

many computer vision tasks (e.g., 3D reconstruction [7] and
autonomous vehicles [6]). Particularly, given a rectified im-
age pair captured by stereo cameras, one aims at estimating
the disparity of each pixel between the two images. Tra-
ditionally, a stereo matching pipeline starts from matching
cost computation and cost aggregation. Further optimiza-
tion and refinement lead to the output disparity [13]. Recent
advances in deep learning has inspired a lot of end-to-end
convolutional neural networks (CNNs) for stereo matching,
e.g., [18, 23]. Unlike the traditional wisdom, an end-to-end
CNN integrates the stereo matching pipeline into a holistic
deep architecture by learning from the training data. Under

confined scenarios with proper training data (e.g., the KITTI
dataset [6]), the end-to-end deep stereo models achieve un-
precedented state-of-the-art performance.

However, it remains difficult to generalize a pre-trained
deep stereo model to a novel scenario. Firstly, the con-
tents in the source domain may have very different char-
acteristics from the target domain. Moreover, real stereo
pairs collected with different stereo modules suffer from
several degenerations—e.g., noise corruption, photometric
distortions, imperfections in rectification—to different ex-
tents. Directly feeding a stereo pair of the target domain to a
CNN pre-trained from another domain deteriorates its per-
formance significantly. Consequently, state-of-the-art ap-
proaches, e.g., [18, 28], train their models with synthetic
datasets [23], then perform finetuning on a fewer amount
of domain-specific data with ground-truths. Unfortunately,
besides a few public datasets for research purpose, e.g., the
KITTI dataset [6] and the Middlebury dataset [32], it is ex-
pensive and troublesome to collect real stereo pairs with ac-
curate ground-truth disparities.

To resolve this dilemma, we propose a self-adaptation
approach to generalize deep stereo matching methods to
novel domains. We utilize synthetic training data and stereo
pairs of the target domain, where only the synthetic data
have known disparity maps. Our approach is compatible
with end-to-end deep stereo methods, e.g., [23, 28], guiding
a pre-trained model to gradually adapt to the target scenario.
We start our explorations by feeding real stereo pairs from
different domains to models pre-trained with synthetic data,
resulting in two empirical observations:

(i) Generalization glitches: a pre-trained model does not
generalize well on the target domain—the produced
disparity maps can be blurry at object edges and erro-
neous at ill-posed regions;

(ii) Scale diversity: feeding a properly up-sampled stereo
pair (the same stereo pair at a finer scale) leads to
another disparity map with more meaningful details,
e.g., sharper object boundaries, more high-frequency
contents of the scene.

To avoid the issues of (i) while exploiting the benefits of (ii),
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Figure 1. Feeding stereo pairs collected from smartphones to mod-
els pre-trained from synthetic data leads to blurry edges and arti-
facts. In contrast, our self-adaptation approach brings significant
improvements to the disparity maps.

we propose an iterative regularization scheme for finetuning
deep stereo matching models.

We formulate the CNN training as an iterative optimiza-
tion problem with graph Laplacian regularization. On one
hand, we let the CNN learn its own finer-grain output; on
the other hand, a graph Laplacian regularization is imposed
to discriminatively retain the useful edges while smooth-
ing out the undesired artifacts. Our formulation, composing
of a data term and a smoothness term, is solved iteratively,
leading to a model well suited for the novel domain e.g.,
Figure 1. The proposed self-adaptation approach is called
zoom and learn, or ZOLE, for short. We demonstrate the ef-
fectiveness of our approach to two different domains: daily
scenes collected by smartphone cameras, and street views
captured from the perspective of a driving car.

This paper is structured as follows. Related works are
reviewed in Section 2. We then illustrate our observations
about deep stereo models in Section 3. The proposed self-
adaptation approach is introduced in Section 4. Section 5
presents the experimental results and Section 6 concludes
our work.

2. Related Works

We first review several stereo matching algorithms based
on convolutional neural networks (CNNs). We then turn to
related works on graph Laplacian regularization and itera-
tive regularization/filtering.

