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Neural Task Planning with
And-Or Graph Representations

Tianshui Chen, Riquan Chen, Lin Nie, Xiaonan Luo, Xiaobai Liu, and Liang Lin

Abstract—This paper focuses on semantic task planning, i.e.,
predicting a sequence of actions toward accomplishing a specific
task under a certain scene, which is a new problem in computer
vision research. The primary challenges are how to model task-
specific knowledge and how to integrate this knowledge into
the learning procedure. In this work, we propose training a
recurrent long short-term memory (LSTM) network to address
this problem, i.e., taking a scene image (including pre-located
objects) and the specified task as input and recurrently predicting
action sequences. However, training such a network generally
requires large numbers of annotated samples to cover the
semantic space (e.g., diverse action decomposition and ordering).
To overcome this issue, we introduce a knowledge and-or graph
(AOG) for task description, which hierarchically represents a task
as atomic actions. With this AOG representation, we can produce
many valid samples (i.e., action sequences according to common
sense) by training another auxiliary LSTM network with a small
set of annotated samples. Furthermore, these generated samples
(i.e., task-oriented action sequences) effectively facilitate training
of the model for semantic task planning. In our experiments,
we create a new dataset that contains diverse daily tasks and
extensively evaluate the effectiveness of our approach.

Index Terms—Scene understanding, Task planning, Action
prediction, Recurrent neural network.

I. INTRODUCTION

Automatically predicting and executing a sequence of ac-
tions given a specific task is an ability that is quite expected
for intelligent robots [1], [2]. For example, to complete the
task of “make tea” under the scene shown in Figure 1, an
agent needs to plan and successively execute a number of
steps, e.g., “move to the tea box” and “grasp the tea box”. In
this paper, we aim to train a neural network model to enable
this capability, which has rarely been addressed in computer
vision research.

We regard the aforementioned problem as semantic task
planning, i.e., predicting a sequence of atomic actions toward
accomplishing a specific task. Furthermore, we consider an
atomic action to be a primitive action operating on an object,
denoted by a two-tuple A = (action, object). Therefore, the
prediction of action sequences depends on not only the task
semantics (i.e., how the task is represented and planned) but
also the visual scene image parsing (e.g., recognizing object
categories, states and their spatial relations in the scene).
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How to 
make tea ?

obj: cup
attr: empty

obj: tea-box
attr: close

obj: pot
attr: hot water

Seq 1

Seq 2

A1: {move to, tea-box}
A2: {grasp, tea-box}
A3: {open, tea-box}
A4: {move to, cup}
A5: {grasp, cup}
A6: {hold, cup}
A7: {pour into, cup}
A8: {place back, tea-box}
A9: {hold, cup}
A10: {move to, pot}
A11: {grasp, pot}
A12: {pour into, cup}
A13: {place back, pot}

A1: {move to, tea-box}
A2: {grasp, tea-box}
A3: {open, tea-box}
A4: {move to, cup}
A5: {grasp, cup}
A6: {hold, cup}
A7: {pour into, cup}
A8: {place back, tea-box}
A9: {hold, cup}
A10: {move to, water-dis}
A11: {pour into, cup}

obj: water-dis
attr: not empty

Fig. 1. Two alternative action sequences, inferred according to the joint
understanding of the scene image and task semantics, for completing the
task “make tea” under a given office scene. An agent can achieve this task
by successively executing either of the sequences.

Considering the task of a robot pouring a cup of water from a
pot, the predicted sequence varies according to the properties
of the objects in the scene such as the relative distances among
the agent, cup and pot and the state of the cup (empty or
not). If the robot is located far from the cup, it should first
move close to the cup and then grasp the cup. If the cup
is full of water, the robot will have to pour the water out
before filling the cup with water from the pot. Since recent
advanced deep convolutional neural networks (CNNs) [3]–[6]
have achieved great successes in object categorization [7]–
[13] and localization [14]–[17], we assume that objects are
correctly located and that the initial states of the objects
are known in the given scene in this work. However, this
problem remains challenging due to the diversity of action
decomposition and ordering, long-term dependencies among
atomic actions, and large variations in object states and layouts
in the scene.

In this work, we develop a recurrent long short-term
memory (LSTM) [18] network to address the problem of
semantic task planning because LSTM networks have been
demonstrated to be effective in capturing long-range sequential
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dependencies, especially for tasks such as machine translation
[19] and image/video captioning [20], [21]. These approaches
generally adopt an encoder-decoder architecture, in which an
encoder first encodes the input data (e.g., an image) into
a semantic-aware feature representation and a decoder then
decodes this representation into the target sequence (e.g., a
sentence description). In this work, we transform the input
image into a vector that contains the information about the
object categories and locations and then feed this vector into
the LSTM network (named Action-LSTM) with the specified
task. This network is capable of generating the action sequence
through the encoder-decoder learning.

In general, large numbers of annotated samples are required
to train LSTM networks, especially for complex problems such
as semantic task planning. To overcome this issue, we present
a two-stage training method by employing a knowledge and-
or graph (AOG) representation [22]–[24]. First, we define the
AOG for task description, which hierarchically decomposes a
task into atomic actions according to their temporal dependen-
cies. In this semantic representation, an and-node represents
the chronological decomposition of a task (or sub-task), an or-
node represents the alternative ways to complete the certain
task (or sub-task), and leaf nodes represent the pre-defined
atomic actions. The AOG can thus contain all possible action
sequences for each task by embodying the expressiveness of
grammars. Specifically, given a scene image, a specific action
sequence can be generated by selecting the sub-branches at
all of the or-nodes in a depth-first search (DFS) manner.
Second, we train an auxiliary LSTM network (named AOG-
LSTM) to predict the selection at the or-nodes in the AOG
and thus produce a large number of new valid samples (i.e.,
task-oriented action sequences) that can be used for training
the Action-LSTM network. Notably, training the AOG-LSTM
network requires only a few manually annotated samples (i.e.,
scene images and the corresponding action sequences) because
making a selection in the context of task-specific knowledge
(represented by the AOG) is seldom ambiguous.

Note that a preliminary version of this work has been
presented at a conference [25]. In this paper, we inherit
the idea of integrating task-specific knowledge via a two-
stage training method, and we extend the initial version from
several aspects to strengthen our method. First, we extend the
benchmark to involve more tasks and include more diverse
scenarios. Moreover, because the automatically augmented set
includes some difficult samples with uncertain and even incor-
rect labels, we further incorporate curriculum learning [26],
[27] to address this issue by starting the training with only
easy samples and then gradually extending to more difficult
samples. Finally, more detailed comparisons and analyses are
conducted to demonstrate the effectiveness of our proposed
model and to verify the contribution of each component.

The main contributions of this paper are two-fold. First,
we present a new problem called semantic task planning and
create a benchmark (that includes 15 daily tasks and 1,284
scene images). Second, we propose a general approach for
incorporating complex semantics into the recurrent neural
network (RNN) learning, which can be generalized to various
high-level intelligent applications.

The remainder of this paper is organized as follows. Section
II provides a review of the most-related works. Section III
presents a brief overview of the proposed method. We then
introduce the AOG-LSTM and Action-LSTM modules in de-
tail in Sections IV and V, respectively, with thorough analyses
of the network architectures, training and inference processes
of these two modules. Extensive experimental results, com-
parisons and analyses are presented in Section VI. Finally,
Section VII concludes this paper.

