
4766 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

Bit-Scalable Deep Hashing With Regularized
Similarity Learning for Image Retrieval

and Person Re-Identification
Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo, and Lei Zhang

Abstract— Extracting informative image features and learning
effective approximate hashing functions are two crucial steps in
image retrieval. Conventional methods often study these two steps
separately, e.g., learning hash functions from a predefined
hand-crafted feature space. Meanwhile, the bit lengths of output
hashing codes are preset in the most previous methods, neglecting
the significance level of different bits and restricting their prac-
tical flexibility. To address these issues, we propose a supervised
learning framework to generate compact and bit-scalable hashing
codes directly from raw images. We pose hashing learning as
a problem of regularized similarity learning. In particular, we
organize the training images into a batch of triplet samples,
each sample containing two images with the same label and one
with a different label. With these triplet samples, we maximize
the margin between the matched pairs and the mismatched
pairs in the Hamming space. In addition, a regularization term
is introduced to enforce the adjacency consistency, i.e., images
of similar appearances should have similar codes. The deep
convolutional neural network is utilized to train the model in
an end-to-end fashion, where discriminative image features and
hash functions are simultaneously optimized. Furthermore, each
bit of our hashing codes is unequally weighted, so that we can
manipulate the code lengths by truncating the insignificant bits.
Our framework outperforms state-of-the-arts on public bench-
marks of similar image search and also achieves promising results
in the application of person re-identification in surveillance. It is
also shown that the generated bit-scalable hashing codes well
preserve the discriminative powers with shorter code lengths.

Index Terms— Image retrieval, hashing learning, similarity
comparison, deep model, person re-identification.
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I. INTRODUCTION

W ITH the fast growth of image or video collections,
hashing techniques have been receiving increasing

attentions in large scale image retrieval [1]–[4] and related
applications (e.g. person re-identification in surveillance).
Recently, many learning-based hashing schemes have been
proposed [5]–[8], which target on learning a compact and
similarity-preserving representation such that similar images
are mapped to nearby binary hash codes in the Hamming
space. Among them, the supervised approaches [7], [9]
have shown great potentials by exploiting the supervised
information (e.g., class labels) in hashing learning.

Traditional image retrieval systems based on supervised
hashing learning usually involve two crucial steps. First, the
stored images are encoded with a vector of hand-crafted
descriptors in order to capture the image semantics against
image noises and other redundant information. Second, the
hashing learning is posed as either a pointwise or a pair-
wise optimization [10], [11] problem to preserve the point-
wise or pairwise label information in the learned Hamming
space. However, the above two steps are mostly studied
as two independent problems, which leads to unsatisfying
results. The feature representation may not be tailored to the
objective of hashing learning. Moreover, the hand-crafted fea-
ture engineering often requires much domain knowledge and
heavy tuning.

On the other hand, most existing hashing learning
approaches generate the hashing codes with preset lengths
(e.g., 16, 32 or 64 bits) [5], [7], [12], but one often requires
hashing codes of different lengths under different scenarios.
For example, the shorter codes are beneficial to devices with
limited computation resources (e.g., mobile devices), while
longer codes are used for pursuing higher accuracy. To cope
with such requirements, one conventional solution is to store
several versions of hashing codes in different bit lengths,
consequently causing extra computation and storage. In litera-
ture, several bit-scalable hashing methods are exploited. They
usually generate hashing codes bit by bit in a significance
descent way, i.e., the former bits are learned typically more
significant than latter, so that one can simply pick desired num-
ber of bits from the top of the hashing codes [6], [13]–[15].
However, these methods usually require to carefully design
the embedded feature space and their performances may
dramatically fall when shortening the hashing codes.
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Fig. 1. Illustration of the triplet-based regularized similarity learning.
A batch of triplet samples (represented by the solid eclipses) are organized.
Each triplet contains three images (represented by dots with different shapes)
with only two of them having the same label. The margin between the matched
pairs and the mismatched pairs are maximized in the Hamming space, while
regularization (indicated by the gray dashed circle) is incorporated to constrain
the images of similar appearances to have similar hashing codes.

A novel supervised Bit-Scalable Deep Hashing
framework1 is proposed in this work to address the
above mentioned issues, and we validate its effectiveness
on the tasks of general image retrieval and person
re-identification across disjoint camera views. The convolu-
tional neural network (CNN) is utilized to build the end-to-end
relation between the raw image data and the binary hashing
codes for fast indexing. Moreover, each bit of these output
hashing codes is weighted according to their significance
so that we can manipulate the code lengths by truncating
the insignificant bits. The hashing codes of arbitrary lengths
(less than the original codes) can then be easily obtained
without extra computation. In the following, we overview
the main components of our framework and summarize the
advantages.

(I). We present a novel formulation of relative similarity
comparison based on the triplet-based model. As discussed
in [2], [10], and [16], the triplet-like samples can well capture
the intra-class and inter-class variations in the ranking opti-
mization. In hashing learning, however, the images of similar
appearances are also expected to have close hashing codes in
the Hamming space. Therefore, we extend the triplet-based
relative comparison by incorporating a regularization term,
partially motivated by the recently proposed Laplacian Sparse
Coding [17]. Fig. 1 illustrates our formulation. Specifically,
we organize training images into a large number of triplet
samples, and each sample contains three images with only
two of them having the same label. Then, for each triplet
sample, we formulate the hashing learning as a joint task of
maximizing the relative distance between the matched pair and
the mismatched pair, while preserving the adjacency relation
of images in the Hamming space.

(II). We adopt the deep CNN architecture to extract the
discriminative features from the input images, where the
convolutional layers, max-pooling operators, and one full
connection layer are stacked up. Over the features generated
by previous layers, we impose one fully-connected layer and
one tanh-like layer to output the binary hashing codes. On the
top of our model, an element-wise layer is designed to weigh

1Source code available at: http://vision.sysu.edu.cn/projects/DeepHashing/

each bin of the hashing codes for bit-scalable hashing. In our
deep model, the hash function learning and the feature learning
are jointly optimized via backward propagation. Moreover, the
generated bit-scalable hash codes are able to well preserve the
matching accuracy with varying code lengths.