Deep stereo algorithms: Recent breakthroughs in deep
learning have reshaped the paradigms of many computer
vision tasks, including stereo matching. Early works em-
ploying CNNs for stereo matching focuses on learning a ro-

bust similarity measure for matching cost computation e.g.,
[11, 37]. To produce disparity maps, modules in the tra-
ditional stereo matching pipeline are indispensable. The
remarkable work, DispNet, proposed by Mayer et al [23],
is the first end-to-end CNN approach for stereo matching,
where an encoder-decoder architecture is employed for su-
pervised learning. Other recent works with leading per-
formance include CRL [28], GC-NET [18], DRR [8], etc.
These works explore different CNN architectures tailor-
made for stereo matching. They achieve superior results
on the KITTI 2015 stereo benchmark [6], a benchmark con-
taining driving scenes. Despite the success of these method-
ologies, to adopt them in a novel domain, it is necessary to
fine-tune the models with new domain-specific data. Unfor-
tunately, in practice, it is very difficult to collect accurate
disparity maps for training [6, 32].

To mitigate this problem, some recent works proposed
semi-/un-supervised approaches to train a CNN model for
stereo matching (or its related problem, monocular depth
estimation). This category of works is essentially based on
left-right consistency/warping, e.g., [10, 19, 38, 39]. For
instance, one may synthesize the left (or right) view ac-
cording to the estimated left (or right) disparity and the
right (or left) view for computing a loss function. However,
left-right consistency becomes vulnerable when the stereo
pairs are imperfect, e.g., when the two views have differ-
ent photometric distortions. Another line of research by
Tonioni et al. [34] propose to finetune a pre-trained model
to achieve domain adaptation. Their method relies on the
results of other stereo methods and confidence measures.
Our work also performs finetuning with a pre-trained stereo
model. In contrast, we do not rely on external models or
setups: our self-supervised domain adaptation method lets
the CNN discriminatively learn the useful details from its
own finer-grain outputs.

Other related works: According to [21, 33], graph
Laplacian regularization is particularly useful for the recov-
ery of piecewise smooth signals, e.g., disparity maps. By
having an appropriate graph, edges can be preserved while
undesired defects are suppressed [26, 27]. Hence, we pro-
pose to apply graph Laplacian regularization to selectively
learn and preserve the meaningful details from the higher-
resolution disparity outputs.

Iterative regularization/filtering is an important tech-
nique in classic image restoration [17, 24, 25]. To restore a
corrupted image, it is regularized iteratively through a vari-
ational formulation, so that its quality improves at each it-
eration. To utilize scale diversity while avoiding general-
ization glitches (as mentioned in Section 1), we embed iter-
ative regularization into the CNN training process, making
the model parameters improve gradually. Different from it-
erative refinement via a stacked neural network architecture,
e.g., [15, 35], our iterative process occurs during training.



3. Observations

We first present two phenomena by feeding real-world
stereo pairs in different domains to deep stereo models pre-
trained with synthetic datasets (e.g., FlyingThings3D [23],
MPI Sintel [3], Virtual KITTI [5]). Underlying reasons
for these phenomena will also be presented. We choose
the off-the-shelf DispNet [23] architectures—both the one
with explicit correlation (DispNetC) and the one based on
convolution only (DispNetS)—for our discussions. Their
encoder-decoder architectures are representative and also
widely used in the deep learning literature, e.g., [1, 22, 31].

3.1. Generalization Glitches

In general, a stereo model pre-trained with synthetic data
does not perform well on real stereo data in a particular do-
main. Firstly, the contents of the synthetic data may dif-
fer from that of the target domain. Moreover, real stereo
pairs inevitably suffer from defects arising from the imag-
ing process. For instance, they are likely corrupted by noise.
Besides, the two views may have different photometric dis-
tortions due to inconformity of the two cameras. In some
cases, the stereo pair may not even be well rectified, e.g.,
two corresponding pixels are not on the same scan-line. All
the above factors deteriorate the performance of a model
pre-trained with synthetic data.

