
70	 May/June 2017	 Published by the IEEE Computer Society� 0272-1716/17/$33.00 © 2017 IEEE

Feature Article

ColorSketch: A Drawing
Assistant for Generating Color
Sketches from Photos
Guanbin Li and Sai Bi ■ University of Hong Kong

Jue Wang ■ Adobe Research

Yingqing Xu ■ Tsinghua University

Yizhou Yu ■ Zhejiang University

Color sketching is an abstract artistic
style that attempts to augment sparse
pencil strokes with casual colored brush

strokes. The gouache paints used in these sketches
generate less visible brush marks than oil paint-

ings and are less fluid than wa-
tercolors. As an example, Elisha
Cooper, a well-known writer
and children’s book author, has
published multiple sketchbooks
recording his visits to places
such as California1 and New
York City.2 As Figure 1 illus-
trates, the colored brush strokes
in such sketches provide rich
visual information and create a
vivid impression of the objects
and scenes they depict.

Many systems have been pro-
posed to help users draw pencil
sketch lines using the under-
painting technique, which con-

sists of drawing on a semitransparent canvas over
the reference photo.3,4 However, even with good
sketch lines, novice users still encounter difficul-
ties when creating a color sketch, such as deciding
which gouache paints to use to approximate the
pixel colors in a photo and which subregions to

intentionally leave blank and which to fill with
colored brush strokes. To help novice users, we
developed ColorSketch, a sketching interface that
automatically resolves stylization issues related to
gouache painting colors, brush layouts, and region
filling styles given user-provided sparse pencil
strokes. In a live sketch session, to preserve artis-
tic freedom and expressiveness, our system gives
the user complete control over pencil strokes, in-
cluding their location, shape, drawing order, and
level of abstraction. While the user is drawing,
our system analyzes the existing sketch layout
and automatically generates color-brushed regions
that are compatible with the pencil sketches. In
this way, color sketches created using our inter-
face are a mix of user-provided abstraction and
computer-generated stylization. (See the “Related
Work in User-Assisted Drawing” sidebar for ear-
lier work in this area.)

Given an input photo, producing a color sketch
using our system consists of two stages: an offline
automatic preprocessing stage and an online draw-
ing stage carried out with the sketching interface.
In the offline stage, a series of preprocessing steps
are performed on the reference photo, including
hierarchical image segmentation, occlusion con-
tour detection, and depth-map generation. Dur-
ing the online stage, the user draws pencil strokes,

The interactive drawing
system ColorSketch can help
novice users generate color
sketches from photos. To
preserve artistic freedom and
expressiveness, the proposed
system gives users full control
over pencil strokes, while
automatically augmenting
pencil sketches using color
mapping, brush stroke
rendering, and blank area
creation.

g3lix.indd 70 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

	 IEEE Computer Graphics and Applications� 71

and our system provides real-time autocompletion
suggestions, which are displayed as shadow strokes
that the user can easily accept. It also analyzes
pencil strokes in real time to infer image regions
the user implicitly defines while sketching and au-
tomatically adds stylization effects to such regions.
The stylization effects include region boundary
smoothing, pixel to gouache color mapping, brush
stroke rendering according to an automatically
computed layout, and blank area creation accord-
ing to automatic occlusion analysis results.

Technically, although portions of ColorSketch
follow the basic framework of a painting system,
our approaches for computing the center, orienta-
tion, color, and order of brush strokes are novel,
allowing spatially coherent brush stroke place-
ment and rendering. The resulting brush marks
are noticeable, but not too obvious, mimicking
the style of gouache paintings. In addition, blank
area is an important feature of color sketches.
Our blank area creation technique generates re-
sults resembling those drawn by artists. We tested
our interface in a user study. Comparisons be-
tween sketches produced with and without our
system indicate that users, especially novice ones,
can generate much better color sketches more ef-
ficiently with our system than using traditional
manual tools.

System Overview
When developing our computer-assisted color
sketching system, we distilled a few principles from
sketchbooks1,2 and artist sketches (see Figure 1):

■■ Pencil strokes delineate object contours and the
boundaries of salient regions. They are sparse
and are approximately aligned with such con-
tours or boundaries. Artists usually draw con-
tours of large regions first and then gradually
add smaller ones.