(III). To cope with the large amount of stored images, we
implement our learning algorithm in a batch-process fashion.
In each round of learning, we first organize the triplet
samples from a randomly selected subset (i.e., 150 ∼ 200)
of the training images, and then utilize the stochastic gradient
descent (SGD) method for parameter learning. Since one
image can be included in several triplet samples, we calculate
the partial derivative on images instead of on triplet samples.
The computational cost is thus much reduced and it is linear
to the selected subset of images.

This paper makes three main contributions to image
retrieval. i) First, it unifies feature learning and hash function
learning via deep neural networks, and the proposed
bit-scalable hashing learning can effectively improves the
flexibility of image retrieval. ii) Second, it presents a novel
formulation (i.e., the regularized triplet-based comparison)
for hashing learning, and it is general to be extended to
other similar tasks. iii) Third, our extensive experiments on
standard benchmarks demonstrate that the learned hashing
codes well preserve the instance-level similarity and outper-
forms state-of-the-art hashing learning approaches. Moreover,
we successfully apply our hashing method to the applica-
tion of person re-identification in surveillance. This task,
aiming at retrieving the same individual across several non-
overlapped cameras, has received increasingly attention in
computer vision research.

The rest of the paper is organized as follows. Section II
presents a brief review of related work. Section III
introduces our hashing learning framework, followed by a dis-
cussion of learning algorithm in Section IV. The experimental
results, comparisons and component analysis are presented
in Section V. Section VI concludes the paper.

II. RELATED WORK

Recently, hashing is becoming an important technique
for fast approximate similarity search. Generally speaking,
hashing methods can be categorized into two classes:
data-independent and data-dependent. Data-independent
methods randomly generate a set of hash functions without
any training, and they usually make the hashing codes
scattered to keep the matching accuracy [18]. Exemplars
include Locality Sensitive Hashing [19] and its variants [20],
and the Min-Hash algorithms [21].

On the other hand, data-dependent hashing methods focus
on how to learn compact hashing codes from the training data.
These learning-based approaches usually comprise two stages:
i) projecting the high dimensional features onto the lower
dimensional space, and ii) quantizing the generated real-valued
representations into binary codes. Specifically, unsupervised
methods learn the hash functions using unlabeled data, which
seek to propagate neighborhood relation of samples from a
certain metric space into the Hamming space [13], [22]–[25].
For example, Spectral Hashing [13] constructs the global graph
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Fig. 2. The bit-scalable deep hashing learning framework. The bottom panel shows the deep architecture of neural network that produces the hashing code
with the weight matrix by taking raw images as inputs. The training stage is illustrated in the left up panel, where we train the network with triplet-based
similarity learning. An example of hashing retrieval is presented in the right up panel, where the similarity is measured by the Hamming affinity.

with L2 distance and optimizes the graph Laplacian cost
function in the Hamming space. Locally Linear Hash [25]
pursues the structures of manifolds in the Hamming space
and optimizes such structures by locality-sensitive sparse
coding. For the semi-supervised [26], [27] and supervised
methods [5], [7], [12], [28], [29], richer similarity informa-
tion of training samples (e.g., pairwise similarity or relative
distance comparison [29]) is exploited to improve the hashing
learning. For example, Wang et al. [27] proposed a semi-
supervised hashing framework, which minimizes the empirical
error on the labeled data while maximizing the variance over
labeled and unlabeled data simultaneously. Norouzi et al.
introduced the Minimal Loss Hashing [12] based on structured
prediction with latent variables and a hinge-like loss function.
Following [12], Huang et al. proposed the Online Hashing [28]
to update the hash function incrementally. Column Generation
Hashing [5] aims to learn hash function based on proximity
comparison information and preserve the data relationship
based on large-margin principle. In [29], Norouzi et al. also
employed triplet-based model with loss-augmented inference
and showed very good results in image retrieval and
classification. However, in each iteration, the time cost of such
structured prediction method heavily depends on the scale of
data and the length of hash code. Liu et al. proposed the
Kernel-based Supervised Hashing [7], in which the non-linear
kernel was utilized with triplet-based hash function learning.

Rather than using hand-crafted representations [30],
extracting features and capturing contextual relations with
deep learning techniques have shown great potential in var-
ious vision recognition tasks such as image classification
and object detection [31]–[35]. Very recently, Wu et al. [2]
proposed a learning-to-rank framework based on multi-scale

neural networks, and showed promising performance on
capturing fine-grained image similarity. Pre-training on the
large-scale image classification database (i.e., ImageNet [31])
was used in this model. Another related work was proposed
by Xia et al. [36], which utilizes CNN for supervised hashing
learning. They first produced the hashing codes of images by
decomposing the pairwise similarity matrix, and then learned
the mapping functions from images to the codes. This method,
however, may fail to deal with large-scale data due to the
matrix decomposition operation. Our approach proposed in
this paper advances the above methods in the novel regu-
larized triplet-based formulation and the bit-scalable hashing
generation.

III. BIT-SCALABLE DEEP HASHING FRAMEWORK

The objective of hashing learning is to seek the mapping
function h(x) that projects p-dimensional real valued feature
vector x ∈ R p onto q-dimensional binary hash code
h ∈ {−1, 1}q , while preserving semantic consistency of each
pair. In this section we introduce our bit-scalabe deep hashing
framework, which is illustrated in Fig. 2. Instead of learning
hash function on hand-crafted feature space, we integrate
image feature learning and hashing learning into a nonlinear
transformation function φ(·) taking the raw image as input.
In addition, we introduce a weight vector w = [w1, . . . , wq ]T

to weigh each bit of the output hash codes, which represents
the significance of each bit in measuring similarity. In our
framework, a deep architecture of CNNs is developed to jointly
learn φ(·) and w.