For illustration, we use smartphones equipped with
two rear-facing cameras to collect a few stereo pairs (of
size 1024×1024), then perform the following tests. We
first adopt the released DispNetC model pre-trained with
the FlyingThings3D dataset [23]. Since stereo pairs of
smartphones have small disparity values, we also fine-
tune a model from the released model, where we remove
those FlyingThings3D stereo pairs with maximum disparity
larger than 80. Data augmentation is introduced for the two
views individually during training, please refer to Section 5
for more details. The resulting model is called DispNetC-
80. Both DispNetC and DispNetC-80 perform very well
on the FlyingThings3D dataset, but are problematic when
applied to real smartphone data. Figure 1 shows a few dis-
parity estimates of DispNetC and DispNetC-80. As can be
seen, the results are blurry at object edges. Moreover, at
ill-posed regions, i.e., object occlusions, repeated patterns,
and textureless regions, the disparity maps are erroneous.
In this work we call this generalization glitches, meaning
the mistakes that a deep stereo model (pre-trained with syn-
thetic data) make when it is applied to real stereo pairs of a
certain domain.

3.2. Scale Diversity

In spite of the unpleasant generalization glitches, we find
that deep stereo models have an encouraging property. Sup-
pose we have a stereo pair P = (L,R), where L and R are

Figure 2. For the same stereo pair, feeding its zoomed-in version to
a stereo matching CNN leads to a disparity map with extra details.
The four rows are the left image, the disparity maps obtained by
(1), with up-sampling ratio r = 1, 1.5, 2, respectively.

the left and the right views, respectively. We denote a deep
stereo model parameterized by Θ as S(·;Θ). By applying it
to the stereo pair P leads to a disparity map D = S (P ;Θ).
The operation of up-sampling by r times is denoted as ↑r(·)
while down-sampling by r times is ↓r(·). By passing an up-
sampled stereo pair to S then down-sampling the result, we
obtain another disparity map, D′, of the same size as D,

D′ =
1

r
· ↓r (S (↑r(P );Θ)) . (1)

Note that after downsampling, the factor 1/r is necessary
for making D′ to have the correct scaling. Compared to
D, D′ usually contains more high-frequency details. To see
this, we apply the released DispNetC model to a few stereo
pairs captured by smartphones. We make the original size
of the stereo pairs as 640× 640. For each of them, we esti-
mate three disparity maps based on (1) with r ∈ {1, 1.5, 2}.
Visual results are shown in Figure 2. We see that as r grows,
more fine details are produced on the disparity maps.

However, a bigger r does not necessarily mean better re-
sults. For further inspection, we adopt the released Disp-
NetC and DispNetS models (trained with the FlyingTh-
ings3D dataset) and measure their performance on the train-
ing set of KITTI stereo 2015 [6] at different resolutions.
The results, in terms of the percentage of pixels with an er-
ror greater than 3, or three-pixel error rate (3ER), are listed



Table 1. The average three-pixel error rates of the released Disp-
NetC and DispNetS models on the training set of KITTI stereo
2015. A resolution of N means the stereo pairs are resized to
N ×N before passing to the CNNs.

Network
Resolution

896 1280 1664 2048 2432
DispNetC 14.26% 9.97% 8.81% 9.17% 10.53%
DispNetS 18.95% 11.61% 9.18% 8.64% 9.08%

in Table 1. We see that as the input resolution increases, the
performance first improves then deteriorates. Because:

(i) Up-sampling the stereo pairs enables the model to per-
form stereo matching at a localized manner with sub-
pixel accuracy. Hence, more details on the stereo pairs
are taken into account for computation, leading to dis-
parity estimates with extra high-frequency contents;

(ii) A finer-scale input translates to a smaller effective
search range (or receptive field). As a CNN becomes
too “short-sighted,” it lacks non-local information to
estimate a proper disparity map, and its performance
start to decline.

This phenomenon—different results can be observed with
different input scales—is called scale diversity, akin to the
concept of transmit diversity in communication [30]. We
find that scale diversity also exists in other problems, e.g.,
optical flow estimation [15, 23] and image segmentation
[22], please refer to the supplementary material for more
details.

