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Abstract

The past decade has witnessed the rapid development of
feature representation learning and distance metric learning,
whereas the two steps are often discussed separately. To
explore their interaction, this work proposes an end-to-end
learning framework called DARI, i.e. Distance metric And
Representation Integration, and validates the effectiveness of
DARI in the challenging task of person verification. Given
the training images annotated with the labels, we first pro-
duce a large number of triplet units, and each one contains
three images, i.e. one person and the matched/mismatch ref-
erences. For each triplet unit, the distance disparity between
the matched pair and the mismatched pair tends to be max-
imized. We solve this objective by building a deep architec-
ture of convolutional neural networks. In particular, the Ma-
halanobis distance matrix is naturally factorized as one top
fully-connected layer that is seamlessly integrated with other
bottom layers representing the image feature. The image fea-
ture and the distance metric can be thus simultaneously op-
timized via the one-shot backward propagation. On several
public datasets, DARI shows very promising performance on
re-identifying individuals cross cameras against various chal-
lenges, and outperforms other state-of-the-art approaches.

Introduction
Distance/similarity measure between images plays a funda-
mental role in many computer vision applications, e.g., per-
son verification (Hirzer et al. 2012), matching heterogeneous
data (Zhai et al. 2012), and multimedia retrieval (Chechik et
al. 2012). Conventional Mahalanobis distance metric learn-
ing models, which aim to seek a linear transformation by
pulling the distances between similar pairs while pushing
the distances between dissimilar pairs, are theoretically ap-
pealing in producing discriminative similarity or distance
measure from the given training data (Weinberger, Blitzer,
and Saul 2005a). However, these approaches usually are per-
formed in the original data space or the hand-engineered
feature space (i.e. representation), and thus are limited in
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Figure 1: Typical examples of person verification across
cameras. Each column corresponds to one individual, and
the large variations exist between the two examples due to
the light, pose and view point changes.

capturing variety of image appearance and handling compli-
cated nonlinear manifold.

In this paper, we investigate the possible interaction be-
tween feature learning and distance metric learning, and ad-
dress the very challenging task of person verification (i.e.
matching individuals across cameras). Figure 1 shows some
examples of this task, where the pedestrians across cameras
distinctly vary in appearance and structure caused by pose,
lighting and view angle changes. The proposed framework is
built based on the convolutional neural network (CNN) (Le-
Cun et al. 1989), which jointly optimizes the human repre-
sentation as well as the proper distance metric to robustly
match individuals against various real challenges. We call
this framework DARI (i.e. Distance metric And Representa-
tion Integration).

We aim at preserving similarity of the same person
while discriminating the different individuals, and thus de-
fine DARI in the form of maximizing relative distance.
Specifically, we organize the training images into triplet
units, and each unit contains one person image and the
matched/mismatch references. For all triplet units, the ob-
jective of DARI is to maximize the distance disparity be-
tween the matched pairs and the mismatched pairs. In par-
ticular, DARI seeks optimal solutions for both feature repre-
sentation and distance metric, while the existing approaches
of person verification (Xu et al. 2013; Liu et al. 2012) fo-
cuses on only either of the two components. We adopt the
deep CNN architecture to extract the discriminative features
from the input images, where the convolutional layers, max-
pooling operators, and one full connection layer are stacked
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up. And the Mahalanobis distance matrix is applied with the
generated feature as the matching metric. Due to the posi-
tive semi-definite requirement for the Mahalanobis metric,
directly optimizing the metric matrix is computational in-
tensive. We propose to decompose the Mahalanobis matrix
inspired by (Mignon and Jurie 2012), and further factorize
the matrix into a fully-connected layer on the top of our
deep architecture. In this way, the distance metric is seam-
lessly integrated with the image feature represented by the
other layers of neural networks. The joint optimization can
be then efficiently achieved via the standard backward prop-
agation. Therefore, by means of the nonlinearity learning
of deep neural networks, DARI is capable of representing
the complicated transformation to identify the people in the
wild.