II. RELATED WORK

We review the related works following three main research
streams: task planning, action recognition and prediction, and
recurrent sequence prediction.

A. Task planning

In the literature, task planning (also referred to as symbolic
planning [28]) has traditionally been formalized as deduction
[29], [30] or satisfiability [31], [32] problems for long periods.
Sacerdoti et al. [33] introduced hierarchical planning, which
first performed planning in an abstract manner and then gen-
erated fine-level details. Yang et al. [34] utilized the standard
Planning Domain Definition Language (PDDL) representation
for actions and developed an action-related modeling system to
learn an action model from a set of observed successful plans.
Some work also combined symbolic planning with motion
planning [35]. Cambon et al. [36] regarded symbolic planning
as a constraint and proposed a heuristic function for motion
planning. Plaku et al. [37] extended the work and planned
using geometric and differential constraints. Wolfe et al. [38]
proposed a hierarchical task and motion planning algorithm
based on hierarchical transition networks. Although those
algorithms performed quite well in controlled environments,
they required encoding every precondition for each operation
or domain knowledge, and they can hardly be generalized
to unconstrained environments with large variances [28]. Re-
cently, Sung et al. [28], [39] represented an environment with
a set of attributes and proposed using a Markov random field
(MRF) [40] to learn the sequences of controllers to complete
the given tasks. Xiong et al. [23] developed a stochastic graph-
based framework, which incorporated spatial, temporal and
causal knowledge, for a robot to understand tasks, and they
successfully applied this framework to a cloth-folding task.

Some other works also manually defined the controller se-
quences for completing certain tasks, including baking cookies
[41], making pancakes [42], and folding laundry [43]. In these
works, the controller sequences were selected from several
predefined sequences or retrieved from a website. For example,
in the work [42], the robot retrieved instructions for making
pancakes from the Internet to generate the controller sequence.
Although they often achieve correct sequences in controlled
environments, these methods cannot scale up to a large number
of tasks in unconstrained household environments because
each task requires defining complicated rules for the controller
sequence to adapt to various environments.

Recently, a series of works [44], [45] developed learning-
based planners for semantic visual planning tasks. Gupta et
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Fig. 2. An overall introduction of the proposed method. The AOG-LSTM network is trained using the samples from the small training set, and it can be
used to generate a relatively large augmented set. The augmented set, together with the training set, is used to train the Action-LSTM network, which can
directly predict the action sequence to complete a given task under a certain scene.

al. [45] proposed a cognitive mapper and planner for visual
navigation, therein constructing a top-down belief map of the
world and applying a differentiable neural network planner
to produce the next action at each time step. Zhu et al. [44]
formulated visual semantic planning as a policy learning prob-
lem and proposed an interaction-centric solution that offered
crucial transferability properties for semantic action sequence
prediction. In addition to visual semantic planning, the deep
neural networks were also adopted to address the tasks of
robotic control planning [46]–[48]. For example, Agrawal et
al. [47] developed a joint forward and inverse models for real-
world robotic manipulation tasks. The inverse model provided
supervision to construct informative visual features, which
the forward model then predicted and in turn regularized
the feature space for the inverse model. Pascanu et al. [46]
introduced an imagination-based planner that could learn to
construct, evaluate, and execute plans.

B. Action recognition and prediction

The problem studied in this paper is also related to ac-
tion recognition and prediction, where the former attempts
to recognize action categories performed by persons from a
fully observed video/image [49]–[53] and the latter targets
predicting an action that humans are likely to perform in
the future within given scenarios [54]–[56]. Note that our
work differs from the aforementioned methods in the goal of
the problem, which is to automatically infer potential action
sequences that can be used to complete the task at hand in
the specific environment. Note that action recognition and
prediction can be beneficial to our work because they provide
a better understanding of the interaction between humans and
the environment for the robots for task planning.

C. Recurrent sequence prediction

RNNs [57], particularly LSTM [18], were developed for
modeling long-term temporal dependencies. Recently, RNNs
have been extensively applied to various sequence prediction

tasks, including natural language generation [58]–[60], neural
machine translation [19], [61]–[63], and image and video
captioning [20], [21], [64]–[66]. These works adopted a similar
encoder-decoder architecture for solving sequence prediction.
Tang et al. [60] encoded the contexts into a continuous
semantic representation and then decoded the semantic repre-
sentation into context-aware text sequences using RNNs. Cho
et al. [19] mapped a free-form source language sentence into
the target language by utilizing the encoder-decoder recurrent
network. Vinyals et al. [20] applied a similar pipeline for
image captioning, therein employing a CNN as the encoder to
extract image features and an LSTM network as the decoder
to generate the descriptive sentence. Pan et al. [66] further
adapted this pipeline to video caption generation by developing
a hierarchical recurrent neural encoder that is capable of
efficiently exploiting the video temporal structure in a longer
range to extract video representations.

III. OVERVIEW

In this section, we give an overall introduction to the
proposed method. First, we represent the possible action
sequences for each task with an AOG. Based on this AOG,
a parsing graph, which corresponds to a specific action se-
quence, can be generated by selecting the sub-branches at all
the or-nodes searched in a DFS manner given a scene image.
An LSTM (namely, AOG-LSTM) is learned to make predic-
tions at these or-nodes given a large number of new scene
image and automatically produce a relatively large number of
valid samples. Finally, these automatically generated samples
are used to train another LSTM (namely, Action-LSTM) that
directly predicts the action sequence to complete a given task
under a certain scene. An overall illustration is presented in
Figure 2.

IV. SEMANTIC TASK REPRESENTATION

A. Atomic action definition
An atomic action refers to a primitive action operating

on an associated object, and it is denoted as a two-tuple
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empty

pour into the cup

get the cup pour water

grasp the cup

move to the cup grasp the cup hold the cup pour water from pot

move to pot

pour water from water dispenser

full

pour away water

pour water move close water dispenser

task fail

pour water

full

grasp pot

empty emptyfull

pour into the cup place back pot task fail

pour a cup of water 

{fail,fail}{move to, cup} {hold, cup}{grasp, cup} {pour away, water} {grasp ,pot}{pour into, cup} {pour  into, cup}{fail, fail}{place back, pot}

and node 

or node 

leaf node 

(a)

action sequence

A6: {pour into, cup}

A5: {grasp, pot}

A2: {grasp, cup}

A1: {move to, cup}

obj: cup
attr: empty

obj: pot
attr: not empty

parsing graph

obj: water-dis
attr: not empty

action sequence

A5: {pour into, cup}

A4: {move to, water-dis}

A2: {grasp, cup}

A1: {move to, cup}

parsing graph

pour a cup of water 

{grasp, cup}{move to, cup}

pour into cup

take cup pour water from pot

grasp cupmove to cup grasp pot

{grasp, pot}{pour into, cup}

pour a cup of water 

{grasp, cup}{move to, cup}

move to water-dis pour into cup

{pour into, cup}

take cup pour water from water-dis

grasp cupmove to cup

{move to, water-dis}

hold cup

{hold, cup}

place back cup

{place back, pot}

A3: {hold, cup}

A7: {place back, cup}

hold cup

{hold, cup}

A3: {hold, cup}

move to pot

{move to, pot}

A4: {move to, pot}

obj: cup
attr: empty

(b)

Fig. 3. An example of a knowledge and-or graph for describing the task “pour a cup of water” shown in (a) and two parsing graphs and their corresponding
action sequences under two specific scenes shown in (b).

set A = (action, object). To ensure that the learned model
can generalize across different tasks, the primitive action and
associated object should satisfy two properties [39]: 1) each
primitive action should specialize an atomic operation, such
as open, grasp or move to, and 2) the primitive actions and
associated objects should not be specific to one task. With
these role-specific and generalizable settings, large numbers
of high-level tasks can be completed using the atomic actions
defined on a small set of primitive actions and associated
objects. In this work, Ba =12 primitive actions and Bo =12
objects are involved, as described in Section VI-A.