4. Zoom and Learn
To achieve effective self-adaptation, our approach—

zoom and learn (ZOLE)—finetunes a model pre-trained
with synthetic data. It iteratively suppresses generalization
glitches while utilizing the benefits of scale diversity.

4.1. Graph Laplacian Regularization

Graph Laplacian regularization is employed in a wide
range of image restoration literature, e.g., [4, 9, 24]. It is
also proven to be effective for the recovery of piecewise
smooth signals [14, 26, 33]. We adopt graph Laplacian reg-
ularization (on a patch-by-patch basis) to guide the learn-
ing of CNNs. Graph Laplacian regularization assumes the
ground-truth signal s ∈ Rm—in our case, a patch on the
ground-truth disparity—is smooth with respect to a pre-
defined graph G with m vertices. Specifically, it imposes
that the value of sTLs, i.e., the graph Laplacian regular-
izer, should be small for the ground-truth patch s, where
L ∈ Rm×m is the graph Laplacian matrix of graph G.
Given a disparity map D produced by a deep stereo model,
we compute the values of the graph Laplacian regularizers

for the patches on D. The obtained values are summed up
as a graph Laplacian regularization loss for CNN training.

For an effective regularization with graph Laplacian, it is
critical to constructing a graph G properly. We employ the
graph structure of [12, 26] which works well for disparity
map denoising. For illustration, we first introduce the con-
cept of exemplar patches. Exemplar patches are a set of K
patches, fk ∈ Rm where 1 ≤ k ≤ K, that are statistically
related to the ground-truth patch s. For instance, an exem-
plar patch can be a rough estimate of s, or the co-located
patch on the left image, etc. Our choices of the exemplar
patches will be presented in Section 4.2. With the exemplar
patches, the edge weight wij connecting pixel i and pixel j
on patch s is given by

wij =

{
exp

(
−d2

ij

)
if |dij | ≤ ε,

0 otherwise,

where ε is a threshold, d2
ij is a distance measure between

pixel i and pixel j. Hence, the resulting graph G is an ε-
neighborhood graph, i.e., there is no edge connecting two
pixels with a distance greater than ε. We choose an indi-
vidual value of ε for each patch, making every vertex of the
graph has at least 4 edges. The distance measure d2

ij is de-
fined as follows:

d2
ij =

∑K

k=1
(fk(i)− fk(j))

2
+ α · l2ij , (2)

where fk(i) and fk(j) denote the i-th and the j-th entries
of fk, respectively, so the first term of (2) measures the Eu-
clidean distance between pixels i and j in a K-dimensional
space defined by the exemplar patches. lij is simply the
spatial distance (length) between pixels i and j, and α is a
constant weight, empirically set to be a small value 0.2.

The adjacency matrix of G is denoted as A, where the
(i, j)-th entry of A is wij . The degree matrix of G is a di-
agonal matrix D, its i-th diagonal entry is

∑m
j=1 wij . Then

the graph Laplacian L is given by L = D − A, leading
to the graph Laplacian regularizer sTLs ∈ R. From the
analysis of [26], graph Laplacian regularizer is an adaptive
metric. If the same edge (or gradient ) pattern appears in
the majority of the exemplar patches, minimizing the graph
Laplacian regularizer promotes the very edge pattern; if the
exemplar patches are inconsistent, graph Laplacian regular-
ization leads to a smoothed patch. We exploit this property
to guide a deep stereo model to selectively learn the desired
details.

4.2. Training by Iterative Regularization

We borrow the notion of iterative regularization [24] for
generalizing deep stereo models to novel domains, giving
rise to the proposed zoom and learn approach. Suppose
we have a deep stereo model S(·;Θ(0)) (parameterized by
Θ(0)) pre-trained with synthetic data. We also have a set



of N stereo pairs, Pi = (Li, Ri), 1 ≤ i ≤ N , where the
first Ndom of them are real stereo pairs of the target domain
while the rest Nsyn = N − Ndom pairs are synthetic data,
among which only the synthetic data has ground truth dis-
parities Di (Ndom + 1 ≤ i ≤ N ).

