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ABSTRACT
A mobility event occurs when a passenger moves out or takes off
from a particular location. Mobility event prediction is of utmost
importance in the field of intelligent transportation systems. It has
a huge potential in solving important problems such as minimiz-
ing passenger waiting time and maximizing the utilization of the
transportation resources by planning vehicle routes and dispatch-
ing transportation resources. Recently, numerous mobility pattern
mining methods have been proposed to predict the transportation
supply and demand in different locations. Thosemethods first reveal
the event patterns of each Place of Interests (POI) independently
and then employ a separate region function as a post-processing
step. This separate process, that disregards the intrinsic spatial and
temporal pattern correlations between POI, is sub-optimal and com-
plex, resulting in a poor generalization in different scenarios. In this
work, we propose a Spatial-Temporal mobility Event Prediction
framework based on Deep neural network (StepDeep) for simulta-
neously taking into account all correlated spatial and temporal mo-
bility patterns. StepDeep not only simplifies the prediction process
but also enhances the prediction accuracy. Our StepDeep proposes
a novel problem formulation towards an end-to-end mobility pre-
diction framework, that is, switching mobility events over time in
an area into an event video and then posing the mobility predic-
tion problem as a video prediction task. Such a novel formulation
can naturally encode spatial and temporal dependencies for each
POI. StepDeep thus predicts the spatial-temporal events by incor-
porating the new time sensitive convolution filters, spatial sensitive
convolution filters, and spatial-temporal sensitive convolution fil-
ters into a single network. We conduct experimental evaluations on
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a real-world 547-day New York City taxi trajectory dataset, which
show that StepDeep provides higher prediction accuracy than five
existing baselines. Moreover, StepDeep is generalizable and can be
applied to numerous spatial-temporal event prediction scenarios.
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1 INTRODUCTION
Intelligent transportation systems such as Uber, Lyft, and Didi have
been widely used in recent years. Passengers can easily acquire cars
by sending a request via mobile applications. The service companies
will arrange a vehicle to pick them up. Intelligent transportation
system provides three benefits. For passengers, such apps make it
convenient to find a car. For drivers, such platforms supply an easy
way to earn money. For cities, they bring economic growth and
create a safer environment.

However, there are some fundamental challenges in the intelli-
gent transportation system that hinders its intelligence level hence
limits its applicability. Firstly, how to balance transportation re-
sources is a critical issue. For example, some passengers may not
easily be served at some locations due to a limited amount of nearby
drivers, while at other places the drivers may not be able to find a
passenger because of limited requests. Secondly, creating a good
policy to minimize average waiting time is also challenging. A good
policy should not only shorten waiting time of passengers but also
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maximize the opportunities for drivers to pick up more passen-
gers. The desired way to resolve this is to guide the drivers to the
locations where the orders may occur. Thirdly, maximizing seat
utilization can be improved. As the current average occupancy rate
of the vehicle is very low [5], ridesharing[13, 14] is a pattern of
transportation in which people with similar itineraries and time
schedules utilize spare seats in the same vehicle and share the travel
cost. Route planning based solely on solo orders[15] made at the
time of request may not be an optimal solution for ridesharing that
requires information on future orders.

More specifically, predicting future orders in intelligent trans-
portation systems can be regarded as a mobility event1 prediction
task that estimates the requests at each specific location in the
future. A precise transportation event prediction can thus balance
vehicle allocations, plan routes efficiently, and maximize seat uti-
lization.

Event prediction is quite challenging mainly due to the com-
plex spatial and temporal dependencies embedded in the event
patterns. First, all event time series demonstrate strong temporal
dynamic properties. That is, different locations have different event
patterns affected by a variety of factors. For instance, places with
incidents are affected by factors such as rush hours or emergency
events. To resolve these difficulties, previous methods used many
specific models for predictions of events at different days, time,
and locations. They often need lots of separate training and tuning
steps that prohibit the model deployment to diverse situations and
scenarios[10, 26]. Second, the spatial event patterns in the neighbor-
hood Place of Interests (POI) may affect each other. For instance, the
residential area close to a commercial area may have numerous re-
quests. Prior approaches have not properly taken such spatial event
dependencies into account. On the other hand, multi-variate fea-
tures such as the locations of each POI and area, time series features
(e.g., holidays or working days), event conditions (e.g., temperature,
humidity, rain, snow) may significantly affect the spatial-temporal
events. Previous studies did not utilize these features well enough to
predict the spatial-temporal events. Instead, they used hand-crafted
feature design, which is difficult to be formulated. Consequently,
utilizing POI as a feature to predict the orders in some methods is
imprecise since POI can only describe the category or name but
cannot reveal the importance of the POI. Previous research thus
need to carefully adjust the models according to complex domain
knowledge. For instance, if we only consider the category and name
of POI, Grand Central Terminal2 connects to hundreds of regions
would be no important than the small terminal that only connect
to few regions.