To scale up our approach to the large amount of training
data, we implement the training in a batch-process fashion.
In each round of training, we randomly select a relatively
small number (say 60 ∼ 70) of images, and use them to or-
ganize the triplet units. By taking the triplets as the inputs,
we update the model parameters by the stochastic gradient
descent (SGD) algorithm (LeCun et al. 1998). Another aris-
ing issue is that the triplet organization cubically enlarges
the number (say 4800) of training samples, as one image can
be included into more than one triplet. To overcome it, we
calculate the gradients on the images instead of the produced
triplets, and thus reduce the computation cost by making it
only depends on the number of the selected images.

The key contribution of this paper is a novel end-to-end
framework that naturally fuses the concept of feature learn-
ing and metric learning via the deep neural networks. To
the best of our knowledge, such an approach is original to
the community. On several challenging benchmarks for per-
son verification (e.g., CUHK03 (Li et al. 2014),CUHK01(Li,
Zhao, and Wang 2012) and iLIDS (Zheng, Gong, and Xiang
2013)), our DARI framework demonstrates superior perfor-
mances over other state-of-the-art approaches.

Related Work
A number of approaches, e.g., local metric learning and ker-
nelized metric learning, have been suggested to learn mul-
tiple or nonlinear metrics from training data with compli-
cated nonlinear manifold structure. In local metric learn-
ing, local metrics can be learned independently for each re-
gion or by considering the data manifold structure (Noh,
Zhang, and Lee 2010; Wang, Kalousis, and Woznica 2012;
Weinberger, Blitzer, and Saul 2005b). In kernelized met-
ric learning, a kernel function is exploited to implicitly
embed instances into the reproducing kernel Hilbert space
(RKHS), and a Mahalanobis distance metric is then learned
in the RKHS space (Wang et al. 2011). Actually, kernelized
method with Gaussian RBF kernel can also be treated as lo-
cal learning approach. As pointed out in (Bengio 2009), lo-
cal learning are also shallow models, and generally are insuf-
ficient in coping with highly varying appearance and defor-
mations of images. Another efficient local distance metric
learning (Yang et al. 2006) was also proposed for classifi-
cation and retrieval. To handle heterogeneous data, (Xiong
et al. 2012) propose a method using a random forest-based

classifier to strengthen the distance function with implicit
pairwise position dependence.

On the other hand, deep convolutional models have been
intensively studied and achieved extremely well perfor-
mance. Compared with the multiple layer perceptron, CNN
contains much less parameters to be learned, and can be ef-
ficiently trained using stochastic gradient descent. With the
increasing of large scale training data and computational re-
sources, deeper CNN and novel regularization methods had
been developed, and deep CNN has gained great success
in many visual recognition tasks, e.g., image classification
(Krizhevsky, Sutskever, and Hinton 2012a), object detection
(Szegedy, Toshev, and Erhan 2013), and scene labeling (Pin-
heiro and Collobert 2014).

Despite the success of deep learning in variety of vi-
sion tasks, little studies were conducted on metric learn-
ing with deep architecture. Chopra et al. (Chopra, Hadsell,
and LeCun 2005) suggested a energy-based model (EBM)
for discriminative similarity metric learning for image pairs.
Stacked restricted Boltzmann machines (RBMs) had also
been exploited to learn nonlinear transformation for data
visualization and supervised embedding (Min et al. 2010).
Cai et al. (Cai et al. 2010) proposed a deep nonlinear metric
learning method by combining logistic regression and inde-
pendent subspace analysis. Hu et al. (Hu, Lu, and Tan 2014)
adopted the forward multi-layer neural network to learn deep
metric for hand-crafted features. Compared with these ap-
proaches, the proposed DARI model considers the promi-
nence of CNN in capturing salient and incorporates the Ma-
halanobis distance with the generated image features into
one optimization target for distance metric and representa-
tion integration.

One approach close to ours was proposed by Wang et
al. (Wang et al. 2014), which addresses the triplet-based
similarity learning for image retrieval. However, our work
have significant differences with that work. First, we derive
our formulation from a novel angle, i.e. integrating feature
learning and distance metric learning. Second, our learning
method has advantage in the triplet generation and the batch-
based gradient descent learning. Specifically, given m train-
ing triplets containing n distinct images (n << m), their
algorithm optimizes with 3×m forward and backward prop-
agations, while only n rounds is required for our approach
because we derive to calculate the gradient over the images.
Last, our deep architecture is specifically designed (only two
conv layers are used) and we train our model from scratch,
while they utilized the Alex’s model (Krizhevsky, Sutskever,
and Hinton 2012b) that is pre-trained on the ImageNet.