We solve for a new set of model parameters Θ(k+1) at
iteration k. For a constant r > 1, we first create a set of
“ground-truths” for the Ndom real stereo pairs by zooming
(up-sampling), i.e.,

Di =
1

r
· ↓r

(
S
(
↑r(Pi);Θ

(k)
))

, 1 ≤ i ≤ Ndom. (3)

From Section 3.2, Di contains more details than
S(Pi;Θ

(k)). We divide a disparity map Di into M
square patches tiling it where each patch is a vector of
length m. The vectorization operator is denoted as vec(·)
so that vec(Di) ∈ RMm. The m-by-Mm matrix extracting
the j-th patch from Di is denoted as Rj . With these
settings, we formulate the following iterative optimization
problem,

Θ(k+1) = argmin
Θ

Ndom∑
i=1

M∑
j=1

‖sij − dij‖1+λ · sT
ijL

(k)
ij sij+

τ ·
N∑

i=Ndom+1

‖S(Pi;Θ)−Di‖1, (4)

s.t. sij = Rj · vec (S(Pi;Θ)) , dij = Rj · vec (Di) .

Here sij and dij are the j-th patches of S(Pi;Θ) and Di,
respectively. λ and τ are positive constants. Our optimiza-
tion problem (4) first minimizes over each patch on the
Ndom stereo pairs: the first term (data term) drives sij to
be similar to dij ; and the second term (smoothness term) is
a graph Laplacian regularizer induces from the matrix L

(k)
ij .

The third term of (4) lets Θ(k+1) be a feasible deep stereo
model; it literally means that: a deep stereo model works
well for the target domain should also has reasonable per-
formance on the synthetic data.

At iteration k, a graph G(k)
ij (1 ≤ i ≤ Ndom, 1 ≤ j ≤

M ), and hence the corresponding graph Laplacian, L(k)
ij , are

pre-computed for calculating a loss sT
ijL

(k)
ij sij . We choose

the following three exemplar patches for building G(k)
ij :

fleft = wleft · Rj · vec(Li),

fcurr = wcurr · Rj · vec(S(Pi;Θ
(k))),

ffine = wfine · Rj · vec(Di) = wfine · dij ,

where wleft, wcurr and wfine are constants. In other words,
fleft, fcurr, and ffine are the j-th patches of the left image
Li, the current prediction S(Pi;Θ

(k)) and the finer-grain
prediction Di (3), respectively.

Our chosen exemplar patches lead to a graph Laplacian
regularizer that discriminatively retain the desired details
from ffine whilst smoothing out possible artifacts on both
fcurr and ffine. We analyze how the patches fleft, fcurr and
ffine affects the behavior of the graph Laplacian:

(i) Suppose a desired object boundary (denoted by A)
does not appear in the current predicted patch fcurr.
However, it has appeared in the finer-grain patch
ffine by virtue of scale diversity (Section 3.2), then A
should also appear in fleft; otherwise the CNN cannot
generate A on ffine. In this case, both ffine and fleft

have boundary A, resulting in a Laplacian L
(k)
ij that

promotes A on sij .

(ii) Suppose due to generalization glitches, an undesired
pattern (denoted as B) is produced in one exemplar
patch, fcurr or ffine. Since B is absence in the other
exemplar patches, the corresponding graph Laplacian
L

(k)
ij penalizes B on sij .

Hence, our graph Laplacian regularizer guides the CNN to
only learn the meaningful details.

4.3. Practical Algorithm

Iteratively solving the optimization problem (4) can be
achieved by training the model S(·;Θ) with standard back-
propagation [20]. We hereby present how to use the pro-
posed formulation for finetuning a pre-trained model in
practice. Since a disparity map Di is tiled by M patches,
dij with 1 ≤ j ≤ M , the first term in (4) equals∑Ndom

i=1 ‖S(Pi;Θ)−Di‖1. Hence, the objective of (4) can
be rewritten as:

Θ(k+1) = argmin
Θ

Ndom∑
i=1

‖S(Pi;Θ)−Di‖1+

τ ·
N∑

i=Ndom+1

‖S(Pi;Θ)−Di‖1 + λ ·
Ndom∑
i=1

M∑
j=1

sT
ijL

(k)
ij sij ,

(5)

We see that the first two terms of (5) are simply L1 loss
with different weightings for the target domain and the syn-
thetic data. The third term is the proposed graph Laplacian
regularization loss, we discuss its backpropagation in the
supplementary material.