B. Knowledge and-or graph
The AOG is defined as a 4-tuple set G = {S, VN , VT , P},

where S is the root node denoting a task. The non-terminal
node set VN contains both and-nodes and or-nodes. An and-
node represents the decomposition of a task to its sub-tasks in
chronological order. An or-node is a switch, deciding which
alternative sub-task to select. Each or-node has a probability
distribution pt (the t-th element of P ) over its child nodes,
and the decision is made based on this distribution. VT is
the set of terminal nodes. In our definition of AOG, the non-
terminal nodes refer to the sub-tasks and atomic actions, and
the terminal nodes associate a batch of atomic actions. In this
work, we manually define the structure of the AOG for each
task.

According to this representation, the task “pour a cup of
water” can be represented as the AOG shown in Figure 3(a).
The root node denotes the task, where is first decomposed
into two sub-tasks, i.e., “get the cup” and “pour water”, under
the temporal constraint. The “get the cup” node is an and-
node and can be further decomposed into “move to the cup”,
“take the cup” and “hold the cup” in chronological order. The
“pour water” node is an or-node, and it has two alternative
sub-branches, i.e., “pour water from the water dispenser” and
“pour water from the pot”. Finally, all the atomic actions
are treated as the primitive actions and associated objects,
which are represented by the terminal nodes. In this way, the
knowledge AOG contains all possible action sequences of the
corresponding task in a syntactic manner.

1

2

6

4 7

3

9

5 8

1 2 3 4 …

1 0 1 0 0

2 0 0 2 0

3 0 0 0 2

4 0 0 0 0

… …

And node

Or node

Leaf node

Node
type

Primitive
action

Associated
object

100 00000 00000Node 1

010 00000 00000Node 2

001 00100 00010Node 5

And connection

Or connection

…
(a)

(b)

(c)

10 12

11 13

…

Fig. 4. Illustration of the AOG encoding process. The nodes in the AOG
are first numbered (a). Then, an adjacency matrix is employed to encode the
structure of the graph, with a value of 1 for an and connection, 2 for an or
connection and 0 otherwise (b). The content of each node contains a one-hot
vector denoting the node type, two one-hot vectors representing the primitive
action and the associated object of the associated atomic action for the leaf
node, and two zero vectors for the and- and or-nodes.

C. Sample generation with and-or graph

In addition to capturing the task semantics, the AOG
representation enables the generation of a large number of
valid samples (i.e., action sequences extracted from the AOG),
which are important for the RNN learning process. According
to the definition of the AOG, a parsing graph, which corre-
sponds to a specific action sequence (e.g., Figure 3(b)), will
be generated by selecting the sub-branches for all the or-nodes
searched in a DFS manner given a new scene image. Since
explicit temporal dependencies exist among these or-nodes,
we can recurrently activate these selections using an LSTM
network, i.e., AOG-LSTM.
AOG encoding. Before discussing the AOG-LSTM, we first
introduce how to encode the AOG into a feature vector because
this is a crucial process for integrating the AOG representation
into the LSTM. Concretely, the AOG features should contain
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both graph structure and node content information, and the
encoding process consists of three steps, as illustrated in
Figure 4. First, we number all the nodes in the AOG, as shown
in Figure 4(a). Second, an adjacency matrix [67] is utilized to
encode the graph structure that depicts whether and how two
nodes are connected. Consistent with the situation whereby
and- and or-nodes exist in the AOG and they represent
completely different meanings, we define an and connection
to signify a connection of an and-node to its child and an or
connection to signify that of an or-node to its child. Suppose
that the adjacency matrix is M , with Mij being the value of
row i and column j; Mij is set to 1 for the and connection
of the and-node i to its child j, 2 for the or connection and
0 otherwise (see Figure 4(b)). Third, we extract the features
for each node to encode its node type and related atomic
action information. There are three types of nodes in the AOG,
i.e., and, or and leaf nodes, and we utilize one-hot vectors to
represent these nodes. As indicated in the definition of the
AOG, a leaf node is connected to a specific atomic action,
and we employ two one-hot vectors to represent the primitive
action and associated object of the atomic action. Then, we
append the two vectors after the node type vector to obtain
the features of this node. In contrast, the and- and or-nodes
do not connect to the specific atomic action directly; thus, we
simply pad zeros after the node type vector (see Figure 4(c)).
Finally, the adjacency matrices are re-arranged to a vector, and
the vector is concatenated with all the node features to achieve
the final representation of the AOG.

According to the AOG definition, we search the or-nodes
based on the depth-first and from left-to-right manner. As
illustrated in Figure 5, our model first extracts the features
of the given scene image and the task, and it maps them to a
feature vector, which serves as the initial hidden state of the
AOG-LSTM. The model then encodes the initial AOG as a
feature vector, which is fed into the AOG-LSTM to predict
the sub-branch selection of the first or-node. Meanwhile, the
AOG is updated by pruning the unselected sub-branches. Note
that the AOG is updated based on the annotated and predicted
selections during the training and test stages, respectively.
Based on the updated AOG, the same process is conducted
to predict the selection of the second or-node. This process is
repeated until all or-nodes have been visited, and a parsing
graph is then constructed. We denote the image and task
features as f I and fT , respectively, and we denote the AOG
features at time step t as fAOG

t . The prediction at time step t
can be expressed as follows:

fIT = [relu(WfIf
I), relu(WfT f

T )]

c0 = 0; h0 = Whf fIT

[ht, ct] = LSTM(fAOG
t ,ht−1, ct−1)

pt = softmax(Whpht + bp)

(1)

where relu is the rectified linear unit (ReLU) function [68]
and pt is the probability distribution over all child branches
of the t-th or-node, where the branch with the maximum value
is selected. WfI , WfT , Whf , and Whp are the parameter
matrices, and bp is the corresponding bias vector. f I are

LSTM LSTM

selection
at node 1

LSTM

stop

…
Image

Task …

…

…

…

…

update

encode encode

update
…

encode

update

…

selection
at node 2

Fig. 5. The AOG-LSTM architecture for selecting the sub-branches at all of
the or-nodes in a knowledge and-or graph.