■■ Regions are brushed with gouache paints in-
stead of being filled with solid colors. The brush
stroke sizes vary with the size of the region. For
instance, smaller regions are filled with smaller
brush strokes. Gouache paints are more opaque
than watercolors, and they generate less visible
brush marks than those in oil paintings.

■■ The color of gouache paints used for each region
deviates significantly from the original pixel col-
ors within the same region. It is typically brighter
and less saturated than the original pixel colors,
while its hue remains approximately the same.

■■ Many regions are not completely filled with
brush strokes. Instead, some have border areas
intentionally left blank. Blank areas increase

spatial nonuniformity and give a pleasant look.
They are primarily used to highlight areas such
as those near occlusion boundaries on partially
occluded objects or regions.

The ColorSketch system workflow thus incor-
porates elements unique to the color sketching
technique (see Figure 2). Figure 3 shows some
sample color sketches generated with our Color-
Sketch interface.

As we explained earlier, producing a color sketch
from a reference photo using our system consists
of two stages: an offline preprocessing stage and an
online interactive drawing stage. In the preprocess-
ing stage, our system performs contour detection
and hierarchical image segmentation to extract
visual guides that emphasize the boundaries of
different objects in the photo. It automatically
generates these guides in the form of thin strokes.

During the online stage, as Figure 2b shows,
the user draws sparse pencil strokes to delineate
object shapes using the under-painting technique.
This is the main user input to our system. We give
the user sufficient freedom to choose appropriate
levels of abstraction in different parts of the image.
To facilitate contour sketching, our interface dy-
namically displays a stroke automatically extracted

Figure 1. Example color sketches manually drawn by artists. Color
sketching is an abstract artistic style that utilizes sparse details,
outlining, and white space to highlight scene objects.

g3lix.indd 71 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

72	 May/June 2017

Feature Article

Researchers working in nonphotorealistic rendering
(NPR) have extensively studied automatically convert-

ing an image into a stylized rendering. The various sys-
tems proposed focus on different styles, such as pencil and
color pencil drawing,1 pen and ink illustration,2 oil paint-
ing,3 and watercolor.4 These approaches aim at automati-
cally generating high-quality rendering results, with little
or no user interaction. In contrast, our system is a drawing
assistance tool that supports user interaction.

Various interactive systems have been proposed to help
users draw sketches or create digital art, either for general
cases5,6 or specific objects such as human faces7 or 3D
models.8 Our work was partially inspired by ShadowDraw,
a system that guides freeform sketching.9 As the user
draws, ShadowDraw dynamically updates a shadow image
underlying the user’s strokes as a guide for drawing object
contours. The shadow image is generated by searching
through a large image dataset. Other researchers have
explored using crowdsourcing to generate sketch guid-
ance.10,11 In contrast, our system uses a novel, autocomple-
tion mechanism to help users sketch object contours,
using a single reference image.

Recently, Emmanuel Iarussi and his colleagues pre-
sented a drawing tool that provides automated guid-
ance with model photographs to help people practice
traditional drawing-by-observation techniques.5 Qingkun
Su and his colleagues proposed EZ-Sketch, a system
that helps users draw accurate pencil sketches over an
image.12 It employs a multilevel optimization framework
to adjust the positions of user strokes for improved ac-
curacy. Our system adopts a different strategy, online
autocompletion guidance, to help users draw more ac-
curately and efficiently. Furthermore, our system focuses
mainly on generating stylized color regions given the
sketch lines.

Doug DeCarlo and Anthony Santella introduced a
computational approach to stylizing and abstracting pho-
tographs.13 Their system uses mean shift to segment an
image into coherent regions and transforms them into a
style that features bold edges and constant-color regions.
Jue Wang and his colleagues extended this approach to
video by treating a video as a space-time volume and seg-
menting it into contiguous blobs using spatial-temporal
mean shift segmentation.14 However, the advocated style
in these approaches differs from color sketching. The
constant color adopted for a region is simply the average
pixel color in that region, and there are no blank areas
within the regions. In contrast, our system performs color
stylization, which maps pixel colors to more meaningful
painting colors.