We express the nonlinear hash function as a parametric
form:

h = sign(φ(I )) (1)
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where sign(·) denotes the element wise sign function, I is a
raw image. Different from our model, many state-of-the-art
methods are designed to learn a hash function sign(AT x)
of linear projection AT x , where x is a hand-crafted feature
representation. With the weight w, we employ the weighted
Hamming affinity [14] to measure the dissimilarity between
two hashing codes, which is expressed as a linear combination
of the agreement between the two codes:

H(h(x j ), h(xk)) = h(x j )w̃h(xk) = −
∑

i

w2
i hi (x j )hi (xk)

(2)

where w̃ is the diagonal matrix whose diagonal value is
represented as w̃(i, i) = w2

i .
The weighted hash code brings several distinctive advan-

tages in hash learning. (i) Instead of treating each bit equally,
we can produce more effective hashing code by assigning
different weights to different bits. (ii) By truncating the
insignificant bins corresponding to small weights, we can
flexibly manipulate the code lengths for different scenarios
(e.g., adapting to computational resources). (iii) The weighted
Hamming distance can be naturally degenerated into the
conventional version.

A. Formulation

We organize the training images into triplet samples, and
pose the hashing learning problem as a problem of regularized
similarity learning. Each triplet contains three images with
only two of them having the same label and the other one
having a different label. We define a Max-Margin term embed-
ded in the Hamming space to maximize the margin between
the matched pairs and the mismatched pairs, which is similar
to the fine-grained image similarity model in [2]. Intuitively,
this term guarantees the learned hashing codes to preserve
the ranking orders of images according to the annotated
semantics.

Let D = {(Ii , I+
i , I−

i )}N
i=1 be a set of triplet units, in which

Ii and I+
i are two images having the same label, Ii and I−

i are
two mismatched images, and N is the total number of training
triplets. Let ω denote the parameters of hashing functions and
h(Ii ) ∈ {−1, 1}q denote the q bits hashing code of image Ii .
For simplicity, we use hi to replace h(Ii ), and use h+

i and h−
i

to denote h(I+
i ) and h(I−

i ), respectively. With the triplet-based
samples, the loss function of the Max-Margin term can be
written as:

min
∑

i,i+ ,i−
�w(hi , h+

i , h−
i ) (3)

where �w(·, ·, ·) is the max-margin loss defined for one triplet.
We require that the weighted Hamming affinity should satisfy
the following constraint:

H(hi , h+
i ) < H(hi , h−

i ) (4)

Then, we have the following hinge-like loss function:

∑

i,i+ ,i−
�w(hi , h+

i , h−
i ) =

N
∑

i=1

max{Gw(hi , h+
i , h−

i ), C} (5)

where G(hi , h+
i , h−

i ) = H(hi , h+
i ) − H(hi , h−

i ), and H(·, ·)
is defined in Eq. (2). The max operator and constant C are
introduced to enhance the robustness again outliers, as defined
in SVMs. We set C = −q/2 throughout the experiments.

In addition to preserving the image ranking, we also encour-
age the adjacency relation of images in the original appearance
space to be stressed with the learned hashing codes. Thus, we
define the following regularization term:

∑

i, j

�w(hi , h j ) = 1

2

∑

i j

H(hi , h j )Si j (6)

where Si j represents the similarity between an image pair
(Ii , I j ) over the training set. As introduced in [17], Si j is
large when two images are similar and small when they
are dissimilar. The way of specifying Si j will be discussed
in Sec. V. Following [17], we define the diagonal degree
matrix U with Uii = ∑

j Si j . The Laplacian matrix [37] can
then be defined as L = U − S [17], and we can rewrite the
regularization term Eq. (6) into the following form:

∑

i, j

�w(hi , h j ) = 1

2
tr(H L H T ) (7)

where H = [h1w̃
1
2 , h2w̃

1
2 , ..., hM w̃

1
2 ] and M is the total

number of images utilized to generate D, and tr(·) denotes
the trace operator.

By combining Eq.(5) and Eq.(7), we have the following
regularized triplet-based comparison model:

min
w,ω

N
∑

t=1

max{Gw(hi , h+
i , h−

i ), C} + λtr(H L H T ) (8)

Since the hash codes are binary, the above objective is
discontinuous and nondifferentiable and thus is difficult to
be optimized via gradient descent. To address this problem,
we propose a tanh-like approximation o(v) of the sign
function:

o(v) = 1 − e−βv

1 + e−βv
(9)

where β is a tuning parameter to control the smoothness. When
β = 2, Eq. (9) is a standard hyperbolic tangent function. When
β is very large, the activation function in Eq. (9) approximates
to a sign function. In this paper, β is increasing from 2 to 1000
in the iterations of learning. In the test stage, the sign function
is adopted as the activation function to obtain the discrete hash
code.

With o(v), the hash code hi can be approximated
by ri ∈ [−1, 1]q:

r = o(φ(I )) (10)

We further define Dw(ri , r+
i , r−

i ) to approximate
Gw(hi , h+

i , h−
i ) as follows

Dw(ri , r+
i , r−

i ) = M(ri , r+
i ) − M(ri , r−

i ) (11)

where M(·, ·) is the weighted Euclidean distance between the
approximated hash codes:

M(ri , r j ) = ‖ri w̃
1
2 − r j w̃

1
2 ‖2

2 (12)
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Finally, the continuous approximation of the regularized
triplet-based learning model is written as:

min
w,ω

N
∑

i=1

max{Dw(ri , r+
i , r−

i ), C} + λtr(RL RT ) (13)

where R = [r1w̃
1
2 , r2w̃

1
2 , ..., rM w̃

1
2 ].