the image features containing the information of the class
labels, initial states, and locations of the objects in image
I . More concretely, suppose that there are Bo categories of
objects and k attributes. For each object in an given image,
we utilize a Bo-dimension one-hot vector to denote its class
label information, k vectors to denote the initial states of the
k attributes, and a 4-dimension vector to denote the bounding
box of the object region. Thus, each object can be represented
by a fixed dimension feature vector, and the feature vectors of
all objects are concatenated to obtain an image feature vector.
However, the number of objects varies in different images,
leading to image feature vectors with different dimensions.
To address this issue, we first extract the features for the
image with the maximum number of objects, and we apply
zero padding to each feature vector so that each vector has
the same dimensions as the feature vector of the image with
the maximum number of objects. fT is a one-hot vector
denoting a specific task. f I and fT are first processed using
two separated fully connected layers followed by the ReLU
function to generate two 256-D feature vectors. The initial
memory cell c0 is set as a zero vector. The two vectors are
then concatenated and mapped to a 256-D feature vector using
a fully connected layer, which serves as the initial hidden state
of the LSTM. fAOG

t are the AOG feature vectors at time step
t, which are also pre-processed to a 256-D feature vector via
a fully connected layer and then fed to the AOG-LSTM. The
size of the hidden layer of the LSTM is 256 neurons.
AOG-LSTM training. Making a selection at the or-nodes is
less ambiguous because the AOG representation effectively
regularizes the semantic space. Thus, we can train the AOG-
LSTM using only a small number of annotated samples.
Specifically, we collect a small set of samples annotated
with the selections of all or-nodes given a scene image for
each task, i.e., XT = {In, Tn, sn}NT

n=1, in which In and
Tn are the n-th given image and task, respectively, and
sn = {sn1, sn2, . . . , snKn

} is a set whereby snb denotes the
selection for the t-th or-node and Kn is the number of or-
nodes. NT is the number of annotated samples in XT . Given
the predicted probability pnt = {pnt1, pnt2, . . . , pntB} for the
t-th or-node, we define the objective function as the sum of
the negative log-likelihood of correct selections over the entire
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training set, which is formulated as

Laog = −
NT∑
n=1

Kn∑
t=1

B∑
b=0

1(snb = b) log pntb, (2)

where 1(·) is an indicator function whose value is 1 when the
expression is true and 0 otherwise and B is the number of sub-
branches. In our experiment, because the maximum number of
sub-branches is 3, we simply set B to 3.
Sample generation. Once the AOG-LSTM is trained, we use
it to predict the sub-branch selections for all the or-nodes
in the AOG given different scene images and generate the
corresponding action sequences. In this way, a relatively large
set of XG = {In, Tn,An}NG

n=1 is obtained, where In, Tn, and
An represent the image, task and predicted sequence for the
n-th sample, respectively, and NG is the number of generated
samples. More importantly, it can also generate samples of
unseen tasks using an identical process in which the AOG
structures for the new tasks are also manually defined. These
newly generated samples effectively alleviate the problem of
manually annotating large numbers of samples in practice.

V. RECURRENT ACTION PREDICTION

We formulate the problem of semantic task planning in
the form of the probability estimation p(A1, A2, ..., An|I, T ),
where I and T are the given scene image and the task, respec-
tively, and {A1, A2, ..., An} denotes the predicted sequence.
Based on the chain rule, the probability can be recursively
decomposed as follows:

p(A1, A2, ..., An|I, T ) =
n∏

t=1

p(At|I, T,At−1), (3)

where At−1 denotes {A1, A2, ..., At−1} for convenience of
illustration. The atomic action is defined as Ai = (ai, oi).
Since an atomic action is composed of a primitive action and
an associated object, there are large numbers of atomic actions
that have few samples because action-object co-occurrence
is infrequent in the training samples. Thus, a fundamental
problem in atomic action prediction is learning from very few
samples. Fortunately, although the atomic action might occur
rarely in the samples, its primitive action and associated object
independently appear quite frequently. Thus, in this work, we
simplify the model by assuming independence between the
primitive actions and the associated objects and predict them
separately [69]. The probability can be expressed as follows:

p(At|I, T,At−1) = p(at|I, T,At−1)p(ot|I, T,At−1). (4)

Here, we develop the Action-LSTM network to model the
probability distribution, i.e., equation (3). Specifically, the
Action-LSTM network first applies a process similar to that
of AOG-LSTM to extract the features of the task and image,
which is also used to initialize the hidden state of the LSTM.
At each time step t, two softmax layers are utilized to predict
the probability distributions p(at) over all primitive actions
and p(ot) over all associated objects. The conditions on the
previous t − 1 actions can be expressed by the hidden state

pour water 

with the cup

graspmove to

LSTM LSTM

cup cup

{pour into, cup}{move to, cup}{start, start}

LSTM

stop

…

stop

cup

pot

Fig. 6. The Action-LSTM architecture for predicting the atomic action
sequence given a specific task.

ht−1 and memory cell ct−1. The action prediction at time step
t can be computed as follows:

fIT = [relu(WfIf
I), relu(WfT f

T )]

c0 = 0; h0 = Whf fIT

[ht, ct] = LSTM(fAt ,ht−1, ct−1)

p(at) = softmax(Wahht + ba)

p(ot) = softmax(Wohht + bo)

(5)

where relu is the ReLU function. WfI , WfT , Whf , Wah,
and Woh are the parameter matrices, and ba and bo are the
corresponding bias vectors. Figure 6 presents an illustration
of the Action-LSTM network. f I and fT carry exactly the
same information as explained for the AOG-LSTM, and they
are pre-processed using an identical process except that the
last fully connected layer has 512 output neurons and thus
generates a 512-D feature vector. Additionally, this feature
vector is considered to be the initial hidden state of the Action-
LSTM. fAt is a feature vector that encodes the input atomic
action at time step t, which is concatenated by two one-hot
vectors denoting its primitive action and associated object.
Note that the atomic action is the ground truth and predicted
atomic action of the previous time step during the training
and test stages, respectively. Because directly predicting the
atomic action is considerably more complicated, we set the
size of the hidden layer of the LSTM to 512 neurons.
Action-LSTM training. In the training stage, we leverage the
entire training set, including the manually annotated samples
and the automatically generated samples, to optimize the
network. However, some difficult samples with uncertain or
even incorrect labels exist, and these samples may severely
impact the model convergence and lead to inferior results.
Meanwhile, skipping too many difficult training samples leads
to a risk of overfitting on the small set of easy samples,
resulting in a poor generalization ability to unseen testing data.
To strike a better balance, we employ a curriculum learning
algorithm [26], [27] that starts the training process using the
most reliable samples and then gradually increases the sample
difficulty.

To determine the difficulty of a particular sample, we
consider the uncertainty of making selections at the or-nodes
during the sample generation stage. Concretely, a probability
distribution is predicted when performing selections at an
or-node, and the entropy of this distribution well measures
the uncertainty [70], [71]. Thus, we define the uncertainty
of a sample by averaging the entropies of the predicted
distributions over all the or-nodes. In this way, a sample having
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a higher uncertainty means that it is more difficult. We create
a curriculum of XG by sorting the samples according to their
uncertainty values and set a threshold τ to exclude the samples
with uncertainty values that are higher than τ . The curriculum
is updated by decreasing τ to include more difficult samples
during the training stage.