To incorporate spatial and temporal event dependencies simul-
taneously for each event prediction of an area, we propose an
end-to-end Spatial-Temporal mobility Event Prediction framework
based on Deep neural network (StepDeep) for achieving this goal.
Instead of treating the past patterns of each POI independently
as in previous works, we introduce a new problem definition for
better encoding spatial-temporal context: 1) We represent the mo-
bility events of an area at a specific time as one spatial slice, in
which the value at each location indicates the number of people

1 We represent "mobility event" by "event" in the following paragraphs of this article.
2Grand Central Terminal is a central hub for transit in New York City.

leaving or arriving; 2) The slices over time and past days can be
combined together into an event video; 3) Auxiliary information,
such as weather conditions and holidays, presented as a hidden
layer to simplify the processing of environment features; 4) The
event predictions at all locations can be treated as a pixel-wise video
prediction task by considering the spatial and temporal information.
Such a simple yet powerful formulation allows our model to be eas-
ily extended for more complex tasks with diverse factors that needs
to be considered at once. Inspired by the advances accomplished
by deep learning methods, we developed a spatial-temporal event
prediction network that is constructed by several time sensitive
convolution filters, spatial sensitive convolution filters, and spatial-
temporal sensitive convolution filters. The StepDeep framework
has shown to achieve superior accuracy for event prediction with-
out any complex tunning and feature selection process. It is also
general enough for many other spatial-temporal event detection
areas. To summarize, our contributions in this paper are:

(1) To better address the event prediction (i.e. predicting future
orders), we propose a novel problem definition for naturally
encoding the spatial-temporal dependencies of event pat-
terns. We regard the mobility event of the area as one slice.
We combines slices over time into a video representation.

(2) A novel StepDeep network structure is proposed for ex-
ploiting the spatial and temporal correlations in event slices,
which includes time sensitive convolution filters, spatial sen-
sitive convolution filters, and spatial-temporal sensitive con-
volution filters.

(3) We propose a novel event slice encoding method to describe
the events occurring in distinct locations. This method en-
codes the events and complex environment, into be two
visual channels and one hidden mask, which achieves good
generalization in different scenarios.

(4) We evaluated our method using a real-world taxi trajectory
dataset of New York City in 547 days. In the experiment,
we show that our simple yet effective framework provides
excellent prediction ability on spatial-temporal datasets.

2 RELATEDWORK
Urban Events PatternMining. Urban events mining uses human
activity to reveal the pattern of the cities, it is also one kind of urban
computing[28]. There are many novel works on human mobility
prediction. T-Drive [25] uses historical trajectories combined with
weather data to build the moving pattern graph. In this model, the
Variance-Entropy-Based Clustering approach is adopted to estimate
the distribution of travel time between two landmarks in different
time slots. The model also adopts a two-step computing method
to select the practically fastest and customized route for end users.
Zhang et al.[27] use GPS historical database to analyze the service
strategies from passenger-searching strategies, passenger-delivery
strategies, and service-region preferences. The relationship between
the avenue and the service strategies are informed by feature matrix.
Xu et al. [22] focus on the latent social interaction between taxi
drivers and driving behaviors correspond to the social propagation
scheme. They present a two-stage framework to reveal the latent
pattern propagation within cab drivers, which is based on classic
social influence theory. These works use different methods to model
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Figure 1: Event slice Encoding step by step. (a) shows spatial decomposition, (b) shows embedding the historic events to spatial
pixels, (c) shows encoding the environment features to hidden channels, (d) shows generating the history slices by historical
data.

the human mobility. Our work focuses on the prediction of the
mobility volumes that people arrive in or depart from particular
areas which is different from them.