An obvious advantage of binary hashing is that bit-wise
XOR or lookup table can be adopted to measure the dis-
tances between hash codes. Even the proposed weighted hash
makes it impossible to use this efficient searching strategy, we
develop a lookup table (LUT) based approach to rapidly return
the weighted affinity between hash codes. For simplicity,
let l denotes the length of hash code. We can set up a lookup
table with the length 2l , which equals to the total number of
candidate XOR results between two hash codes. Because the
hash weights are pre-trained and fixed in the searching stage,
the weighted hamming affinity of each XOR result can be
calculated in advance and stored in the lookup table as the
item. In this way, the ranking list can be efficiently returned
by the table lookup search. Although this method provides a
feasible solution for the efficient searching, the storage of the
table is exploding as l becomes large. A reasonable strategy
to handle this point is to split the hash code into different
parts with equal length (set as 8 in this paper). Each part
is associated with a special sub-table with fixed length. The
output of each sub-table is the weighted similarity value of the
corresponding part. The overall hash affinity can be calculated
by accumulating the weighted similarity values from all parts,
and then the final ranking list is generated based on the overall
hash affinity.

B. Deep Architecture
In order to incorporate the feature representation

learning and binary hash code learning into an end-to-end
learning framework, we introduce the deep CNN into our
hash learning process. Fig. 2 shows the overall network
architecture, which consists of ten layers. The first six layers
form the convolution-pooling network with rectified linear
activation and average pooling operation. We use 32, 64,
and 128 filters with size 5 × 5 in the first, second and
third convolutional layers and the stride is 2 pixels in every
convolution layer. The stride for pooling is 1 and we set the
pooling operator size as 2 × 2. The last four layers include
two standard fully connected layers, a tangent like layer to
output hash codes, and an element-wise connected layer to
weigh each bit of hash code. The number of units is 512 in
the first fully-connected layer and the output of the second
fully-connected layer equals to the length of hash code. The
activation function of the second fully-connected layer is
the tanh-like function defined in Eq. (9), and rectified linear
activation function is adopted for the other layers.

IV. LEARNING ALGORITHM

In this section, we present how to optimize the network
parameters given a set of training images and a fixed number
of triplets. The implementation details about generating triplets
from labeled images and training the network with batch mode
are also presented at the end of this section.

A. Joint Optimization

Let’s first consider the learning algorithm with the loss
function defined in Eq.(13). The parameter optimization of
varied length hashing learning is the same. For simplicity, we
consider the parameters in the network as a whole and define
� = [ω, w]. Thus, the loss function can be expressed as:

L(�) =
N

∑

i=1

max{Dw(ri , r+
i , r−

i ), C} + λtr(RL RT ) (14)

In order to employ back propagation algorithm to optimize
the network parameters, we compute the partial derivative of
the objective function:

∂L
∂�k

=
N

∑

i=1

dw(ri , r+
i , r−

i ) + λ

M
∑

j=1

fw(r j ) (15)

By the definition of Dw(ri , r+
i , r−

i ) in Eq.(13), we obtain the
gradient as follows:

dw(ri , r+
i , r−

i ) =
{

∂ Dw(ri ,r
+
i ,r−

i )

∂�k
, if Dw(ri , r+

i , r−
i ) > C

0, if Dw(ri , r+
i , r−

i ) ≤ C

(16)

∂ Dw(ri , r+
i , r−

i )

∂�k
= 2(ri w̃

1
2 − r+

i w̃
1
2 )

′ · ∂(ri w̃
1
2 ) − ∂(r+

i w̃
1
2 )

∂�k

− 2(ri w̃
1
2 −r−

i w̃
1
2 )

′ · ∂(ri w̃
1
2 )−∂(r−

i w̃
1
2 )

∂�k
(17)

It is clear that the gradient of each triplet can be calculated

by the value of (r j w̃
1
2 ) and

∂(r j w̃
1
2 )

∂�k
for a single image. Thus,

the gradient of the first term in Eq.(13) can be obtained by
the forward and backward propagation for each image in the
triplet.

On the other hand, we can rewrite the optimization of the
second term in Eq.(13) with respect to r j as follows:

tr(RL RT ) = (r j w̃
1
2 )T (RL j ) + (RL j )

T (r j w̃
1
2 )

− (r j w̃
1
2 )T Lii (r j w̃

1
2 ) (18)

where L j is the j -th column of L. Following [17], we define
the matrix R− j as the submatrix formed by removing the
j -th column of matrix R, and define the vector L j,− j as the
subvector after removing the j -th entry of vector L j . Then
f (r j ) in Eq.(15) can be calculated by

fw(r j ) = (R− j L j,− j + L j j (r j w̃
1
2 )) · ∂(r j w̃

1
2 )

∂�k
(19)

We can observe that the gradient of the second term in

Eq.(13) can also be computed through (r j w̃
1
2 ) and ∂(r j w̃

1
2 )

∂�k
.

Reviewing the discussions above, the overall process of joint
optimization is summarized as follows: (1) calculating (r j w̃

1
2 )

for a certain image I j by forward propagation; (2) calculat-

ing ∂(r j w̃
1
2 )

∂�k
by backward propagation; (3) calculating each

∂ Dw(r j ,r
+
j ,r−

j )

∂�k
corresponding to I j by Eq.(17); (4) summing

the gradient ∂L
∂�k

according to Eq.(15).
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B. Acceleration

In the above discussed optimization, both the first and
second terms of loss function need to know (r j w̃

1
2 ) and

∂(r j w̃
1
2 )

∂�k
to calculate the partial derivative. The only differ-

ence is that the first term needs to compute triplet based
gradient according to Eq.(17), but the second term does not.
Discovering this difference inspires us to look for a more
effective optimization algorithm which depends only on image
based gradient.