Framework
Primal Formulation
Given a fixed feature representation, metric learning is to
learn a distance function by satisfying the constraint accord-
ing to the label information of samples. Here we define our
formulation via relative distance comparison based on the
triplet-based constraint. As is discussed in (Ding et al. 2015),
the triplet models allows the images of one identity lying on
a manifold while maximizing the margin between within-



class pairs from between-class pairs, and tends to result in
better tradeoff between adaptability and discriminability.

More precisely, the relative distance constraint is defined
with a set of triplet units T = {< Ii, Ij , Ik >}, in which
< Ii, Ij > is a pair of matched images (images of the same
individual) and < Ii, Ik > contains two mismatched images
from the labeled image set I = {Il, yl} with yl denoting the
label. Let M denote the metric matrix and FW(Ii) denote
the feature representations of the ith image learned by the
feature network with the network parameters W. Then Ma-
halanobis distance between Ii and Ij using the CNN features
can be written as follows:

d2(Ii, Ij) = ∆FW(Ii, Ij)
TM∆FW(Ii, Ij) (1)

where ∆FW(Ii, Ij) = FW(Ii) − FW(Ij) denotes the fea-
ture difference between the image Ii and Ij . For each train-
ing triplet < Ii, Ij , Ik > in T , the desired distance should
satisfy: d2(Ii, Ij) < d2(Ii, Ik). Let ∆d2(Ii, Ij , Ik) denote
d2(Ii, Ik) − d2(Ii, Ij), we turn this relative constraints into
the minimization of the following hinge-loss like objective
function where λ tr(M) acts as a regularization term as in
(Shen et al. 2012).

H(W,M) =
∑

∀<Ii,Ij ,Ik>∈T

(1−∆d2(Ii, Ij , Ik))+ + λtr(M)

In the following, we use
∑

to denote
∑

∀<Ii,Ij ,Ik>∈T
for no-

tation simplicity. By the definition of ∆d2, we get the fol-
lowing objective functions:

H(W,M) =
∑

(1− (∆FW(Ii, Ik)TM∆FW(Ii, Ik)

−∆FW(Ii, Ij)
TM∆FW(Ii, Ij)))+ + λ tr(M)

s.t. M < 0

(2)

Ij

Ii

Ik

Ij

Ii

Ik

Figure 2: Illustration of our learning formulation. It tends to
maximize the distance disparity between the matched pair
and mismatched pair for each triplet, in terms of optimiza-
tion.

An intuitive solution to Eqn. (2) is to iteratively optimize
W and M with either of them fixed. It is, however, com-
putationally expensive, as the PSD projection is necessar-
ily imposed once M is updated to ensure M to be positive
semi-definite. In this work, to overcome this issue we pro-
pose an unified solution by incorporating M into the deep
neural networks.

Deep Architecture
We factorize the metric matrix M into LTL as M satisfies
the positive semi-definite constraint. The distance measure
in Eqn. (1) can be then transformed as,

d2(Ii, Ij) = ||L∆FW(Ii, Ij)||2 (3)

The objective functionH(W,M) in Eqn. (2) can be then
reformulated with tr(M) = ||L||2H, as

H(W,L) =
∑

(1− (||L∆FW(Ii, Ik)||2

− ||L∆FW(Ii, Ij)||2))+ + λ||L||2H
(4)

Thus, we can take M as a linear transform on the output of
the CNN-based feature representation. In literature, (Wein-
berger, Blitzer, and Saul 2005a) (Mignon and Jurie 2012)
also proposed to decompose the Mahalanobis distance ma-
trix for simplifying the distance metric learning. They at-
tempt to pursue a low-dimensional projection in Euclidean
space which embeds the distance metric while ensuring the
PSD constraint. However, their solution are complicated re-
quiring additional hypothesis. In this work, we implement
a fully connected layer to represent L, which is stacked
over the layers representing image features, making the dis-
tance metric tightly combined with the deep neural network.
Specifically, we treat L as the neuron weight of the layer,
and the network can represent LFW(Ii) by taking FW(Ii)
as the input. Then, the feature learning and the distance met-
ric can be thus jointly optimized in an end-to-end way.