Spatial Temporal Model in Deep Learning. There are also
some deep learning methods focus on spatial-temporal model such
as rDNN [7],eRCNN [21], DeepSense [24], BSSPredict[23], and
DeepSD [20]. rDNN [7] proposes a regularized DNN that jointly
exploits the feature relationships and the class relationships for
improving categorization performance. eRCNN [21] uses a deep
model to predict the traffic speed on second and third ring roads
of Beijing city. They predict the speed of the road on part of the
road network, while we want predict events in the whole area. The
difference between their works and ours is that we utilize new point
of view to solve the prediction problem on the spatial-temporal
events. Liu et al. [23] proposes a spatiotemporal bicycle mobility
model and a traffic prediction mechanism. The model application is
different from the area flow prediction. DeepSense [24] combines
RNN and CNN to address the aforementioned noise and feature
customization challenges in a unified manner. Huang et al. [6] uti-
lizes CNN to predict geolocation of tweets. DeepSD [20] is the most
similar work to our work. It uses a full connected deep model to pre-
dict the gap of orders for different areas. The differences between
StepDeep and DeepSD are as follows. First, DeepSD considers the
location separately. This approach misses the relationship between
locations at different timestamps. On the other hand, StepDeep
considers the whole area instead of a solo area. This approach can
utilize high-level information to predict events. Second, DeepSD
utilizes embedding method to describe the similarity between dif-
ferent areas, while StepDeep utilizes temporal locality and spatial
locality with specific convolutional filters.

3 PRELIMINARY
3.1 Event Slice Encoding
The target of mobility event slice encoding is to generate the his-
torical slices, which include spatial-temporal information, event
information and environmental information, and will be used for
predicting events of next time slice. Event slice encoding consists
of spatial decomposition, time series decomposition, event decom-
position, and environment decomposition.

Spatial Decomposition. Spatial Decomposition is the first step
of slice encoding. It generates one grid for each small spatial area.
A widely used grid splitting method as in [2, 11] is applied to

describe the region of cities. Given an area A, the goal of spatial
decomposition is to represent the whole areaA to many small grids.
As shown in Figure 1(a), by grid spatial partition method, the whole
area is partitioned to small equal-sized grids. Each grid represents
a small area of the city. As the definition in [1]. The width of each
grid is дw , the height is дh . The decomposition matrix is consists
of H ×W grids, H = Dh

дh
,W = Dw

дw , where Dw is the distance from
west to east of the A region, and Dh is the distance from south to
north ofA region. Each grid can be viewed as a pixel of a snapshot.
In other words, the spatial decomposition turns the spatial data of
the city into a snapshot with H ×W pixels, and each pixel in the
snapshot represents a small region in the city.

Time Series Decomposition. The target of time slice decom-
position is to decompose the historical data to a series of snapshots,
which altogether form a video. In details, we turn the historical
events with spatial information into the snapshots of a video, each
snapshot represents the events of the whole city in a specific time
window. The time window is represented by [t , t + δ ]. For example,
[t , t + 30min], t = 9 : 00AM means the time slice represents the
events of a particular area from 9 : 00 to 9 : 30. The fineness of time
series is controlled by δ . The time series decomposition generates
slices to describe the events by time and generate different time
slices S. Given an area A, the slice of time t is St .

Event Decomposition. As illustrated in Figure 1(b), the target
of event decomposition is used to encode the event slice E in differ-
ent time slice S for areaA. Ex,y

t,c denote the event of location (x ,y)

of c channel in time slice of St . The urban event can be detected by
trajectories generated by moving vehicles. The mobility event slice
can be the summary of the number of trips, the number of people
arrived in or departed from an area, or the traffic condition. For
example, the mobility event of taxi passengers recorded by taxi trips
contains origin and destination information. For a grid, the mobility
event pattern can be represented by the number of the request to
leave the grid and the number of trips arrive in the grid. The mobil-
ity event decomposition can generate 2 channels, one is arriving
channel, the other is leaving channel. In other words, events decom-
position generates the different channel of the one-time snapshot
to describe the mobility event. As shown in Figure 1(b), after event
decomposition, E2,1

12,0 = 6 means in 12th slice S12, there were 6
people called Uber in the location of pixel (2, 1).

Environment Decomposition. As depicted in Figure 1(c), the
environment decomposition generates attention mask Mt of St ,
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(a). 2D Convolutional Network (b). 3D Convolutional Network

Figure 2: Slice region of 2D convolutional Networks and
3D convolutional networks. 2D convolution networkmisses
temporal information, while 3D convolution networks con-
cern spatial and temporal information.

which can drive or affect the events. Many changes in environments
can influence the events, such as weather condition, air condition,
density of population, and traffic condition. To enhance the pre-
diction accuracy and generalization ability of our model, a novel
attention mechanism should make good use of other data influenc-
ing the event maps. First, we collect the weather, holiday and other
environment data in the same region. Then we extract them and
pack the values of features for one day into a vector:

(v0,v1,v2, ...,vi ).

Different values of vk can be the different states of weather such
as fog, rain, snow, binary number whether of holiday or not, non-
negative float number as temperature and humidity. Before com-
bining these vectors with the former training pipeline, we extend a
vector with a dimension of k to an attention tensor with a dimen-
sion of k ×H ×W by duplication, where H and W denote the height
and width of event slice St .