We observe that the overall gradient can in fact be obtained
from gradient calculated for each image separately. We first
consider the second term of Eq.(14), whose partial derivative
depends on a single image. In contrast, it is difficult to write
the first term of Eq.(14) directly as the sum of the cost on
images, which takes the following form:

L(�) = 1

N

N
∑

i=1

J ((ri w̃
1
2 ), (r+

i w̃
1
2 ), (r−

i w̃
1
2 )) (20)

where N is the total number of triplets. Fortunately, because
the loss function for a specific triplet is defined by the
outputs of the images in this triplet, the total loss can also
be considered as follows:

L(�) = L((r1w̃
1
2 ), (r2w̃

1
2 ), ...(r j w̃

1
2 ), .., (rM w̃

1
2 )) (21)

where r j corresponds to the distinct image in some
triplets. M indicates the total number of images adopted
in triplet set D. The derivative rule gives us the following
equation:

∂L
∂�

=
N

∑

i=1

∂L
∂(ri w̃

1
2 )

∂(ri w̃
1
2 )

∂�
(22)

Eq.(22) is very similar to traditional image based partial
derivative. The only variation is the way in which the partial
differential is calculated with respect to the image outputs.
In the traditional image based loss function, this calculation
depends on only one image, whereas in the triplet-based loss
function, it depends on the outputs of all images in the triplets.
Algorithm 1 provides the sketch of our hashing learning
framework and Algorithm 2 presents how to compute the
partial differential with respect to the network output. Such an
image-based gradient calculation method effectively reduces
the computational cost, which is significant for handling large
scale data.

C. Batch Process Implementation

Suppose that the training images are annotated into
K categories and each category contains a number O of
images. We can thus obtain a maximum number K ∗ O ∗
(O−1)∗(K −1)∗O of triplet samples, which is cubically more
than the source images. Since the number of stored images
possibly reaches to millions in practice, it is hence expected
to avoid loading all the data at once. To this end, we implement
the model training in a batch-process fashion. Specifically,
in each round, only a small set of triplets is produced and
fed to the neural networks. However, randomly producing
triplets is infeasible, as it may lead to the fact that the image

Algorithm 1 Deep Hashing Learning

Algorithm 2 Image Based Partial Derivative

distribution over the triplets is scattered and any two triplets
have very small possibility sharing the same image. This fact
will make the valid training samples very few and further
degenerate the pairwise comparison optimization. To over-
come this issue, we present an efficient yet effective triplet
generation scheme, which involves the following steps in each
iteration. We first randomly choose ̂K semantic categories,
from which a number ̂O of images are randomly selected.
Then, for each selected image Ik , we construct a fixed number
of triplets, and in each triplet the image having different label
from Ik is randomly selected from the remaining categories.
In this way, the images distributed over the generated triplet
samples are relatively centralized, so that we can collect
more pairwise label information for learning. Moreover, since
the categories and images are selected randomly for each
iteration, this generation method will produce all possible
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TABLE I

IMAGE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION) WITH

VARIOUS NUMBER OF BITS ON THE MNIST DATASET. THE SCALE

OF TEST QUERY SET IS 10K. OUR METHOD OUTPERFORMS

THE STATE-OF-THE-ART METHODS

triplet samples with a large enough number of iterations. In all
of our experiments, we set ̂K = 10 and ̂O = 20.

V. EXPERIMENTS

A. Dataset and Experimental Setting

We validate our deep hashing learning framework on
several public datasets of image retrieval, including MNIST,2

CIFAR-10,3 CIFAR-204 and NUS-WIDE.5 For each dataset,
the images are split into a training set and a query set. We use
the training set to learn the network parameters and use the
query set to compare the competing methods. Note that, in
all of the experiments, the query image is searched within
the query set itself by applying the leave-one-out procedure.
Moreover, we evaluate our hashing method in the application
of person re-identification using CHUK03 [38] dataset.

Several variants of our framework are evaluated in
experiments. For notation simplicity, we denote our framework
as DRSCH (i.e., Deep Regularized Similarity Comparison
Hashing). To justify our formulation, we implement one sim-
plified variant of our framework, namely DSCH, by removing
the Laplacian regularization term. Note that both DRSCH
and DSCH do not have the element-wise layer illustrated in
Fig. 2 and output the binary hash code with specified length
directly. To analyze the effectiveness of different components
of the end-to-end framework, we further remove the tanh-
like layer to evaluate their influence to the final results. The
output of this model is continuous and the algorithm returns
the ranking list according to the Euclidean distance. Without
special instruction, we will use “Euclidean” to indicate this
model. Table I∼IV show the results of the ranking measure
in different dataset. The bit-scalable versions of DRSCH and
DSCH are denoted by BS-DRSCH and BS-DSCH, respec-
tively and the evaluation of these two methods will be

2http://yann.lecun.com/exdb/mnist/
3http://www.cs.toronto.edu/~kriz/cifar.html
4http://www.cs.toronto.edu/~kriz/cifar.html
5http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

TABLE II

IMAGE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION) WITH

VARIOUS NUMBER OF BITS ON THE CIFAR-10 DATASET.

THE SCALE OF TEST QUERY SET IS 10K (1K PER CLASS).

THE PROPOSED METHOD OUTPERFORMS THE

STATE-OF-THE-ART METHODS

TABLE III

IMAGE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION) WITH

VARIOUS NUMBER OF BITS ON THE NUS-WIDE DATASET.

THE SCALE OF TEST QUERY SET IS 2100 (100 IMAGES

FOR EACH SEMANTIC LABEL). OUR METHOD ACHIEVES

THE COMPETING PERFORMANCE COMPARED WITH

THE STATE-OF-THE-ART METHODS

reported in Sec. V-E. We compare our methods with
eight state-of-the-art approaches:

1) Locality Sensitive Hashing (LSH) [19]: LSH generates
a set of random linear projection as hash functions.
We adopt the Gaussian random matrix as the set of hash
functions, each column of which indicates a special ran-
dom projection. The same setting is used in [8] and [15].

2) Spectral Hashing (SH) [13]: SH first employs PCA on
the original data, then calculate the analytical Laplacian
eigenfunctions along the principal directions. Hash codes
are generated according to the projection based on these
eigenfunctions.

3) Iterative Quantization (ITQ) [15]: ITQ is also a
PCA-based hashing method which first conducts PCA on
the original data and then finds an orthogonal matrix to
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TABLE IV

IMAGE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION) WITH

VARIOUS NUMBER OF BITS ON THE CIFAR-20 DATASET. THE

SCALE OF TEST QUERY SET IS 10K (500 PER CLASS).

OUR DRSCH OUTPERFORM THE STATE-OF-THE-ART

METHODS WITH OBVIOUS MARGINS

make the variance of each bit maximized and hash bits
pairwise uncorrelated.