In the following, we denote W+ = (W,L) for notation
simplicity. As the regularization term on L will be automati-
cally implemented by the built-in weight decay mechanisms
in CNN networks, we neglect this part in the objective func-
tion.

H(W+) =
∑

(1− (||∆FW+(Ii, Ik)||2

− ||∆FW+(Ii, Ij)||2))+
(5)

Integrating the metric learning and feature learning into
one CNN network yields several advantages. First, this leads
to a good property of efficient matching. In particular, for
each sample stored in a database, we can precomputed its
feature representation and the corresponding decomposed
Mahalanobis distance matrix. Then the similarity matching
in the testing stage can be very fast. Second, it integrates fea-
ture learning and metric learning by building an end-to-end
deep architecture of neural networks.

As discussed above, our model defined in Eqn. (5) jointly
handles similarity function learning and feature learning.
This integration is achieved by building a deep architec-
ture of convolutional neural networks, which is illustrated
in Figure 2. Our deep architecture is composed of two sub-
networks: feature learning sub-network and metric learning
sub-network. The feature learning sub-network contains two
convolution-RELU-pooling layers and one fully-connected
layer. Both the pooling layers are max-pooling operations
with the size of 3 × 3 and the stride size is set as 3 pix-
els. The first convolutional layer includes 32 kernels of size



5× 5× 3 with a stride of 2 pixels. The second convolutional
layer contains 32 filters of size 5×5×32 and the filter stride
step is set as 1 pixel. A fully-connected layer is followed and
it outputs a vector of 400 dimensions. We further normalize
the output vector of this fully-connected layer before it is fed
to the metric learning sub-network by yi = xi√

Σx2
i

, where

xi, yi denote the value of the ith neuron before and after
normalization respectively. Accordingly, the back propaga-
tion process accounts for the normalization operation using
the chain rule during calculation of the partial derivatives.
The metric learning sub-network includes only one fully-
connected layer. The neural layer outputs LFW(Ii). In this
way, the distance metric is tightly integrated with the feature
representations, and they can be jointly optimized during the
model training.

Learning Algorithm
Given a labeled dataset with M classes (persons) and each
class has N images, then the number of all possible mean-
ingful triplets is N ∗ (N − 1) ∗ (M − 1) ∗N ∗M . Even for
a dataset of moderate size, it is intractable to load all these
triplets into the limited memory for the model training. To
overcome this issue, we apply batch learning to optimize the
parameters, in which the network parameters are updated by
the gradient derived only from a small part of all the triplets
in each iteration.

Batch Process
In the batch learning process, we need to generate a sub-
set of triplets from all the possible triplets in each iteration.
The simplest method is to generate triplets randomly. How-
ever, this method makes the number of distinct images be ap-
proximately three times the number of the generated triplets
because each triplet contains three images, and the likeli-
hood of two triplets sharing the same image is very low.
This triplet generation method is very inefficient because
there are only a few distance constraints placed on the se-
lected images in each iteration. Instead, to capitalize on the
strength of relative distance comparison model, a more rea-
sonable triplet generation method would be one that satisfies
the two following conditions:

1. In each iteration, large number of triplets are generated
from small number of images to ensure the selected images
can be loaded to the memory while rich distance constraints
are posed on these images;

2. When increased numbers of iterations are executed, all
the possible relative distance constraints between any two
classes should be considered in the training process.

These two principles lead to our proposed triplet genera-
tion scheme as follows. In each iteration, we select a fixed
number of classes (persons), and construct the triplets only
using these selected classes. More precisely, for each image
in each class, we randomly construct a certain number of
triplets with the matched reference coming from the same
class and the mismatched references coming from the re-
maining selected classes. The complete mini-batch learning
process is presented in Algorithm 1.

Algorithm 1 Learning DARI with batch-process
Input:

Training images {Ii};
Output:

Network Parameters W
1: while t < T do
2: t← t+ 1;
3: Randomly select a set of classes (persons) from the

training set;
4: Construct a set of triplets from the selected classes;
5: Calculate the gradient ∆W for the generated triplets

using Algorithm 2;
6: Wt = Wt−1 − λt∆W
7: end while

Parameter Optimization
Under the mini-batch training framework, a key step is to
calculate the gradient for the triplet set in each iteration. A
straight method is to calculate the gradient for each triplet
according to the loss function, and sum these gradients to get
the overall gradient. But with this approach three separate
memory units and a network propagation would be needed
for every triplet. This is inefficient as there will be dupli-
cated network propagation for the same image, recalling that
for each batch we generate triplets from a known subset of
images. We now show that there exists an optimized algo-
rithm in which the computational load mainly depends on
the number of distinct images rather than the number of the
triplets.