Following the steps shown in Figure 1(d), we obtain the event
slices with a mask layer of environmental information. These time-
sequenced slices can be regarded as a video clip which can be used
to predict the next slice.

3.2 Problem Definition
Given the past event decomposition data and environment decom-
position data, our goal is to predict the events of next time slot. We
formally define the problem as below. Suppose the current slot time
is St , the spatial area is A. We have a slice S of area A at a given
time t . We have observed that the historical events in the past: each
time stamp from Et , Et−1, Et−2, Et−3, ...,E1, and the environment
attention mask Mt ,Mt−1,Mt−2,Mt−3, ...,M1. Now the task is,
to predict Êt+1 in time slice St+1 for time t + 1. The objective is to
make the predicted events Êt+1 in slice St+1 as close as possible to
Et+1, which is the real mobility events in time slice St+1.

4 STEPDEEP CONVOLUTIONAL NETWORKS
In this section, we first introduce the 3D convolutional networks.
Then we define the 3D Spatial-temporal convolutional networks for
spatial temporal event prediction. The networks are constructed by
3 kinds of tensors. 1). 1D time sensitive convolutions to encode time
series information. 2). 2D convolutions to encode spatial dimension.
3). 3D spatial-temporal convolutions to combine the spatial and
temporal information.

(a). Time sensitive (b). Spatial sensitive (c). Spatial-temporal sensitive

Figure 3: Illustration of perception region of different con-
volution filters.

4.1 3D Convolutional Networks
3D convolutional network is suitable to predict events in spatial
and temporal datasets. Compare with 2D convolutional network,
3D convolutional network can combine spatial and temporal in-
formation well. As shown in Figure 2, a 2D convolution can only
process 2D information, which means that only the information
in the same time slice will be processed while the temporal infor-
mation will be lost. As 3D convolution can process multiple layers,
the spatial information and temporal information can be processed
at the same time. In previous works, 3 × 3 × 3 tensors[19] were
selected to construct the network to deal with the video data. How-
ever, this kind of convolution cannot be directly used for the event
prediction. We need to propose a new model based on both 2D and
3D convolutional networks to predict the spatial-temporal events
in particular areas.

4.2 Overall Network Structure
The overall architecture of StepDeep is introduced in Figure 4. The
net contains 7 layers with weights; all of the 7 layers are convolu-
tional layers. The output of the last convolutional layer is fed to a
2 × 64 × 64 output and generate the event slice Et+1 of time t + 1.

Table 1: Network parameters of each layer

Filter Num Filter Size Sensitive

Layer 1 128 3 × 1 × 1 Time
Layer 2 128 1 × 3 × 3 Spatial
Layer 3 256 3 × 3 × 3 Spatial-temporal
Layer 4 128 5 × 1 × 1 Time
Layer 5 128 1 × 3 × 3 Spatial
Layer 6 64 3 × 3 × 3 Spatial-temporal
Layer 7 2 13 × 1 × 1 Time

As shown in Figure 4, time sensitive convolution filters, spatial
sensitive convolution filters, and spatial-temporal sensitive con-
volution filters are adopted by the spatial-temporal progress cells.
The filter number and filter size is shown in Table 1. The first
spatial-temporal progress cell consists of the first three convolu-
tional layers. Then another spatial-temporal progress cell follows,
consists of layer 4 to layer 6. The first cell’s temporal sensitive filter
is 3 × 1 × 1, while the second cell’s is 5 × 1 × 1. Both cells are using
padding technique to avoid changing the spatial-temporal slice
shape. The last layer is an output layer without padding technique
and used for generating the prediction value Êt+1.

Insight of Padding and Pooling. One of the significant dif-
ferences between StepDeep and the other convolutional neural
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Input: Slice sequence

Output: Prediction event

Time sensitive Spatial sensitive Spatial-Temporal 
sensitive

Time sensitive Spatial sensitive Spatial-Temporal 
sensitive

Spatial-temporal progress cell 1 Spatial-temporal progress cell 2

Figure 4: Network architecture of StepDeep model. Time sensitive, spatial sensitive, and spatial-temporal sensitive filters are
colored with blue, orange, and green, respectively.

networks is that we utilize padding instead of pooling. As in the
real video processing, the information spread by the pixel can be
pooled because the information is presented by the shape of the
pixels. However, in our spatial-temporal S, each pixel saves the
hidden information as the attraction of POI in this location, the
region pattern exists in this pixel. As a result, the pooling method
would disturb the presentation of each location. Therefore, we do
not adopt the pooling layer. Another technique is using padding
method to keep the structure of the video slices stable. The most
important thing to utilize padding is also to keep the hidden feature
in the pixels. The padding technique can deal with the boundary
problem if the shape of the S is not divisible by the size of filter.
Our model treats the spatial-temporal dataset as a video, but each
pixel contains different information compared to real video. This is
why StepDeep uses padding technique rather than pooling layers.