4) PCA-Random Rotation (PCA-RR) [15]: PCA-RR is
the basic version of ITQ, which adopts the random
orthogonal matrix instead of learning based orthogonal
matrix proposed in ITQ.

5) Minimal Loss Hashing (MLH) [12]: By treating the hash
code as the latent variables, MLH adopts the structured
prediction formulation for hash learning. Based on binary
hashing loss-adjusted inference and perceptron-like learn-
ing, an online efficient learning algorithm is employed for
the optimization of hash functions.

6) Binary Reconstructive Embedding (BRE) [39]: BRE does
not require any assumptions on data distribution, and
directly learns the hash functions by minimizing the
reconstruction error between the distances in the original
feature space and the Hamming distances in the embed-
ded binary space.

7) Kernel-Based Supervised Hashing (KSH) [7]: KSH is a
kernel based method which maps the data to binary hash
codes by maximizing the separability of code inner prod-
ucts between similar and dissimilar pairs. Different from
DRSCH, KSH adopts the kernel trick to learn nonlinear
hash functions on the hand-crafted feature space.

8) Deep Semantic Ranking Hashing (DSRH) [40]: DSRH is
a recent developed method that incorporates feature learn-
ing into hash learning framework to preserve multilevel
semantic similarity between multi-label images.

The first four methods are unsupervised and the others are
supervised methods. The experimental results of first seven
methods are obtained by the released implementations
provided by their authors with the suggested feature rep-
resentations and parameters provided in their papers. For
fair comparison, we further evaluate three hashing methods
(i.e., KSH-CNN, MLH-CNN and BRE-CNN) on the features
extracted from the activation of last fully-connected layer of
the neural network (i.e., AlexNet [31]) pre-trained on the
ImageNet6 dataset. In this way, CNN can be seen as a generic
feature generator [40], [41]. The last compared approach is

6http://www.image-net.org/

DSRH which is also based on the deep learning framework.
Since the source code of DSRH [40] is not released, we
carefully implement DSRH and our approach based on Caffe7

and obtain the final results. Note that the network parameters
of DSRH [40] and our method are initialized randomly without
any pre-training.

To evaluate the hashing methods, we utilize two search
procedures, i.e., Hamming ranking and hash lookup [8], [27].
Hamming ranking gives the ranking list for all images in
the database based on their Hamming distance or Hamming
affinity to the query, where the ideal semantic neighbors are
expected to be returned on the top of the ranking list. Hash
lookup constructs a lookup table, and all the points in the
buckets that fall into a small Hamming radius of the query
are returned [27]. In our experiments, three Hamming ranking
and one Hash lookup performance metrics are adopted.
(1) Mean Average Precision (MAP) [42]. Since the calculation
of MAP is inefficient for large dataset, following [8], we report
the results of top 50K returned neighbors for NUS-WIDE.
(2) precision@500, i.e., the average precision of the
first 500 returned image for each query with different lengths
of hash codes. (3) precision@k, i.e., the fraction of k closest
images that are from the same-class or with semantic con-
sistency in a certain Hamming space. (4) HAM2, i.e., the
precision curve with the Hamming distance between the query
image and dataset smaller than 2. The first three metrics
evaluate the performance of Hamming ranking and the last one
evaluates the result of Hash lookup. These four metrics reflect
the different properties of hashing methods. The higher the val-
ues of all these four metrics are, the better the performance is.

B. Network and Parameter Setting

In the proposed framework, we resize the images to size
64×64 for the NUS-WIDE dataset, and resize the input images
of MNIST, CIFAR10 and CIFAR20 to 28 × 28, 32 × 32 and
32×32 respectively. The parameter λ in Eq.(13) is set as 0.001
in all the experiments. In each iteration, we load 10 semantic
categories images (for NUS-WISE the batch is selected
according to the semantic tags but not class labels), each of
which includes about 20 images. So in total 200 images are
feed into the network in each iteration, and they will generate
about 684,000 triplets for training. In order to accelerate
the training process, we randomly select 200,000 triplets to
calculate the gradient. Note that the similarity matrix S in
Eq. (13) is also constructed according to the selected images
in each iteration, and thus our method avoids constructing the
overall similarity matrix and it is scalable to large scale dataset.

C. Experiments on Benchmark Dataset

1) Experiment I (MNIST): We first report the performance
of DSCH and DRSCH on handwritten digit retrieval by
MNIST, which is one of the most popular datasets to test
hashing methods [12], [25]. MNIST contains 70K greyscale
handwritten digital images from “0” to “9” and each image
has 28 × 28 pixels. Following the experiment setting in [25],
we use 10K images as the query set and the other 60K as the

7http://caffe.berkeleyvision.org/
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Fig. 3. The results on the MNIST dataset. (a) Precision curves within Hamming radius 2; (b) Precision curves with top 500 returned; (c) Precision curves
with 64 hash bits.

Fig. 4. The results on the CIFAR-10 dataset. (a) Precision curves within Hamming radius 2; (b) Precision curves with top 500 returned; (c) Precision curves
with 64 hash bits.

training samples. The pairwise similarity matrix S in Eq. (6)
is constructed according to the class labels (i.e., the value cor-
responding to the image pair from the same class is set to one
and zero otherwise.) For the method in [40] and our proposed
DSCH and DRSCH, we directly apply the raw pixels as the
input. For the other competing methods, we apply 784D vector
(i.e., 28 × 28) as the traditional feature representation [12].
And 4096D vector is extracted from AlexNet [31] as the deep
feature representation.

Fig. 3(a) shows the precision curve within Hamming dis-
tance 2 for different lengths of hash bits (i.e., from 8-bits
to 64-bits). Fig. 3(b) reports the Precision@500 for different
code lengths. Fig. 3(c) illustrates the Precision@k utilizing
64-bit binary codes on MNIST. The MAP results with different
code lengths are listed in Table I. Our DRSCH and DSCH
outperform all of the other methods in all cases. In particular,
DRSCH has at least 10% gain over traditional methods even
with CNN features under all code lengths, which demonstrates
the benefit of joint optimization rather than the classical
cascaded scheme (i.e., feature extraction followed by hashing).
The performance of raw CNN feature (without tanh-like layer),
which is also provided in Table I, indicates our hash functions
are coherent with the deep feature representation.