The style adopted by Fang Wen and his colleagues is
perhaps most similar to color sketching.15 Nevertheless,
they do not paint brush strokes within regions. We also
introduce a more systematic approach that creates blank

areas near occlusion boundaries to highlight regions.
More importantly, their system produces semiautomatic
results, whereas our system is a drawing assistant that
gives the user artistic freedom and control.

References
	 1.	 C. Lu, L. Xu, and J. Jia, “Combining Sketch and Tone

for Pencil Drawing Production,” Proc. Int’l Symp. Non-

photorealistic Animation and Rendering, 2012, pp. 65–73.

	 2.	 M.P. Salisbury et al., “Orientable Textures For Image-Based

Pen-and-Ink Illustration,” Proc. 24th Ann. Conf. Computer

Graphics and Interactive Techniques (SIGGRAPH), 1997, pp.

401–406.

	 3.	 K. Zeng et al., “From Image Parsing to Painterly Rendering,”

ACM Trans. Graphics, vol. 29, no. 1, 2009, article no. 2.

	 4.	 A. Bousseau et al., “Interactive Watercolor Rendering with

Temporal Coherence and Abstraction,” Proc. 4th Int’l Symp.

Non-photorealistic Animation and Rendering (NPAR), 2006,

pp. 141–149.

	 5.	 E. Iarussi, A. Bousseau, and T. Tsandilas, “The Drawing

Assistant: Automated Drawing Guidance and Feedback from

Photographs,” Proc. 26th Ann. ACM Symp. User Interface

Software and Technology (UIST), 2013, pp. 183–192.

	 6.	 L. Benedetti et al., “Painting with Bob: Assisted Creativity for

Novices,” Proc. 27th Ann. ACM Symp. User Interface Software

and Technology (UIST), 2014, pp. 419–428.

	 7.	 D. Dixon, M. Prasad, and T. Hammond, “iCanDraw: Using

Sketch Recognition and Corrective Feedback to Assist a User

in Drawing Human Faces,” Proc. SIGCHI Conf. Human Factors

in Computing Systems (CHI), 2010, pp. 897–906.

	 8.	 S. Grabli et al., “Programmable Rendering of Line Drawing

from 3D Scenes,” ACM Trans. Graphics, vol. 29, no. 2, 2010,

article no. 18.

	 9.	 Y. Lee, C. Zitnick, and M. Cohen, “ShadowDraw: Real-Time

User Guidance for Freehand Drawing,” ACM Trans. Graphics,

vol. 30, no. 4, 2011, article no. 27.

	10.	 Y. Gingold et al., “Diamonds from the Rough: Improving

Drawing, Painting, and Singing via Crowdsourcing,” Proc.

AAAI Workshop on Human Computation (HCOMP), 2012.

	11.	 A. Limpaecher et al., “Real-Time Drawing Assistance

through Crowdsourcing,” ACM Trans. Graphics, vol. 32, no.

4, 2013, article no. 54.

	12.	 Q. Su et al., “EZ-Sketching: Three-Level Optimization for

Error-Tolerant Image Tracing,” ACM Trans. Graphics, vol. 33,

no. 4, 2014, article no. 54.

	13.	 D. DeCarlo and A. Santella, “Stylization and Abstraction of

Photographs,” ACM Trans. Graphics, vol. 21, no. 3, 2002, pp.

769–776.

	14.	 J. Wang et al., “Video Tooning,” ACM Trans. Graphics, vol.

23, no. 3, 2004, pp. 574–583.

	15.	 F. Wen et al., “Color Sketch Generation,” Proc. 4th Int’l

Symp. Non-photorealistic Animation and Rendering, 2006, pp.

47–54.

Related Work in User-Assisted Drawing

g3lix.indd 72 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

	 IEEE Computer Graphics and Applications� 73

during the preprocessing stage as a suggestion
near the stroke the user is drawing (see Figure 2e).
The user can choose to accept the stroke or ig-
nore it and continue to draw. Whenever the user
finishes a new pencil stroke or revises an exist-
ing stroke, the system automatically updates the
final sketching result by adjusting and rendering
color regions.

Given that the casual user strokes may not form
closed regions, our system automatically infers
closed regions given the existing pencil strokes
(see Figure 2c). It further computes the color of
the gouache paints that should be applied in each
region (see Figure 2d) as well as the layout and
the rendering order of the brush strokes that will
be used for filling it (Figure 2g). Our system also
determines the areas that should be left blank ac-
cording to occlusion boundaries detected in the
preprocessing stage (see Figure 2f).