Formally, we are given the manually annotated and auto-
matically generated sets, i.e., XT = {In, Tn,An}NT

n=1 and
XG = {In, Tn,An}NG

n=1, where In and Tn are the given
image and task of the n-th sample, respectively, and An =
{An1, An2, ..., AnWn} is the atomic action sequence, with Wn

denoting the number of atomic actions. Ant = {ant, ont} is
the t-th atomic action, with ant and ont denoting its primitive
action and associated object, respectively. Similarly, we define
the objective function as the sum of the negative log-likelihood
of correct sequences over all the samples in the manually
annotated set and the selected samples in the automatically
generated set. Given the predicted distribution of the primitive
action pn(at) = {pn1(at), pn2(at), . . . , pnBa

(at)} and asso-
ciated object pn(ot) = {pn1(ot), pn2(ot), . . . , pnBo

(ot)} for
the t-th step, the objective function can be expressed as

Laction = −
NT∑
n=1

Wn∑
t=1

`nt −
NG∑
n′=1

Wn′∑
t′=1

1(Hn′ < τ)`n′t′ , (6)

where

`nt =

Ba∑
j=0

1(ant = j) log pnj(at)+

Bo∑
j=0

1(ont = j) log pnj(ot).

(7)
In these equations, Ba and Bo are the numbers of involved
primitive actions and associated objects, Hn′ is the uncertainty
of sample n′, and 1(·) is also an indicator function whose
value is 1 if the expression is true and 0 otherwise. Note that
we directly use all the samples in XT because these samples
are manually annotated and can effectively avoid samples with
uncertain or incorrect labels.
Sequence prediction. Once the Action-LSTM is trained, it is
utilized to recurrently predict the atomic action sequence con-
ditioning on the given task and input scene image. Concretely,
the Action-LSTM takes a special atomic action (start, start)
as input to predict the probability distributions of the primitive
action and associated object, and we select the primitive action
and associated object with maximum probabilities to achieve
the first atomic action, which is fed into the LSTM to predict
the second atomic action. This process is repeated until a
(stop, stop) atomic action is generated.

VI. EXPERIMENTS

In this section, we introduce the newly collected dataset in
detail and present extensive experimental results to demon-
strate the superiority of the proposed model. We also conduct
experiments to carefully analyze the benefits of the critical
components.

A. Dataset construction

To well define the problem of semantic task planning, we
create a large dataset that contains 15 daily tasks described
by AOGs and 1,284 scene images, with 500 images captured
from various scenarios of 7 typical environments, i.e., lab,
dormitory, kitchen, office, living room, balcony, and corridor,
and the remaining 784 scenes are searched from the Internet,
e.g., using Google Image Search. All the objects in these
images are annotated with their class labels and initial prop-
erty. As described above, the atomic action is defined as a
two-tuple, i.e., a primitive action and its associated object.
In this dataset, we define 12 primitive actions, i.e., “move
to”, “grasp”, “place back”, “pour into”, “open”, “pour away”,
“hold”, “heat”, “close ”, “turn on ”, “clean”, and “put into”,
and 12 associated objects, i.e., “cup”, “pot”, “water dispenser”,
“tea box”, “water”, “bowl”, “easer”, “board”, “washing ma-
chine”, “teapot”, “clothes”, and “closet”. Some scenarios exist
in which a task cannot be completed. For example, a robot
cannot complete the task of “pour a cup of water from the
pot” if the pot in the scenario is empty. Thus, we further define
a specific atomic action (taskfail, taskfail), and the robot
will predict this atomic action when faced with this situation.

The dataset includes three parts, i.e., the training set, the
testing set and an augmented set generated from the AOGs.
The training set contains 215 samples for 12 tasks with the
annotations (i.e., the selections of all the or-nodes in the
corresponding AOGs), and this training set is used to train
the AOG-LSTM. The augmented set contains 2,600 samples of
(I, T,Ap), in which Ap is the predicted sequence. For training
the Action-LSTM, we combine the augmented set and training
set. The testing set contains 983 samples of (I, T,A) for the
performance evaluation.

B. Experimental settings

Implementation details. We implement both LSTMs using
the Caffe framework [72], and we train the AOG-LSTM and
Action-LSTM using stochastic gradient descent (SGD) [73]
with a momentum of 0.9, weight decay of 0.0005, batch size
of 40, and initial learning rates of 0.1. For curriculum learning,
we empirically initialize τ as 0.2 and add 0.2 to it after training
for 100 epochs. The model with the lowest validation error is
selected for evaluation.
Evaluation metrics. We utilize the accuracies of the primitive
actions and associated objects, atomic actions, and action
sequences as the metrics to evaluate our proposed method. The
metrics are described in detail below. We regard the predicted
primitive action as correct if it is exactly the same as the
annotated primitive action at the corresponding time step. In
addition, the accuracy of the primitive action is defined as the
fraction of correctly predicted primitive actions with respect
to all primitive actions. The accuracy of the associated object
is defined similarly. We regard the predicted atomic action as
correct if both the primitive action and its associated object
are correct. The accuracy of the atomic action is defined as
the fraction of correctly predicted atomic actions with respect
to all atomic actions. Finally, we regard the action sequence
as correct if the atomic action at each time step is correct. The
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methods primitive actions
move
to

grasp place
back

pour
into

open pour
away

hold heat close turn
on

clean put
into

task
fail

overall

NN 88.0 70.4 36.3 36.8 54.3 61.4 71.2 30.0 39.4 42.1 93.8 43.0 32.9 63.9
MLP 98.4 93.9 86.9 87.1 92.1 100.0 96.8 88.6 83.3 100.0 93.8 87.0 90.4 93.5
RNN 98.6 96.0 94.6 95.6 76.4 95.3 97.2 92.8 72.7 100.0 100.0 78.0 94.5 95.6

Ours w/o AOG 98.6 95.8 93.6 93.0 87.1 95.3 96.9 87.9 97.0 100.0 87.5 94.0 79.5 95.4
Ours w/ AOG 97.9 97.0 95.6 95.7 89.3 89.8 95.4 93.8 93.9 100.0 93.8 84.0 95.9 96.1

methods associated objects
cup pot water-

dis
tea-
box

water bowl easer board washing
ma-
chine

teapot clothes closet task
fail

overall

NN 77.0 47.2 36.8 74.8 39.6 96.0 93.8 97.9 77.6 31.2 79.8 57.1 32.9 65.2
MLP 97.8 90.6 94.4 96.2 89.7 92.0 92.7 95.8 97.8 89.6 87.9 71.4 91.8 94.2
RNN 97.7 94.5 100.0 96.2 91.8 98.7 99.0 100.0 93.5 92.2 86.4 79.8 94.5 95.6

Ours w/o AOG 97.3 94.7 94.4 95.5 90.2 100.0 95.8 95.8 97.4 98.7 98.0 90.5 79.5 95.8
Ours w/ AOG 97.6 96.4 88.9 92.4 93.0 100.0 95.8 95.8 100.0 97.4 97.0 86.9 95.9 96.6

TABLE I
ACCURACY OF THE PRIMITIVE ACTIONS AND ASSOCIATED OBJECTS OF OUR METHOD WITH AND WITHOUT AND-OR GRAPH (OURS W/ AND W/O AOG,

RESPECTIVELY) AND THE THREE BASELINE METHODS (I.E., RNN, MLP, AND NN).

accuracy of the action sequence is defined as the fraction of
correctly predicted sequences with respect to all sequences.

methods mean acc.
NN 66.9

MLP 90.6
RNN 92.8

Ours w/o AOG 93.5
Ours w/ AOG 96.0

TABLE II
MEAN ACCURACY OVER ALL ATOMIC ACTIONS OF OUR METHOD WITH

AND WITHOUT THE AND-OR GRAPH (OURS W/ AND W/O AOG) AND THE
THREE BASELINE METHODS (I.E., RNN, MLP, AND NN).