4.3 Model Description
The Convolution Layer. The convolution layer is the most im-
portant part of our CNN model. 3D convolutions in the convolution
stages of CNNs compute features from both spatial and tempo-
ral dimensions. 3D convolution stacks multiple contiguous slices
together. By this filter, the spatial and temporal information is con-
nected to multiple contiguous slices in the previous layer, thereby
capturing spatial locality and time locality information. Formally,
the (x ,y, z) element of the convolution neuron matrix, on jth chan-
nel generated by the ith filter is calculated by

c
xyz
i j = ReLU (

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Di−1∑
r=0

w
pqd
i jm c

(x+p)(y+q)(z+d )
(i−1)m + bi j ). (1)

w
pqd
i jm is the (p,q,d) element of the filter connect themth channel,

Di is the size of 3D filter in temporal dimension, c(x+p)(y+q)(z+d )
(i−1)m

is the (x + p,y + q, z + d) element of them feature channel in i − 1
layer, bi j is a bias for the filter k . Detail of CNN’s convolution layer
implement could be found in [9].

We combine three kinds of filters into the Models: time sensitive
convolution filters, spatial sensitive convolution filters, and spatial-
temporal sensitive convolution filters. As shown in Figure 3. Firstly,
time sensitive convolution filter is D × 1 × 1 shape, the function
of this filter is to infer the temporal dimension features. To pass
all the time series on the boundary, we use padding method and
set padding number nDp =

D−1
2 , D is the length of time sensitive

filter. Secondly, spatial sensitive convolution filter is a 1 × S × S
filter. The function of this filter is to detect the feature on spatial
dimension. We also use the padding method to make sure all the
pixels of theS is scanned,nSp =

S−1
2 . The third type of filters, named

spatial-temporal sensitive convolution filter, detects both spatial
and temporal features with shape K × K × K . Padding method is
used for enabling the filter to scan all the pixels in three dimensions,
nKp =

K−1
2 .

Active Function. For all Fully-Connected layers, we select Rec-
tified Linear Unit (ReLU) as the activation function. The ReLU
activation function is defined by Equation 2:

ReLU (x) = max (0,x). (2)

TheOutput Layer. The output layer generates a final prediction
value as

c
xyz
i j = η(

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Di−1∑
r=0

w
pqd
i jm c

(x+p)(y+q)(z+d )
(i−1)m + bi j ). (3)

Here i is the number of last layer. The output layer needs to generate
integer values to represent the spatial-temporal events. In our case,
the output is the number of orders will depart from the Si, j and
number of people will arrive in the Si, j . In the output layer, we
adopt a modified ReLU function as the activation function, which
is defined as

η(x) = ⌊x + 0.5⌋ . (4)

Lost Function. For the output layer, we select RootMean Squared
Error (RMSE) as the loss function. Formally, we use Et to denote the
real mobility at time t , and use Êt to denote the value of predicted
mobility. Then, the rooted mean squared error can be calculated by
Equation 5, N is the number of the data samples.
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loss(Et , Êt ) =

√∑
|Et − Êt |2

N
. (5)

4.4 Network Training
The proposed neural networks are implemented with PyTorch3. No
pre-trained networks are compatible with this deep architecture, so
we need to train the network from scratch. The number of filters in
layer 1, 2, 3, 4, 5, 6, 7 are 128, 128, 256, 128, 128, 64, and 2, respectively.

OptimizationMethod. We select AdaptiveMoment Estimation
(Adam)[8] method to adapt learning rates. Adam essentially com-
bines RMSProp[18] with momentum. Learning rate is set to 0.001
and droped to its 9/10 every 500 iterations. The drop out method is
utilized to prevent over-fitting. The 50% probability is selected.

Initial Parameters. We initialize the parameters by Xavier nor-
mal initializer which generates sample from a truncated normal
distribution centered on 0 with

stddev =

√
2

Ni + No
. (6)

Ni and No represent the number of inputs and outputs units in the
weight tensor, respectively.