2) Experiment II (CIFAR-10): The CIFAR-10 dataset con-
sists of 60K 32 × 32 color images from 10 classes, with
6K images per class. We randomly sample 10K query images
(1K images per object class) and use the rest as the training set.

The similarity matrix S is constructed based on the category
labels as well. For fair comparison, each image is represented
by the 512D GIST feature vector [7] and 4096D CNN feature
representation respectively.

Fig. 4(a) shows image retrieval results within Hamming
distance 2 for different hash bits; Fig. 4(b) shows
the Precision@500 results; and Fig. 4(c) illustrates the
Precision@k obtained using 64-bit binary codes. Table II gives
the MAP results with different code lengths. Although the
CNN features boost the performance of traditional cascade
methods by a obvious margin, our approach still outperforms
these methods because of joint optimization of the feature
representation and hash functions. It also achieves relative
increase of 1.67% compared with DSRH (the deep learning
method) [40] (one state-of-the-art deep hashing method).

3) Experiment III (NUS-WIDE): The NUS-WIDE dataset
collects about 270K images associated with 81 semantic
labels from the web. Different from MNIST and CIFAR-10
where each sample has a unique class label, NUS-WIDE is
a multi-label dataset where each image is annotated with one
or multiple concept labels. Following [8], we only consider
the 21 most frequently happened semantic labels and the
number of associated images is 195, 969. We randomly sample
100 images from each of the 21 semantic categories as queries
and use the rest as training samples. The matching groundtruth
is defined as a pair of images that share at least one common
label. We construct the similarity matrix S based on the
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Fig. 5. The results on the NUS-WIDE dataset. (a) Precision curves within Hamming radius 2; (b) Precision curves with top 500 returned; (c) Precision
curves with 64 hash bits.

Fig. 6. The results on the CIFAR-20 dataset. (a) Precision curves within Hamming radius 2; (b) Precision curves with top 500 returned; (c) Precision curves
with 64 hash bits.

proportion of shared labels:

Si j = ∫i
⋂ ∫ j

∫i
⋃ ∫ j

, (23)

where Si j denotes the semantic similarity of images i and j ,
∫i and ∫ j denote the semantic label set of image i and
image j , respectively. We adopt 512D GIST vector and 4096D
CNN vector as image feature representations for traditional
approaches and resize each image into 64 × 64 for our DSCH
and DRSCH.

The precision curve within Hamming distance 2, the
Precision@500 for varied code lengths and the Precision@k
utilizing 64-bit binary codes are reported in Fig. 5(a), Fig. 5(b)
and Fig. 5(c), respectively. For NUS-WIDE, two images are
regarded as semantically similar if they share at least one
label. Table III lists the results of different hash learning
methods under the MAP metric. Since NUS-WIDE is very
large, we just calculate the MAP within the first 50K searched
neighbors.

4) Experiment IV (CIFAR-20): Just like CIFAR-10,
CIFAR-20 is another famous dataset for object recognition and
image retrieval, which contains 20 superclasses grouped from
CIFAR-100 dataset. For each class there are 2500 training
images and 500 testing images. To compare with the
traditional hashing learning method with hand-crafted feature,
each image is represented by GIST vector with the feature
dimension 512. Following [41], we also extract 4096D CNN
feature as generic visual representation for further comparison.

Fig. 6(a) shows image retrieval results within Hamming
distance 2 for different hash bits; Fig. 6(b) shows
the Precision@500 results; and Fig. 6(c) illustrates
the Precision@k obtained using 64-bit binary codes.
Table IV gives the MAP results with different code lengths
and our DRSCH still works the best. However, with scale of
the dataset growing, the achieved performance gain becomes
insignificant. One of the reasonable explanation is that the
benefit of the joint optimization degrades at such scales. This
is because the classes are much more populated and the
manifold distribution is much more complicated to estimate
by triplet based comparison in such scale.

D. Efficiency Analysis

All the experiments are carried out on a PC with NVIDIA
Tesla K40 GPU, Intel Core i7-3960X 3.30GHZ CPU and
24GB memory. The average testing time of our approach and
competing methods on four benchmark datasets are reported
in Table V. For simplicity, we use capital letter “F”, “H”
and “S” to indicate feature extraction, hash code genera-
tion and image search respectively. For all the experiments,
we assume every image in the database has already been
represented by the binary hash code. In this way, the time
consumption of feature extraction and hash code generation
are mainly caused by the query image. Since the forward
propagation of the neural network only needs a series of
matrix multiplication and convolution operations and can be
efficiently computed with GPU (Graphics Processing Unit)
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TABLE V

COMPARISON OF THE AVERAGE TESTING TIME (MILLISECOND PER IMAGE) ON FOUR BENCHMARK DATASETS BY FIXING THE CODE LENGTH 64.

FOR EACH TRADITIONAL METHOD, THE SUFFIX -FEA. AND -CNN DENOTE THE HAND-CRAFT FEATURE AND CNN FEATURE RESPECTIVELY

implementation, it is obvious that our DRSCH is relatively
slow when the competing methods ignore the time cost of
feature extraction. In contrast, when feature extraction is taking
into consideration, efficiency will be a distinct advantage of
our end-to-end framework. Actually, for traditional cascaded
methods, calculating the generic feature costs 99% (for 512D
Gist feature) of testing time. In this case, our CNN-based
hashing can be more efficient than those cascaded ones. Note
that the cascade methods are performed on the raw pixels
as features on MNIST dataset, making them slightly more
efficient than our DRSCH.