C. Baseline methods

To verify the effectiveness of our model, we implement
three baseline methods that can also be used for semantic task
planning for comparison.

1) Nearest Neighbor (NN): NN retrieves the most similar
scene image and obtains the action sequence that can complete
the given task under this image as its output. Concretely,
given a new image and task, we extract the image feature
and compare it with those on the training set. The sample,
which shares the most similar feature with the given image, is
taken, and its annotated action sequence regarding the given
task is regarded as the final output. The image features are
extracted in a similar manner for the AOG-LSTM, as discussed
in Section IV-C.

2) Multi-Layer Perception (MLP): We implement an MLP
[74] that predicts the t-th atomic action by taking the task
features, image features, and previous t− 1 predicted atomic
actions as input. Moreover, it repeats the process until a stop
signal is obtained. The MLP consists of two stacked fully
connected layers, in which the first layer maps the input to a
512-D feature vector followed by the ReLU function and the
second layer maps two vectors followed by softmax layers,
which indicate the score distribution of the primitive action
and the associated object, respectively.
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Fig. 7. The confusion matrices of the (a) primitive actions and (b) associated
objects. Our method can accurately predict both the primitive actions and
associated objects.

3) Recurrent Neural Network (RNN): The training and
inference processes and the input features of the RNNs are
exactly the same as those of our Action-LSTM. Our method
utilizes a traditional hidden state unit rather than an LSTM
unit. For a fair comparison, the RNN also has one hidden
layer of 512 neurons.

The two baseline methods are also implemented using the
Caffe library [72], and they are trained using SGD with a
momentum of 0.9, weight decay of 0.0005, batch size of 40,
and initial learning rate of 0.1. We also select the models with
the lowest validation error for a fair comparison.

D. Comparisons with the baseline models

We first evaluate the performance of our model for rec-
ognizing the primitive actions and associated objects. Figure
7 presents the confusion matrices for these two elements,
where our model achieves very high accuracies for most
classes. Table I further depicts the detailed comparison of our
model against the baseline methods. Our model can predict the
primitive actions and associated objects with overall accuracies
of 96.1% and 96.6%, outperforming the baseline methods.
We also present the mean accuracy of the atomic action in
Table II. Here, we compute the accuracy of each atomic
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methods task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 task 10 task 11 task 12 overall
NN 44.0 12.9 66.7 81.2 25.4 35.7 27.9 42.0 31.2 42.1 22.5 35.7 33.6

MLP 56.0 67.7 100.0 84.4 83.0 86.7 83.8 85.3 89.6 97.4 92.5 53.6 83.6
RNN 84.0 71.0 66.7 93.8 86.4 90.2 86.0 86.0 92.2 97.4 70.0 25.0 84.8

Ours w/ self aug 64.0 58.1 100.0 90.6 97.2 90.9 95.5 94.4 94.8 100.0 92.5 67.9 91.5
Ours w/o AOG 92.0 80.6 100.0 93.8 86.9 87.4 93.3 90.9 88.3 100.0 70.0 57.1 88.1
Ours w/ AOG 100.0 64.5 100.0 93.8 96.6 94.4 93.3 95.8 94.8 100.0 92.5 78.6 93.7

TABLE III
SEQUENCE ACCURACY OF OUR METHOD WITH AND WITHOUT THE AND-OR GRAPH (OURS W/ AND W/O AOG), OURS W/ SELF AUG, AND THE THREE
BASELINE METHODS (I.E., RNN, MLP, AND NN). WE UTILIZE TASK 1 TO TASK 12 TO DENOTE THE “POUR THE WATER IN THE CUP INTO THE BOWL”,

“MAKE TEA WITH THE CUP”, “MAKE TEA WITH THE CUP USING WATER FROM THE WATER DISPENSER”, “CLEAN THE BOARD”, “GET A CUP OF HOT
WATER”, “GET A CUP OF HOT WATER FROM THE POT”, “POUR A CUP OF WATER”, “POUR A CUP OF WATER FROM THE POT”, “POUR A CUP OF TEA FROM
THE TEAPOT”, “WASH THE CLOTHES WITH THE WASHING MACHINE”, “WASH THE CLOTHES IN THE WASHING MACHINE”, AND “PUT THE CLOTHES IN

THE CLOSET” TASKS.

Task: pour a cup of water from the water dispenser

Action Sequence
A1: {move to, cup}

A2: {grasp, cup}

A3: {hold, cup}

A4: {move to, water-dis}

A5: {pour into, cup}

obj: cup
attr: empty

obj: tea-box
attr: closed

obj: pot
attr: hot water

A1:  {move to, tea-box}

A2:  {grasp, tea-box}

A3:  {open, tea-box}

A7:  {pour into, cup}

A8: {place back, tea-box}

A4:  {move to, cup}

A5:  {grasp, cup}

A6:  {hold, cup}

A9:  {hold, cup}

A10: {move to, pot}
A11: {grasp, pot}

A12: {pour into, cup}

A13: {place back, pot}

Action SequenceTask: make tea with the cup using water from the pot

obj: water-dispenser
attr: not empty

obj: cup
attr: empty

obj: pot
attr: empty

obj: teapot
attr: empty

Fig. 8. Some atomic action sequences regarding given scene images and tasks
generated by our method. Our method is able to correctly predict the action
sequence for various tasks across different scenarios.

action and compute the mean over the accuracies of all the
atomic actions. As shown, our model also achieves the highest
accuracy compared with the baseline methods.

Then, we evaluate the sequence accuracy of all the methods,
as reported in Table III. Our model can correctly predict
complete action sequences with an overall probability of
93.7%, evidently outperforming the baseline methods on most
tasks (11/12) and improves the overall accuracy by 8.9%.

Some atomic action sequences generated by our method
are presented in Figure 8. As shown, our method is capable
of accurately predicting the action sequences for various tasks
across different scenarios.

E. Generalization to related tasks

Here, we define “related tasks” as tasks that have similar
atomic actions or temporal context to the existing tasks in

the training set. For example, “pour a cup of water from the
water dispenser” is a task related to “pour a cup of water ”.
Thus, it would be interesting to see how our trained model
can be generalized to related tasks. In particular, for each
related task, we have its AOG representation but no annotated
training samples. In this experiment, the models of “Ours
without AOG” are all trained on the training set, which only
contains samples of task 1 to task 12, as described above.
For our model with AOG, we first train the AOG-LSTM with
the same set of annotated samples as the other competing
models. Subsequently, we utilize the trained AOG-LSTM to
produce samples for all tasks, including tasks 13, 14 and 15,
and then, we use these samples to train the Action-LSTM.
The results of the three tasks are presented in Table IV. We
find that the performances of the method without using AOG
are extremely unsatisfying on both tasks. These results clearly
demonstrate the excellent generalization ability of our model,
which improves the sequence accuracy by 63.2%. We also
present the sequence accuracy of the AOG-LSTM, i.e., 82.8%,
which is also worse than the proposed model.

methods task 13 task 14 task 15 overall
Ours w/ self aug 6.2 84.6 84.6 70.0
Ours w/o AOG 0.0 26.9 30.8 22.1
Ours w/ AOG 62.5 92.3 92.3 85.3

TABLE IV
SEQUENCE ACCURACY OF OUR MODEL WITH AND WITHOUT AND-OR

GRAPH (OURS W/ AND W/O AOG) AND THE OURS W/ SELF AUG. TASKS
13, 14 AND 15 DENOTE THE “MAKE TEA WITH THE CUP USING WATER

FROM THE POT”, “GET A CUP OF HOT WATER FROM THE WATER
DISPENSER”, AND “POUR A CUP OF WATER FROM THE WATER DISPENSER”

TASKS, RESPECTIVELY.