Preprocessing
Given an input image, our system first scales it
so that the length of the longer side equals 400
pixels and automatically segments it into coher-
ent regions. The boundaries of these regions are
used to generate autocompletion suggestions in
the online drawing stage. The precomputed re-
gions are obtained using a hierarchical segmenta-
tion algorithm.5 We chose this algorithm because
of its high accuracy on the Berkeley Segmentation
Benchmark6 with respect to manually produced
ground truth. In addition, this algorithm can gen-
erate region boundaries hierarchically with differ-
ent levels of details.

In our system, we run the source code provided in
earlier work5 and extract region boundaries at three
levels according to three different threshold (0.15,
0.30, and 0.50) in the generated ultrametric con-
tour map (UCM), as Figure 4 shows. The extracted

(a)

(b) (c) (d)

(e) (f) (g)

Figure 2. ColorSketch system workflow: (a) reference image, (b) contour drawing, (c) region detection, (d) color stylization, (e)
system contour guides (preprocessing), (f) blank area insertion, and (g) brush placement and rendering.

Figure 3. Sample color sketches generated with our ColorSketch interface. The top row shows reference images. The first two
sketches in the bottom row were drawn by novice painters, and the last two sketches were drawn by skilled painters.

g3lix.indd 73 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

74	 May/June 2017

Feature Article

boundaries are further divided into segments at T-
junctions and local maxima of curvature.7

Color sketch artists tend to leave blank areas
near boundaries of occluded areas. To quickly
handle occlusion boundaries during an interactive
drawing session, we precompute them and a depth
map from the input image using a scene-based
occlusion reasoning method proposed in earlier
work,8 using the provided source code and param-
eters setting. When the user adds a new pencil
stroke during an interactive session, if it is part of
a precomputed occlusion boundary or if there is a
large difference in depth values along the shared
boundary between two adjacent regions, our sys-
tem automatically leaves a blank area in the oc-
cluded region. This rule applies to all user-defined
regions except for the sky and the ground plane,
both of which can be detected using the model
proposed in earlier work.8

Interactive Color Sketching
The ColorSketch’s user interface consists of a tool
bar and two side-by-side windows. The left window
is used for drawing; it shows the reference photo
overlaid with a translucent canvas. The right out-
put window displays the automatically completed
color sketching result and updates it in real time.
The user can also fine-tune the result directly in
the output window.

To start drawing a color sketch, the user chooses
the pencil tool and draws line strokes on the can-
vas, using the underneath reference photo as a
guide. When the user is drawing a stroke, our sys-
tem continuously analyzes it in the background,

searching through a set of strokes automatically
extracted during preprocessing to find the best
candidate stroke that the user is most likely meant
to draw. ColorSketch then shows this candidate
stroke as a shadow on the canvas. The user can
directly accepted it using a keyboard shortcut.
The accepted shadow strokes are usually more
accurately positioned than the user’s unfinished
strokes. In this way, our system can greatly im-
prove the user’s drawing efficiency.

When there are multiple candidate strokes near
the unfinished stroke, the system chooses one ac-
cording to the following rules:

1.	 The degree of consistency between the tangen-
tial directions of the candidate stroke and the
unfinished stroke is less than or equal to 0.5.

2.	 If more than one candidate stroke exists under
rule 1, the number of overlapping pixels be-
tween the two strokes is considered. If all the
candidate strokes in this stage have overlap-
ping pixels less than or equal to 50, the system
chooses the one with the largest overlap. Oth-
erwise, it chooses the one according to rule 3.