It would be difficult to write the objective function in Eqn.
(5) directly as the sum of image-based loss items because it
takes the following form (for notation simplicity, we use W
to denote W+ in the rest of the paper):

H(W) =
∑

loss(FW(Ii), FW(Ij), FW(Ik))

Fortunately, because the loss function for a specific triplet is
defined by the outputs of the images in this triplet, the total
loss can also be considered as follows, where {I ′i} represents
the set of all the distinct images in the triplets and m denote
the size of the distinct images in the triplets.

H(W) = H(FW(I ′1), FW(I ′2), ..., FW(I ′i), ..., FW(I ′m))

By the derivative rule, we have the following equations,
where W l represents the network parameters, X l

i represents
the feature maps of the image I ′i at the lth layer and ∂H

∂W l (I ′i)
denote the partial derivative derived from image I ′i .

∂H
∂W l

= Σm
i=1

∂H
∂Xl

i

∂Xl
i

∂W l
= Σm

i=1
∂H
∂W l

(I ′i) (6)

∂H
∂Xl

i

=
∂H

∂Xl+1
i

∂Xl+1
i

∂Xl
i

(7)

Eqn. 6 shows that the overall gradient is the sum of the
image-based terms (image-based gradient). Eqn. 7 shows
that the partial derivative with respect to the feature maps
of each image can be calculated recursively. With Eqn. 6



and Eqn. 7, the gradients with respect to the network param-
eters can be obtained by summing the image based gradients
using the network back propagation algorithm. The central
premise is that we have computed the partial derivative of
the output layer’s activation for every image, which can be
easily obtained from Eqn. 5. Algorithm 2 gives the detailed
process. This optimized algorithm has two obvious merits:

1. We can conveniently use exiting deep learning imple-
mentations such as Caffe1 to train our model.

2. The number of network propagation executions can be
reduced to the number of distinct images in the triplets, a
crucial advantage for large scale datasets.

Algorithm 2 Calculating gradients for optimization
Input:

Training triplets T = {< Ii, Ij , Ik >};
Output:

The gradient of network parameters: ∆W = ∂H
∂W

1: Collect all the distinct images {I ′i} in T
2: for all I ′i do
3: Calculate FW(I ′i) by forward propagation;
4: end for
5: for all I ′i do
6: partialSum = 0;
7: for all triplet < Ii, Ij , Ik > do
8: if ∆d2(Ii, Ij , Ik) < 1 then
9: if I ′i=Ii then

10: partialSum+ = 2(FW(Ik)− FW(Ij))
11: else if I ′i=Ij then
12: partialSum− = 2(FW(Ii)− FW(Ij)
13: else if I ′i=Ik then
14: partialSum+ = 2(FW(Ii)− FW(Ik)
15: end if
16: end if
17: end for
18: Set the partial derivative with respect to the outputs

using partialSum
19: Calculate ∂H

∂W (I ′i) using back propagation;
20: Sum the partial derivative: ∆W+= ∂H

∂W (I ′i);
21: end for

Evaluations
Datasets and Implementation details. We conduct our exper-
iments using three challenging human verification datasets,
i.e. CUHK03(Li et al. 2014), CUHK01(Li, Zhao, and Wang
2012) and iLIDS(Zheng, Gong, and Xiang 2013) . All the
images are resized to 250 × 100 for the experiment. The
weights of the filters and the full connection parameters are
initialized from two zero-mean Gaussian distributions with
standard deviation 0.01 and 0.001 respectively. The bias
terms were set with the constant 0. During the training, we
select 60 persons to construct 4800 triplets in each iteration.
Before feeding to the network, the images are mirrored with
0.5 probability and cropped to the size 230 × 80 at the cen-
ter with a small random perturbation to augment the train-
ing data. We implement our learning algorithm based on the

1http://caffe.berkeleyvision.org/

Caffe framework, where we revise the data layer and loss
layer to generate the triplets and apply our loss function. We
execute the code on a PC with GTX780 GPU and quad-core
CPU. And stop the training process when there are less than
10 triplets whose distance constraints are violated, i.e. the
distance between the matched pair is greater than the dis-
tance between the mismatched pair.