F. Ablation Study

In this subsection, we perform ablative studies to carefully
analyze the contributions of the critical components of our
proposed model.

1) Benefit of using and-or graph: In this experiment, we
empirically evaluate the contribution of introducing AOG to
the neural network learning. Here, we train the Action-LSTM
with and without using the augmented sample set, and we
report the results in the last two rows of Table I and Table III,
i.e., Ours w/ and w/o AOG. It can be observed that the results
using AOGs show a notable improvement in both atomic
action recognition and sequence prediction. The performance
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improvements clearly demonstrate the effectiveness of adopt-
ing the augmented set. In particular, generating samples from
AOG representations enables us to better capture the complex
task variations and is an effective way of compensating the
neural network learning. Moreover, note that the Action-
LSTM network performs better than the traditional RNN
model because LSTM is better able to memorize long-term
dependencies among actions.

As discussed above, the trained Action-LSTM can also
generate pseudo-labels for unseen samples, and it does not
require manually defined AOGs. To see whether the AOGs ac-
tually improve the performance, we further implement another
baseline (namely, Ours w/ self aug) that uses the Action-LSTM
trained on the annotated set to automatically generate a large
number of training samples, and then, we train another Action-
LSTM using both the annotated and automatically augmented
sets. As shown in Table III, this achieves an overall sequence
accuracy of 91.5%, better than the baseline Action-LSTM but
much worse than our network, i.e., 93.7%. In addition, when
generalizing to unseen tasks, our method has an even more
notable improvement over this baseline, i.e., 85.3% by ours
and 70% by this baseline as shown in Table IV.

2) Analysis of AOG-LSTM: The AOG-LSTM can also
generate action sequences by collecting the leaf nodes af-
ter all the or-nodes have been selected. Here, we analyze
the performance of the AOG-LSTM network. As shown in
Table V, if both are trained only with the annotated set,
the Action-LSTM network performs worse than the AOG-
LSTM network. This is because making a selection at the
or-nodes is less ambiguous because the AOG representation
effectively regularizes the semantic space. Thus, the AOG-
LSTM network can achieve a reasonable performance despite
being trained using a small number of samples. However,
when trained with both the annotated and augmented sets, the
Action-LSTM network, in turn, outperforms the AOG-LSTM
network. One possible reason is as follows. If giving sufficient
training samples, the Action-LSTM network may implicitly
learn the semantic structures of the And-Or Graph. Moreover,
the Action-LSTM model directly predicts the atomic action,
and thus, the predicted atomic action in the previous step may
provide strong guidance for the subsequent atomic action pre-
diction. However, the or-node prediction of the AOG-LSTM
may not have such a property. Moreover, the Action-LSTM is
a more flexible and general framework, and it can also achieve
reasonable results without the AOG representation (see Ours
w/ AOG). Introducing AOG augmentation can further boost
its performance, especially for unseen tasks (see Table IV).

Some samples of or-node selection and the corresponding
atomic sequences are presented in Figure 9. We find that,
for most cases, the AOG-LSTM network can predict the or-
node selections correctly, but it is possible to make incorrect
predictions if the objects in the image are too complex.

3) Benefit of curriculum learning: In this part, we perform
an experiment to analyze the contribution of employing the
curriculum learning algorithm. Here, we train the Action-
LSTM network directly using the entire augmented sample set,
and we compare it with our network trained using curriculum
learning. The results are reported in Table VI. As shown,

Methods Sequence acc.
AOG-LSTM w/o aug 91.8
AOG-LSTM w/ aug 92.4

Action-LSTM w/o aug 88.1
Action-LSTM w/ aug 93.7

TABLE V
SEQUENCE ACCURACY OF THE AOG-LSTM NETWORK TRAINED WITH

AND WITHOUT AUGMENTED SET AND ACTION-LSTM TRAINED WITH AND
WITHOUT AUGMENTED SET.

obj: cup
attr: not empty

obj: teapot
attr: not empty

obj: trash can
attr: closed

obj: paper cup
attr: not empty

obj: tea-box
attr: closed

move to teapot pour water

get cup pour water

get cupmove to cup hold cup

not empty

pour away water

not empty

pour into cupgrasp teapot place back teapot

pour a cup of tea from the teapot

empty

grasp cup

empty

task fail

{move to, cup}{grasp, cup}{pour away, water} {hold, cup}{move to, teapot}{fail, fail}{grasp, teapot} {pout into,cup} {place back, teapot}

or node selection

AOG	graph

A6: {fail, fail}

A2: {grasp, cup}

A1: {move to, cup}

A3: {pour away, water}

A4: {hold, cup}

Action sequence

A5: {move to, teapot}

obj: clothes
attr: none

obj: teapot
attr: not empty

obj: cup
attr: empty

obj: trash can
attr: opened

obj: pot
attr: cold water

A7: {place back, teapot}

move to teapot pour water

get cup pour water

get cupmove to cup hold cup

not empty

pour away water

not empty

pour into cupgrasp teapot place back teapot

pour a up of tea from the teapot

empty

grasp cup

empty

task fail

{move to, cup}{grasp, cup}{pour away, water} {hold, cup}{move to, teapot}{fail, fail}{grasp, teapot} {pout into,cup} {place back, teapot}

or node selection

AOG	graph

A5: {grasp, teapot}

A2: {grasp, cup}

A1: {move to, cup}

A3: {{hold, cup}

Action sequence

A4: {move to, teapot}

A6: {pour into, cup}

Fig. 9. Some samples of or-node selection and the corresponding atomic
sequences. The nodes of the unselected branch are denoted as circles with
dotted line, and the nodes of incorrectly selected branch are denoted as circles
filled with red.

training the network using curriculum learning clearly im-
proves the performance on both atomic action recognition and
sequence prediction. This comparison clearly demonstrates the
benefit of applying curriculum learning. Concretely, starting
the training of the network using the most reliable samples can
effectively avoid disturbances incurred by the difficult samples
with uncertain or even incorrect labels and thus produce a
network with better initialization performance. In this way,
we can better utilize the augmented sample set to train the
Action-LSTM network.

Methods Sequence acc.
Ours w/o CL 92.9
Ours w/ CL 93.7

TABLE VI
SEQUENCE ACCURACY OF BY OUR MODEL WITH AND WITHOUT THE
CURRICULUM LEARNING (CL) ALGORITHM. HERE, WE REPORT THE

SEQUENCE ACCURACY AVERAGED OVER TASK 1 TO TASK 12.