In general, there are a lot of training examples (N is
large), yet in practice, every training iteration can only
take in a batch of n � N training examples and perform
stochastic gradient descent. As a result, we shuffle all the
N stereo pairs and sequentially take out n of them to form a
training batch for the current iteration. For a synthetic stereo
pair Pi (Ndom + 1 ≤ i ≤ N ) in the batch, we directly use
its L1 loss for backpropagation since its ground-truth Di is



Algorithm 1 Zoom and learn (ZOLE)
1: Input: Pre-trained deep stereo model S(·;Θ(0)),

training data {Pi}Ndom
i=1 and {Pi, Di}Ni=Ndom+1

2: Shuffle the training data to form a list `
3: for k = 0 to kmax − 1 do
4: for b = 1 to n do
5: Draw an index i from list `
6: if i ≤ Ndom then
7: Compute Di, then compute S(Pi;Θ

(k)) and hence
the graph Laplacian matrices L

(k)
ij

8: end if
9: Insert {Pi, Di} to the current batch

10: end for
11: Use the formed training batch and the pre-computed Lapla-

cian matrices to perform a step of gradient descent
12: if mod(k + 1, t) = 0 then
13: Perform validation, update Θ(bst) and v(bst) if needed
14: end if
15: end for
16: Output: model parameters Θ(bst)

known. Otherwise, for a stereo pair Pi with 1 ≤ i ≤ Ndom

in the batch, we first feed its up-sampled version to the
CNN for computing the finer-grain “ground-truth” Di, we
also compute the current estimate S(Pi;Θ

(k)) and hence
the graph Laplacian matrices L

(k)
ij for each patch. With Di

and the pre-computed L
(k)
ij ’s, 1 ≤ j ≤ M , both the L1 loss

and the graph Laplacian regularization loss are employed
for backpropagation.

For every t training iterations, we perform a validation
procedure with left-right consistency, using another set of
N

(v)
dom stereo pairs in the target domain. We first estimate the

disparity maps with the up-to-date model then synthesize
N

(v)
dom left images with the estimated disparity maps and the

right images. Then we compute the peak signal-to-noise
ratios (PSNRs) between the synthesized left images and the
genuine ones. The average PSNR reflects the performance
of the current model. During the training process, we keep
track of the best PSNR value v(bst) and its corresponding
model Θ(bst). After kmax training iterations, we terminate
the training and output Θ(bst). Algorithm 1 summarizes the
key steps of our self-adaptation approach.

5. Experimentation

In this section, we generalize deep stereo matching for
two different domains in the real world: daily scenes cap-
tured by smartphone cameras, and street views from the
perspective of a driving car (the KITTI dataset [6]). We
again choose the representative DispNetC [23] architecture
for our experiments.

Figure 3. Validation performance of three different models during
finetuning. The curves are plotted in terms of the average PSNR
between the synthesized left images and the genuine ones.

5.1. Daily Scenes from Smartphones

Recently, many companies (e.g., Apple, Samsung) have
equipped their smartphones with two rear-facing cameras.
Stereo pairs collected by these cameras have small disparity
and possibly contaminated by noise due to the small area
of their image sensors. With two views of the same scene,
stereo matching is applied to estimate a dense disparity map
for subsequent applications, e.g., synthetic bokeh [2] and
segmentation [22].