Attention Mechanism. In the prediction of spatial-temporal
event distribution, there exists a bunch of noise event points in the
margin area and some lost points in the center area, which shows
the shortage in capturing the accurate locations of the correlated
data points and temporal gradual deformation pattern. Therefore,
the model needs more attention to the useful feature points in view
of the sparsity. We design a novel attention mechanism based on
attention maskM as in Figure 5. Following values of features for
one day into a vector:

(temperature,humidity, f oд, rain, snow,holiday).

In the vector, temperature and huminity are non-negative float
numbers, f oд, rain,snow , and holiday are binary values. A dimen-
sion of 6 to an attention tensor with a dimension of 6 × H ×W
by duplication, where H and W denote the height and width of
our original event maps. Considering the redundant values and
dimensions in our tensors, we utilize an attentive feature extrac-
tion convolutional layer to map the original attention values to
new meaningful values according to their contribution to the data
distribution respectively.

5 EXPERIMENT AND EVALUATION
In this section, we evaluate our novel model on a real mobility
dataset of New York City. In Section 5.1, we first introduce the
dataset and the method to generate real mobility event from the raw
dataset. In Section 5.2, we introduce several state-of-art algorithms
that can be applied in mobility prediction. In Section 5.3 we show
the preliminary experiment results. In Section 5.4, we compare
StepDeepwith baseline approaches. Then we compare the effective
of different models in Section 5.5.

3http://pytorch.org/

5.1 Dataset
MapRegion. We select New York City as the analysis place as New
York is one the most famous cities in the world and the trajectories
of this city is published by the government. The geographic region
of New York City is selected by the bounding box of this area. The
bounding box is described by two points, left-bottom and right-top.
The details of the city region are shown in Table 2.

Table 2: Number / time period of trips we select to analyze,
the left-bottom and right-top points of analysis region.

Description Value
Number of trips 210,591,270
Time Period of trips 01/01/2015 to 06/30/2016
Left-bottom of map box (−74.259090o , 40.477399o )
Right-top of map box (−73.700181o , 40.916179o )

Trajectories Dataset. We utilize the taxi trajectory dataset of
New York City to generate the event slices. The taxi trajectory
dataset contains the trajectories of yellow taxis in New York City.
The taxi data set is from New York City Taxi and Limousine Com-
mission (TLC) [16]. The time period is from January 1st 2015 to
June 30th 2016, 547 days in total. It contains 210,591,270 trips of taxi.
Each trip includes features such as pick-up and drop-off dates/times,
pick-up and drop-off locations, and trip distances. The details of
trips are also shown in table 2.

Spatial decomposition.We generate the spatial-temporal events
by the spatial region data and mobility data of taxi trips. We parti-
tion the map zone to 64× 64 pixels, each side of the pixel represents
the real spatial length of around 0.5 mile.

Spatial Temporal Event Generation. We generate the slice
of different time by δ = 30mins . Each slice represents the spatial-
temporal mobility event in this region during a specific time period.
By the result of spatial decomposition, we calculate the number of
trips leave the grid and the number of trips arrive in the grid. Then
each slice of 64 × 64 pixels picture represents the spatial temporal
mobility Ei in slice Si . The mobility picture contains two channels,
one channel is the mobility of people arrive in the area A, and the
other channel represents the event of people leave this A.

Environment. We conduct experiments on a 64-bit Ubuntu
17.10 computer with 6 Intel 3.10GHz and 128GB memory, 4 NVIDIA
TITAN X GPUs (12GB DDR5).

5.2 Baselines
To evaluate the effectiveness of our framework, we compare StepDeep
with the following baselines, of which the parameters are fine-
tuned.

Empirical Average. The empirical average is calculated by the
average number in a particular area. We use the empirical average
as the predict value. The prediction value of the pixel area a ∈ A

is calculated by Equation 7∑
t ∈(0, |T |),a∈A Eta

|T |
. (7)

The time interval is same with StepDeep, 30 minutes. T is the set
of time slices.

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

729



Attentive feature extraction layer

Figure 5: Architecture of attentive feature extraction layer.

LASSO. Least Absolute Shrinkage and SelectionOperator (LASSO)
is a linear regression analysis method that performs both variable
selection and regularization. We implement the LASSO prediction
model with the Scikit-learn library[12] .

GBDT. Gradient Boost Decision Tree (GBDT) is widely used in
data mining applications these years. Extreme Gradient Boosting
(XGBoost) [3] is a state-of-art GBDT implementation used for su-
pervised learning problems and has a good performance in many
areas such as competitions of kaggle platform4. We select XGBoost5
as a baseline to predict the events.

RF. Random Forest (RF) is a powerful ensemble learning method
for classification, regression and other tasks. It fits a number of
classifying decision trees on various sub-samples of the dataset
and improve the predictive accuracy and control over-fitting by
averaging. We implement the Random forest prediction model with
the Scikit-learn library[12].