4) Benefit of predicting the primitive action and associ-
ated object independently: To address the problem whereby
few samples exist for many atomic actions, we simplify the
network by assuming the independence of primitive actions
and associated objects, and we predict them separately. Here,
we conduct an experiment to evaluate the benefit of this
simplification. Because there are 35 atomic actions in total,
we first remove the two softmax layers in the Action-LSTM
network and employ a 35-class softmax layer to directly
predict the atomic action, with the other layers left unchanged.
We present the sequence accuracy results in Table VII. Predict-
ing the primitive action and associated object independently



11

can achieve higher sequence accuracies. In particular, this
simplification is beneficial for avoiding learning from very few
samples and thus enables learning a more robust network.

As discussed in Section V, predicting the primitive action
and associated object separately depends on the independence
assumption between these two factors. To verify the reason-
ability of this simplification, we also design some variants
that predict the action first and, conditioned on it, predict the
object. More concretely, we implement two variants: 1) Action-
LSTM with object condition shares the same architecture
with the proposed Action-LSTM network except that, at each
step, it first predict the score vector of the action and then
concatenates it with the hidden state of this step to predict
the score vector of the object. 2) Stacked LSTM with object
condition employs two stack LSTM networks, in which the
first network predicts the score vector of the action, and then,
the score vector together with the hidden state is fed to the
second network to predict the score vector of the object. For
a fair comparison, we set the dimension of the hidden state
as 512 and train the two variants in an identical manner.
As shown in Table VII, the two variants perform slightly
worse than the proposed methods. One possible reason for this
may be that the prediction of the object also depends on the
predicted action, and these dependencies are also rare in the
training set. These comparisons show that this simplification
can simplify the network while also improving performance.

Methods Sequence acc.
Action-LSTM (joint) 91.3

Action-LSTM (condition) 92.3
Stacked LSTM (condition) 92.6

Action-LSTM 93.7
TABLE VII

SEQUENCE ACCURACY OF ACTION-LSTM PREDICTING PRIMITIVE
ACTION AND ASSOCIATED OBJECT SEPARATELY (ACTION-LSTM),

DIRECTLY PREDICTING THE ATOMIC ACTION (ACTION-LSTM (JOINT)),
ACTION-LSTM WITH OBJECT CONDITION (ACTION-LSTM (CONDITION))

AND STACKED LSTM WITH OBJECT CONDITION (STACKED LSTM
(CONDITION)). HERE, WE REPORT THE SEQUENCE ACCURACY AVERAGED

OVER TASK 1 TO TASK 12.

5) Evaluation of task embedding: In this work, we use the
one-hot vector for task encoding because there are only 15
tasks, and this simple method can well represent each task. To
compare this method with other embedding methods, we also
conduct an experiment that utilizes semantic embedding for
the tasks. Concretely, we use the trained GloVe model [75] to
encode a semantic vector for each word of a specific task and
average the vectors of all words to achieve the representation
of this task. We use this representation to replace the one-
hot encoding and re-train the AOG-LSTM and Action-LSTM.
We find that the overall sequence accuracy drops from 93.7%
to 92.3%, as shown in Table VIII. One possible reason for
this may be as follows. There are only 15 tasks; simple one-
hot encoding can well represent each task. If using the more
complex semantic representation, by learning from merely 15
sentences, it may be difficult to capture the differences among
different tasks.

Methods Sequence acc.
Ours (GloVe) 92.3
Ours (one-hot) 93.7

TABLE VIII
SEQUENCE ACCURACY OF OUR METHOD USING GLOVE AND ONE-HOT
ENCODING FOR TASK EMBEDDING. HERE, WE REPORT THE SEQUENCE

ACCURACY AVERAGED OVER TASK 1 TO TASK 12.

G. Results for noisy environments

The above-mentioned experiments are conducted under the
assumption of perfect object/attribute detection. It is more
practical to evaluate the method in noisy environments. To
this end, we further conduct an experiment on noise settings.
Specifically, we add Gaussian noise to the one-hot vector of
the class label and those of the attributes, and thus, the one-hot
vector becomes the score vector, with each element denoting
the confidence of the corresponding category or state. We
regard the score vector as positive if the bit corresponding
to the ground-truth labels has the largest value; otherwise,
it is regarded as negative. We add different levels of noise
to obtain different negative ratios (e.g., 10% and 20%) in
both the training and test set, and we re-train the Action-
LSTM network. As shown in Table IX, our network with
negative ratios of 10% and 20% error labels achieves sequence
accuracies of 46.2% and 41.2%, respectively.

To better evaluate the performance in a real vision system,
we further train a Faster R-CNN detector [14] on the training
set to automatically detect objects in the given image. We still
train the AOG-LSTM and Action-LSTM networks using the
annotated objects and evaluate on the test set using the objects
detected by the detector. As shown in Table IX, our network
can also achieve reasonable results, e.g., an overall sequence
accuracy of 55.0%.

Methods Sequence acc.
Ours w/ 10% noise 46.6
Ours w/ 20% noise 41.2
Ours using detector 55.0

Ours w/o noise 93.7
TABLE IX

SEQUENCE ACCURACY OF OUR MODEL UNDER THE SETTING OF PERFECT
DETECTION, 10%NOISE AND 20% NOISE (OURS W/O NOISE, OURS W/
10% NOISE, AND OURS W/ 20% NOISE), AND AUTOMATIC DETECTION

(OURS USING DETECTOR). HERE, WE REPORT THE SEQUENCE ACCURACY
AVERAGED OVER TASK 1 TO TASK 12, WHERE THE NETWORKS ARE ONLY

TRAINED WITH THE MANUALLY ANNOTATED SET.

VII. CONCLUSION

In this paper, we address a challenging problem, i.e.,
predicting a sequence of actions to accomplish a specific
task under a certain scene, by developing a recurrent LSTM
network. To alleviate the issue of requiring large amounts of
annotated data, we present a two-stage model training ap-
proach by employing a knowledge AOG representation. From
this representation, we can produce a large number of valid
samples (i.e., task-oriented action sequences) that facilitate
learning of the LSTM network. Extensive experiments on
a newly created dataset demonstrate the effectiveness and
flexibility of our approach.
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This is an early attempt to address the task of semantic task
planning, but there are certain limitations that prevent the pro-
posed method from extending to more realistic setups. First,
the images are pre-processed into a handcrafted feature vector
that contains information about the object categories and loca-
tions. This pre-processing prevents the model from using end-
to-end training and being robust to inference, and these low-
dimensional features can only capture limited characteristics of
the visual scene. Second, the model was only evaluated on still
images; it is unclear if it can easily be extended to a real robot
to perform tasks. Third, the structure of the AOG is manually
defined; this can be expensive to collect and is a less flexible
option. In future work, we will resort to simulation platforms
such as AI2-THOR [76], [77] to collect large numbers of
annotated samples to train the detectors and classifiers. In
this way, we can extricate the model from dependencies on
handcrafted image pre-processing, automatically detect objects
in a scene and predict their initial states of the attributes.
Moreover, we can also enable an agent to interact with objects
and perform tasks on these platforms to evaluate our model.
On the other hand, we will also explore automatically learning
the AOG structure from annotated samples, thereby improving
the flexibility and extendibility of the proposed method.
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