We aim at generalizing the released DispNetC model
(pre-trained with the FlyingThings3D dataset [23]) for daily
scenes captured by smartphones cameras. For this pur-
pose, we used various models of smartphones to collect
Ndom = 1900, N (v)

dom = 320 and N (t)
dom = 320 stereo pairs

for training, validation, and testing, respectively. These
stereo pairs contain daily scenes like human portraits and
objects taken in various indoor and outdoor environments
(e.g., library, office, playground, park). All the collected
images are rectified and resized to 768× 768, their ground-
truth disparity maps are unknown. Besides, we use the Fly-
ingThings3D dataset for synthetic training examples in our
method, they are also resized to 768 × 768. Since their
original size is 960 × 960, their disparity maps need to be
rescaled by a factor of 0.8. To cater for the small disparity
values of the smartphone data, we only keep those synthetic
examples with maximum disparity no greater than 80 af-
ter rescaling, leading to 9619 available examples. Among
them, Nsyn = 8000 examples are used for training and the
rest N (t)

syn = 1619 are withheld for testing. We call this set
of data FlyingThings3D-80. In our experiments, all stereo
pairs have intensity ranges from 0 to 255.

The Caffe framework [16] is employed to implement our
method. During training, we randomly crop the images
to 640 × 640 before passing them to a CNN, and let the
patch size be 20 × 20 for building the graphs, resulting in
32×32 = 1024 graphs for each training example. We mod-
ify the L1 loss layer of [23] to capture the first two terms of
(5): for a synthetic pair, its L1 loss is weighted by 1.2 times,
otherwise the weight is 1. We empirically set wleft = 0.3,



Left image Tonioni et al. [34] DispNetC ZOLE-S ZOLE

Figure 4. Visual comparisons of several models on the test set of our smartphone data. This figure shows fragments of left images and the
corresponding disparity maps obtained with different models. It is clear that our ZOLE approach produces superior disparity results.

Table 2. Performance comparison of our obtained zoom and learn (ZOLE) model and the other four models.

Dataset Metric
Model

Tonioni [34] DispNetC DispNetC-80 ZOLE-S ZOLE

Smartphone PSNR SSIM 22.92 0.845 21.99 0.790 22.39 0.817 22.84 0.851 23.12 0.855
FlyingThings3D-80 EPE 3ER 1.08 6.79% 1.03 5.63% 0.93 5.11% 1.10 6.88% 1.11 6.54%

wfine = 0.8 and wcurr = 1, all the computed sT
ijL

(k)
ij sij

are averaged then weighted by 1.5 times for a loss (the third
term in (5)). We have tried out different up-sampling ratios
r’s ranging from 1.2 to 2 for computing Di, and found the
the obtained CNNs have similar performance. In our exper-
iments, we let r = 1.5. Data augmentation is introduced
to the synthetic stereo pairs. For each individual view in
a synthetic pair, Gaussian noise (σ ∈ {0, 10, 15}) are ran-
domly added. The brightness of each image channel are
also randomly adjusted (by a factor of ρ ∈ {0.8, 1, 1.2}).
We let the batch size be 6, the learning rate be 5 × 10−5,
and finetune the model for kmax = 104 iterations, valida-
tion is performed every 500 iterations.

We first study the following models:
(i) ZOLE: Generalize the pre-trained model for smart-

phone stereo pairs with our method;

(ii) ZOLE-S: Remove graph regularization and simply let
the CNN iteratively learn its own finer-grain outputs;

(iii) DispNetC-80: Finetune the pre-trained model on the
FlyingThings3D-80 examples;

(iv) DispNetC: Released model pre-trained with Fly-
ingThings3D [23].

The very recent method [34] by Tonioni et al. also fine-
tunes a pre-trained model using stereo pairs from the target
domain. They first estimate disparity maps for the target do-
main with AD-CENCUS [36]. To finetune the model, they
treat the obtained disparity maps as “ground-truths” while
taking a confidence measure [29] into account. For com-
parison, we finetune a model with their released code under
their recommended settings.