Evaluation Protocol. We adopt the widely used cumula-
tive match curve (CMC) approach (Gray, Brennan, and Tao
2007) for quantitative evaluation. We follow the standard
setting to randomly partition each dataset into training set
and test set without overlap. In each testing, the test set is
further divided into a gallery set and a probe set without
overlap for 10 times. A rank n rate is obtained for each time,
and we use the average rate as the final result.

Component analysis. In order to demonstrate how the
joint optimization of distance metric with feature represen-
tation contributes to performance, we implement a simpli-
fied model for comparison by discarding the distance metric
learning(i.e. the last neural layer). In this implementation,
we only optimize CNN-based feature representation by the
back-propagation method.

Experiments on CUHK03 Dataset. This benchmark (Li
et al. 2014) is the largest one up to date, which contains
14096 images of 1467 pedestrians collected from 5 differ-
ent pairs of camera views, making it an ideal place for deep
learning. Each person is observed by two disjoint camera
views and has an average of 4.8 images in each view. We
follow the standard setting of using CUHK03 to randomly
partition this dataset for 10 times without overlap, and a
training set (including 1367 persons) and a test set (includ-
ing 100 persons) are obtained. In each testing, the testing set
is further randomly divided into a gallery set of 100 images
(i.e. one image per person) and a probe set (including im-
ages of individuals from different camera views in contrast
to the gallery set) without overlap for 10 times.

We introduce several types of state-of-the-arts in this ex-
periment. First, we adopt Local Distance Metric Learn-
ing (LDM) (Guillaumin, Verbeek, and Schmid 2009), the
learning-to-rank method (RANK) (McFee and Lanckriet
2010) for comparison, which learn distance metrics based
on a fixed feature representation. Following their imple-
mentation, the handcrafted features of dense color his-
tograms and dense SIFT uniformly sampled from patches
are adopted. Two methods especially designed for person
re-identification are introduced in this experiment: KISSME
(Kostinger et al. 2012), eSDC (Zhao, Ouyang, and Wang
2013). Moreover, we compare with a recently proposed
deep learning method, DRSCH (Zhang et al. 2015), FPNN
(Li et al. 2014) and IDLA (Ahmed, Jones, and Marks
2015). DRSCH (Zhang et al. 2015) learns hashing code
with regularized similarity for image retrieval and person re-
identification. FPNN (Li et al. 2014) learns pairs of filters to
extract person representation and IDLA (Ahmed, Jones, and
Marks 2015) is also recently proposed deep learning method
for person re-identification.

The results are shown in Fig. 3 (a). It is encouraging to
observe that our approach achieves a new state-of-the-art
on CUHK03. Note that without the joint optimization of
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Figure 3: Quantitative results on the three datasets: (a) CUHK03, (b) CUHK01 and (c) iLIDS dataset. Our DARI framework
leads superior performances over existing state-of-the-arts overall. Note that “Ours-nj” represents a simplified version of our
model, i.e. discarding the joint optimization of distance metric and CNN-based feature.

distance metric and representation, the performance (i.e., “
Ours-nj”) degenerates from 55.4% to 45.4%.

Experiments on CUHK01 Dataset.
CUHK01 contains 971 individuals, each of which has two

samples captured by two disjoint camera views. We partition
this dataset into a training set and a testing set exactly fol-
lowing (Li et al. 2014)(Ahmed, Jones, and Marks 2015): 100
persons are used for testing and the remaining 871 persons
for training. Each person has two images for each view and
we randomly select one into the gallery set. Single-shot is
adopted in the evaluation of CMC curve.

In addition to comparing with the methods adopted in the
experiment on CUHK03, we introduce a recently proposed
method which also addresses the interaction of representa-
tion learning and metric Learning (denoted as L + X) (Liao
et al. 2015).

Fig. 3 (b) shows the comparison of our DARI framework
with other approaches. DARI achieves a new state of the art,
with a rank-1 recognition rate of 65.95%. The gain of the
joint optimization of distance metric and CNN-based feature
is also clear on this dataset, 65.95% over 57.7%.