DeepSD. DeepSD is a deep model to predict the gap of supply
and demand. We implemented this method and modified the gap
to the mobility event corresponding to our StepDeep. It is imple-
mented with PyTorch.

5.3 Preliminary Experiment Results for
Prediction

(a) Real orders (b) Predict orders

Figure 6: Visualization of real and prediction orders. The
color denotes the number of orders for real and prediction.

First, we demonstrate the effectiveness of StepDeep on the gen-
erated spatial-temporal event dataset illustrated in Section 5.1 by a
fine-tuned 7-layer spatial-temporal multi-scale convolutional net-
work with region distribution attention. Each layer captures the
short and long range correlations among the event maps on differ-
ent scales of height, width and depth of input tensors. In each epoch
4https://www.kaggle.com/
5https://github.com/dmlc/xgboost

Figure 7: Training and testing loss for fine-tuned 7-layered
StepDeep Model.

of training, validation and testing, event map dataset is divided into
three corresponding parts, frames in them are shuffled each time
as to iterate on all partitions with subscripts. For each element
in a training batch, we first select a prediction target identifier i
one by one in the training set, then we trace back to its former
event map frames with the strong dependency. Specifically, the 1st,
2nd, 47th, 48th, 335th, 336th, 337th, 671st, 672nd, 673rd, 1439th,
1440th, 1441st steps (each step stands for 30 minutes in the real
data) of precedent frames are selected to form a bunch of frame
for training the prediction capability for our target frame i . The
weather and holiday data of different time are utilized to enhance
the attention of the network for the data dense region. We set a
maximum epoch of 100 and iteration of 454 times in each epoch (in
fact, all tuning model parameters converge in 10 epochs), choose 5
most related weather condition (temperature, humidity, fog, rain,
and snow) values to extend as an attention tensor concatenated
to the original event map channels to form the final input tensor.
Our model converges within 5 epochs of training in this optimal
configuration and achieve an excellent average testing RMSE loss
of 2.7286 on the testing set. Figure 6 shows an output map with
predicting orders and a real order in a heat map way6, after training
we can observe that StepDeep learned a good command of the
spatial-temporal data distribution in the sequenced input event
maps. Figure 7 depicts the training and testing loss in this process.

5.4 Comparison with baselines
By conducting the training and testing experiments on the event
dataset with the baselines in Section 5.2 and our 7-layer fine-tuned
6The central part has data, while the remaining area is empty because the other parts
are sea and the area that does not belong to New York City.
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(a) Depth = 6, Epoch = 2 (b) Depth = 6, Epoch = 3 (c) Depth = 6, Epoch = 4 (d) Depth = 6, Epoch = 5 (e) Depth = 6, Train / Test Loss

(f) Depth = 7, Epoch = 2 (g) Depth = 7, Epoch = 3 (h) Depth = 7, Epoch = 4 (i) Depth = 7, Epoch = 5 (j) Depth = 7, Train / Test Loss

(k) Depth = 8, Epoch = 2 (l) Depth = 8, Epoch = 3 (m) Depth = 8, Epoch = 4 (n) Depth = 8, Epoch = 5 (o) Depth = 8, Train / Test Loss
Figure 8: Selected results of varying depth of layers and epochs.

model, we demonstrate the competitive performance of our model
in Table 3. We evaluate the performance of each model from a
regression indicator: Rooted Mean Square Error (RMSE):

RMSE =

√√√
1
N

N∑
i=1

( ®preds − ®labels)2. (8)

It is observed that our model provides higher prediction accuracy
than the other 5 methods on RMSE.

Table 3: Performance of StepDeep compared to baselines

Model/Method RMSE
Average of pixels 17.6266
LASSO 3.3196
GBDT 3.3211
Random Forest 3.3367
DeepSD 3.2101
StepDeep without attention 2.8810
StepDeep with attention 2.7286

5.5 Model Ablation and Further Analysis
To have a clear understanding of each component in StepDeep,
we conduct a model ablation to observe the effectiveness of each
novel local structure and crucial parameter for performance in
our paradigm. By choosing the depth and use of attention, we can
achieve an excellent balance performance flexibly. The comparative
results are shown mainly in the following subsections.