Since the stereo pairs of smartphones do not have
ground-truth disparities, we evaluate the performance of a
model in a way similar to the validation process presented
in Section 4.3. We synthesize the left images with the esti-
mated disparities and the right images, then measure the dif-
ference between the synthesized left images and the genuine
ones, using both PSNR and SSIM as the difference metrics.
For testing or validation, all the stereo pairs are fed to the
CNN at a fixed resolution of 1024×1024. Figure 3 plots the
performance of ZOLE, ZOLE-S and DispNetC-80 on the
validation set of the smartphone data during training (mea-
sured in terms of average PSNR of the synthesized left im-
ages). Besides, Table 2 presents the performance of all the
aforementioned models, on both the test sets of the smart-
phone data and FlyingThings3D-80. We use end-point-
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Figure 5. Visual comparisons of several models on the KITTI stereo 2015 dataset, where our ZOLE method produces accurate fine details.

Table 3. Objective performance on the KITTI stereo 2015 dataset.

Metric
Model

Tonioni [34] DispNetC ZOLE-S ZOLE
EPE 1.27 1.64 1.34 1.25
3ER 7.06% 11.41% 7.56% 6.76%

error (EPE) and three-pixel error rate (3ER) as the evalua-
tion metrics for the FlyingThings3D-80 dataset. Compared
to the models trained only with the synthetic data (Disp-
NetC and DispNetC-80), the one obtained with our method
(ZOLE) achieves the best PSNR and SSIM performance.
Figure 4 shows visual comparisons of four models on the
test sets of the smartphone data. One can clearly see that,
our approach leads to smooth disparities with very sharp de-
tails, while disparity maps produced by other models may
be blurry or contain artifacts.

5.2. Driving Scenes of KITTI

Our self-adaptation method is also applied to general-
ize the pre-trained DispNetC model to the KITTI stereo
2015 dataset [6], which contains dynamic street views from
the perspective of a driving car. The KITTI stereo 2015
dataset have 800 stereo pairs. Among them, 200 exam-
ples have publicly available (sparse) ground-truth disparity
maps. They are employed for testing, while the rest 600
pairs are used for validation. For training, we first gather
Nsyn = 9000 stereo pairs randomly from the FlyingTh-
ings3D dataset. Since the KITTI 3D object 2017 dataset
[6] have more than 10k stereo pairs of the same characteris-
tics as KITTI stereo 2015, we randomly pick Ndom = 3000
stereo pairs from it for training. During training, we adopt
similar settings as presented in Section 5.1. However, in
this scenario, all images are resized to 1280× 400 then ran-
domly cropped to 1024 × 384 before passing to the CNN
for training.

We hereby compare our approach, ZOLE, with models

obtained with ZOLE-S and [34]; while the original Disp-
NetC model is adopted as a baseline. For a fair comparison,
all the images are resized to 1280×384 before feeding to the
network. Table 3 presents the objective metrics of ZOLE,
along with those of the competing methods. We see that
our method has the best objective performance, while the
method of Tonioni et al. also provides a reasonable gain.
Figure 5 shows several fragments of the resulting dispar-
ity images. One can see that our method provides accurate
edges even for very fine details.

More results and discussions are provided in the supple-
mentary material. Our method is essentially different from
those deep stereo algorithms relying on left-right consis-
tency for backpropagation [38, 39]. Hence, it is possible
to combine our rationale—discriminatively learns from the
finer-grain outputs—with these methods to achieve further
improvements. Moreover, the same rationale can be applied
to other pixel-wise regression/classification problems, e.g.,
optical flow estimation [15, 23] and segmentation [22]. We
leave these research directions for future exploration.

6. Conclusion
Due to the deficiency of ground-truth data, it is difficult

to generalize a pre-trained deep stereo model to a novel do-
main. To tackle this problem, we propose a self-adaption
approach for CNN training without ground-truth disparity
maps of the target domain. We first observe and analyze
two phenomena, namely, generalization glitches and scale
diversity. To exploit scale diversity while avoiding general-
ization glitches, we let the model learn from its own finer-
grain output, while a graph Laplacian regularization is im-
posed to selectively keep the desired edges and smoothing
out the artifacts. We call our method zoom and learn, or
ZOLE for short. It is applied to two domains: daily scenes
collected by smartphone cameras and street views captured
from the perspective of a driving car.
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