Cross-dataset Evaluation
The iLIDS dataset (Zheng, Gong, and Xiang 2013) was

constructed from video images captured in a busy airport ar-
rival hall. It has 119 pedestrians, totaling 479 images. We
conduct a challenging task, i.e. cross-dataset task using this
dataset, which accords with the real-world surveillance ap-
plications. Specifically, we randomly split this dataset into
a gallery set and a probe set: the gallery contains only one
image of each pedestrian and the remaining images form the
probe set. Our model is trained on CUHK03 and tested on
this iLIDS dataset without fine-tuning the parameters.

We compare our DARI with several existing methods
such as Xing’s (Xing et al. 2002), and MCC (Globerson and
Roweis 2005). They all use an ensemble of color histograms
and texture histograms as the feature representation. Note
that the results reported by these competing methods are
generated by a different setting: both of the training and the
testing data are from this dataset.

Fig. 3 (c) shows the quantitative results. Our superior per-
formance over other approaches demonstrate the good gen-
eralization power of DARI. On the other hand, without in-

corporating Mahalanobis distance matrix, the performance
(i.e. “Ours-nj” in ) clearly degenerates from 42.8% to 36.9%,
which highlights the significance of the joint optimization of
feature representation and distance metric. In the following,
we further evaluate our approach under different implemen-
tation setting on iLIDS.

Data Augmentation Strategy. We crop the center of
the images with random perturbation to augment the train-
ing data. This mechanism can effectively alleviate the over-
fitting problems. Without this augmentation scheme, the top
1 performance drop by about 30 percent relatively.

Triplet Generation Scheme. We compared two genera-
tion strategy. In the first strategy, we select 60 persons for
each iteration and only construct 60 triplets for these per-
sons. In the second strategy, we select the same number of
persons while constructing 4800 triplets for these persons.
As expected by our analysis, the learning process of the
first strategy is much slower than the second strategy and
when the learning process of the second strategy converges
in 7000 iterations, the performance of the first strategy only
achieves about 70 percent of the second strategy.

Conclusion
We have presented a novel deep learning framework incor-
porating Mahalanobis distance matrix with convolutional
neural networks. In future work, we will extend our ap-
proach for larger scale heterogeneous data, thereby explor-
ing new applications.

References
[Ahmed, Jones, and Marks 2015] Ahmed, E.; Jones, M.; and
Marks, T. K. 2015. An improved deep learning architecture
for person re-identification. In CVPR. IEEE.

[Bengio 2009] Bengio, Y. 2009. Learning deep architec-
tures for ai. Foundations and Trendsr in Machine Learning
2(1):1–127.

[Cai et al. 2010] Cai, X.; Wang, C.; Xiao, B.; Chen, X.; and
Zhou, J. 2010. Deep nonlinear metric learning with indepen-
dent subspace analysis for face verification. In ACM MM,
749–752.



[Chechik et al. 2012] Chechik, G.; Sharma, V.; Shalit, U.;
and Bengio, S. 2012. Large scale online learning of image
similarity through ranking. JMLR 11:1109–1135.

[Chopra, Hadsell, and LeCun 2005] Chopra, S.; Hadsell, R.;
and LeCun, Y. 2005. Learning a similarity metric discrim-
inatively, with application to face verification. In CVPR,
539–546.

[Ding et al. 2015] Ding, S.; Lin, L.; Wang, G.; and Chao, H.
2015. Deep feature learning with relative distance compari-
son for person re-identification. Pattern Recognition.

[Globerson and Roweis 2005] Globerson, A., and Roweis,
S. T. 2005. Metric learning by collapsing classes. In NIPS,
451–458.

[Gray, Brennan, and Tao 2007] Gray, D.; Brennan, S.; and
Tao, H. 2007. Evaluating appearance models for recog-
nition, reacquisition, and tracking. In PETS. Citeseer.

[Guillaumin, Verbeek, and Schmid 2009] Guillaumin, M.;
Verbeek, J.; and Schmid, C. 2009. Is that you? metric
learning approaches for face identification. In ICCV,
498–505.

[Hirzer et al. 2012] Hirzer, M.; Roth, P. M.; Köstinger, M.;
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