E. Evaluation of Bit-Scalable Hashing

In this subsection, we evaluate the performance of the
proposed Bit-Scalable Deep Hashing method. In the training
phase, BS-DRSCH is used to learn a weighted hash code with
the maximum bit length (i.e., q = 64). In the test phase, for
any length of hash code k (k ≤ q), we select the k bits with the
largest weights to calculate the Hamming similarity according
to Eq.(2). Therefore, BS-DRSCH is bit-scalable to hashing
applications with any bit length.

The retrieval performance associated with various lengths
of hash code is reported in Tables VI∼IX. It is obvious that
BS-DRSCH achieves very competitive results with its fixed-
length versions (i.e., DRSCH and DSCH). The performances
of precision@500 for different datasets are also reported
in Fig.7 for further comparison. At last, Fig.8 illustrates the
retrieval results for ten CIFAR-10 test images by Hamming
distance with 32-bit binary codes. From Tables V∼VIII, when
the number of bits is smaller (i.e.,≤ 32), BS-DRSCH generally
outperforms DRSCH on MNIST, NUS-WIDE, and CIFAR-20.
When the number of bits is larger, the performance gains
would be insignificant. This might be explained by that
weighted hash code could be approximated by non-weighted
hash code with longer bits, and thus when the number of bits
is sufficiently large, weighted and non-weighted hash codes
would obtain similar performance. Note that BS-DRSCH
only needs to train once, making BS-DRSCH very suitable
to applications where varied lengths of hashing codes are
required for different scenarios.

F. Application to Person Re-Identification

Person re-identification [38] at a distance across disjoint
camera views is an important problem in intelligent video

Fig. 7. Precision@500 vs. #bits. (a) MNIST dataset; (b) CIFAR-10 dataset;
(c) NUS-WIDE dataset; (d) CIFAR-20 dataset.

surveillance, particularly for the applications restricting the use
of face recognition. It is also a foundation of threat detection,
event understanding and many other surveillance applications.
Despite considerable efforts been made, it is still an open
problem due to the dramatic variations caused by different
camera viewpoints and person pose changes. Here we apply
our deep hashing for person re-identification as a preliminary
attempt, and we will focus on this task in future work.
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Fig. 8. Retrieval results (top 10 returned images) for ten CIFAR-10 test images using Hamming ranking on 32-bit hash codes. The left column shows the
query images. The middle 10 columns show the top returned images by fix length hashing learning algorithm. The right 10 columns indicate the top returned
images adopting bit-scalable learning method. Red rectangles indicate mistakes. Note that for Bit-Scalable Hashing, we train a neural network with 64-bit
output and select the 32 bits with the largest weights for testing.

TABLE VI

IMAGE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION) WITH

VARIOUS NUMBER OF BITS ON THE MNIST DATASET. THE SIZE

OF THE TEST QUERY SET IS 10K

TABLE VII

IMAGE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION) WITH

VARIOUS NUMBER OF BITS ON THE CIFAR-10 DATASET. THE

SIZE OF THE TEST QUERY SET IS 10K (1K PER CLASS)

We evaluate our method using CUHK03 [38] dataset, which
is one of current largest dataset for this task. It includes
13164 images of 1360 pedestrians collected from 6 different
surveillance cameras. Each identity is observed by two disjoint
camera views and has an average of 4.8 images in each
view. Following [38], the dataset is partitioned into training
set (1160 persons), validation set (100 persons) and test set
(100 persons). All the images are resized to 250 × 100. The
pairwise similarity matrix in Eq.(6) is constructed accord-
ing to the person identity. The experiments are conducted

TABLE VIII

IMAGE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION) WITH

VARIOUS NUMBER OF BITS ON THE NUS-WIDE DATASET. THE

SIZE OF THE TEST QUERY SET IS 2100

TABLE IX

IMAGE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION) WITH

VARIOUS NUMBER OF BITS ON THE CIFAR-20 DATASET. THE

SIZE OF THE TEST QUERY SET IS 10K (0.5K PER CLASS)

with 10 random splits. We adopt the widely used Cumulative
Matching Characteristic (CMC) curve [38] for quantitative
evaluation and all the CMC curves indicate single-shot results.

We compare with three person re-identification methods
(KISSME [43], eSDC [44], and FPNN [38]), four state-of-the-
art hashing learning methods (BRE [39], MLH [12], KSH [7]
and DRSH [40]) and the Euclidean distance. For KISSME [43]
and eSDC [44], the experimental results are generated by
their suggested feature representation and parameters setting.
FPNN [38] is a deep learning based method and the validation
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TABLE X

EXPERIMENTAL RESULTS ON CUHK03 DATASET USING MANUALLY

LABELED PEDESTRAIN BOUNDING BOXES. THE EVALUATION

IS BASED ON CMC APPROACH

set is adopted in this method to select parameters of the
network. When using traditional hashing learning methods and
Euclidean distance, the 4096D CNN features are extracted
from pre-trained AlexNet as the input features. For DRSH [40]
and our approach, parameters of the networks are learned from
raw images without any pre-training.

Table X reports the quantitative results generated by all of
the competing methods. The hashing-based methods (includ-
ing ours) perform using both 64 and 128 bits hashing codes,
and the ranking list is based on the Hamming distance.
Compared with state-of-the-arts of person re-identification,
our deep hashing framework achieves the comparable per-
formances and outperforms other hashing methods with large
margins on Rank-1 and Rank-5 identification rate.

VI. CONCLUSION

In this paper, we presented a novel bit-scalable hashing
approach by integrating feature learning and hash function
learning into a joint optimization framework via deep
convolutional neural networks. A regularized similarity
comparison formulation was introduced in the deep hashing
learning framework to ensure image adjacency consistency,
while an element-wise layer was designed to weigh the
hashing codes so that bit-scalability can be easily obtained.
Our approach demonstrated very promising results on
standard image retrieval benchmarks, not only outperforming
state-of-the-arts in terms of retrieval accuracy, but also greatly
improving the flexibility of varied length hashing over existing
approaches. There are several interesting directions along
which we intend to extend this work. The first is to improve
our framework by leveraging more semantics (e.g., multiple
attributes) of images. Another one is to introduce feedback
learning in the framework, making it more powerful in
practice.
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