5.5.1 Effectiveness of depth in StepDeep. In previous deep learn-
ing methods, deep neural networks benefit from depth in numerous
occasions, as is analyzed in [17]. However, the spatial-temporal data
we are working on is to some extent different to the usual vision
data processed by common CNN, which has more information on

data distribution and detailed pixel values. In a visualized way, the
shape of the visible data region on the heat map evolutes gradu-
ally, for which we utilize external weather and holiday constriction
as attention to the valuable distribution regions. To capture more
pixel-level feature details, multi-scale kernels designed for multiple
receptive fields are proposed in our model inspired by [4]. Due
to the special function and designed structure in StepDeep, we
conducted an ablation parameter study with respect to the depth
in building our model. We take the 4-layer convolutional model as
the initial configuration, at every step, we add one more layer to
the existed model while keeping other existed parameters intact
and conduct a training, validation and testing experiment, in which
the maximum epoch is set to 10, the numerical ratio of training,
validation and testing samples is 6:2:2. Figure 8 shows the selected
visualized training outputs and results with depth equal to 6,7,8,
where the reasonable output maps and corresponding training and
testing curves are laid out.
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(a) Influence of depth on RMSE
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(b) Influence of depth on convergence
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Figure 9: Influence of depth on performance.

The utmost important factors of prediction problems are accu-
racy and efficiency. We evaluate the accuracy by the average testing
RMSE for each ablation model, the performance curves with depth
from 4 to 10 are shown in the Figure 9. We can observe that in gen-
eral the accuracy grows with more layers utilized, the increasing
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speed slows down when depth gets large, however, the perfor-
mance gets worse when depth exceeds a threshold. The efficiency
is measured by how long it takes for a model to converges on its
parameters. The time-depth curve is shown in Figure 9, where the
performance decrease when depth is increased. With the different
monotonicity of two results, we can see that 7 layers is the best
choice for the application of this model.

5.5.2 Effectiveness of extra attention. From the former results
we can see that in the prediction of spatial-temporal event distribu-
tion, noisy points and missing values in prediction have a negative
effect on the RMSE visually, which is also why we conduct an
environment-attentive training on StepDeep. To this end, we add
the attention mechanism described in Section 4.4 to ablation models
of different depths in Section 5.5.1. With the training and testing
hyper parameters keeping intact, the results of models with 5-9 lay-
ers are shown in Figure 10 and comparison between 7-layer model
with and without attention is shown in Figure 11. We can find that
the best depth combined with environment attention mechanism is
7. Fewer layers are unable to adequately show the effect of attention
mechanism for not making good use of receptive field to pass atten-
tion information through enough deep multi-scale convolutional
layers, while more layers makes a heavy burden of training due
to extended input tensors and a large amount of parameters. As a
result, we select the 7-layer with environment attention as the best
application model for StepDeep up to now.
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Figure 10: Influence of the layers combined with attention .

5.5.3 Discussion on selection of the temporal correlation stride.
Spatial-temporal event evolution not only have correlations with
the nearby time periods but also with the distant time periods. For
example, to predict the events of [9:00 AM.,9:30 AM], we should
not only consider the events of [8:30 AM,9:00 AM] but also the
events of the corresponding time periods of the past days. We com-
pare the different time strides’ contribution to enhance the model’s
prediction capability. By experiments, we found that for a predic-
tion target slice, selecting slices located in the relative temporal
locations in Section 5.3 benefits the most, where the temporal cor-
relation strides are examined through past hours (the 1st and 2nd
slices), correspondence time in the past day (the 47th and 48th
slices), correspondence time in past weeks (the 335th, 336th, 337th,
671st, 672nd, and 673rd slices), and past month ( the 1439th, 1440th,
and 1441st slices). These slices reflects historical information of
different time spans, and the historical video generated through
this information can effectively predict the events of the next slice
through our framework.

(a) Depth=7,without attention,last out-
put

(b) Groundtruth

(c) Depth = 7,with attention,last output (d) Groundtruth

(e) Depth=7,without attention (f) Depth=7,with attention

Figure 11: Comparison on 7-depth model, without and with
environment attention.

6 CONCLUSION
This paper proposes a framework (named StepDeep) to predict
the spatial-temporal events in particular areas. The framework is
an end-to-end deep neural network which overcomes the short-
age of previous methods that need to understand the POI of the
location or that has a low prediction accuracy. StepDeep can auto-
matically predict the events by utilizing historical data. We conduct
the experiments on a real-world dataset of New York City, which
contains the real taxi trajectories in 547 days. The results show
that StepDeep outperforms 5 baselines. Even more, the proposed
StepDeep framework is highly flexible and can be easily general-
ized. Last but not the least, the model opens a new view, that turns
the mobility event prediction problems into the video prediction
problems, to process the spatial-temporal event data. We will con-
tinue to improve our framework for check-in events prediction,
twitter-location prediction, and traffic condition prediction.
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