3.	 The total length of the candidate stroke is con-
sidered, and longer strokes are preferred.

Once a new stroke is finished, our system checks
whether it can be joined together with the existing
ones to illustrate a closed region. Given that casual
strokes may never form a perfect closed shape, we
implicitly join nearby strokes by connecting the
endpoints of strokes that are very close. Specifi-
cally, we run a nearest-neighbor search on the

Reference image

Level 1: UCM = 0.30Level 1: UCM = 0.15 Level 1: UCM = 0.50

Split edges of level 1 Split edges of level 2 Split edges of level 3

Figure 4. An example of hierarchical image segmentation and boundary segment (stroke) generation. Segmentations at three
different levels of detail are extracted from the hierarchical segmentation result, and region boundaries therein are further
divided into segments at T-junctions and local maxima of curvature.

g3lix.indd 74 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

	 IEEE Computer Graphics and Applications� 75

two endpoints of the new stroke. The new stroke
is joined to an existing stroke if the distance be-
tween their closest endpoints is below a prescribed
threshold (eight pixels in our system). If multiple
candidates satisfy this threshold, we simply calcu-
late the mean position of their related endpoints
and deform all strokes so that their endpoints can
reach this mean position.

At any time, these joined strokes on the canvas
divide the image space into one or more regions.
Every region is surrounded by a sequence of joined
strokes forming a closed loop. Once all regions
have been detected, our system completes the styl-
ization of these regions automatically in real time
by adding colored brush strokes and blank areas
and updates the result in the output window.

Our interface provides additional tools to help
users fine-tune the sketching results. These tools
include a virtual pencil to insert regions with
boundaries that do not need to be emphasized with
visible pencil strokes, a highlighting tool that lets
the user manually add white highlight areas inside
a region, and a brush tool useful for fine-tuning
automatically placed brush strokes and blank areas.

Region Boundary Smoothing
We have observed that pencil strokes drawn by
artists are relatively smooth, but strokes drawn by
average users are full of zigzags. To improve their
quality, we propose a smoothing scheme that pro-
cesses the complete boundary of one region at a
time rather than smoothing individual strokes.

Once all regions have been detected, our system
treats all the strokes lying on region boundaries
as a network of boundary curves. These bound-
ary curves seamlessly join together at T-junctions
surrounded by three or more regions. T-junctions
divide the boundary of every region into seg-
ments. Each boundary segment is smoothed with
the Gaussian filter, which requires a supporting
neighborhood. The supporting neighborhood at
a boundary segment’s endpoints extends into its
neighboring segments.

Note that a boundary segment is typically
shared by two adjacent regions, and its neighbor-
ing segments are different along the boundary
of these two regions. Therefore, the smoothing
result of a boundary segment depends on its re-
gion membership. To fix this ambiguity, we assign
the boundary segment to the larger region of the
two. At the beginning of the region-based bound-
ary smoothing step, all the regions are sorted into
a decreasing order of their area, and smoothing
is applied sequentially to these regions following
this order. When this process reaches one region,

we only need to smooth its remaining boundary
segments that have not been smoothed earlier. All
points on image borders are fixed during smooth-
ing. Figure 5a demonstrates the result before and
after boundary smoothing.

Color Stylization
As we discussed earlier, the color of gouache paints
used for each region is decided by a base color as
well as brush effect rendering, and it deviates sig-
nificantly from the original pixel colors within
the same region. To determine the correct base
painting color for every region during interactive
sketching, we use a machine-learning approach.
For each region, the average pixel color of the pix-
els inside it and the corresponding painting color
determined by artists form a pair.

Given a sufficient number of color pairs col-
lected in this way, we can create a mapping func-
tion that converts the original average pixel color
to its corresponding painting color. For this map-
ping function, we collected 35 images and their
corresponding color sketches drawn by a few art-
ists. We manually marked 500 pairs of regions in
them. We calculated an average color for each re-
gion in the HSV color space, resulting in 500 pairs
of average colors. By analyzing these color pairs us-
ing linear regression, we found that a linear trans-
formation can effectively describe the relationship
between the original color and the drawn color.

Following this discovery, we fit a global affine
transform connecting an original color R and its
corresponding painting color R′: R′ = MR, where M
is the transformation matrix. Noting that the hue
channel is periodic on a circle, to make the model

(a)

(b)

Figure 5. Region boundary smoothing and color stylization: (a) sample
pencil strokes with (right) and without (left) smoothing and (b) region
color before (left) and after (right) stylization.

g3lix.indd 75 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

76	 May/June 2017

Feature Article

more accurate, given the hue value of a pair train-
ing sample, denoted as (ha, hb), if |ha – hb| > 180,
we modified one of the hue value to ensure that
the absolute distance is less than 180:

h h h h
h h h h

a a a b

b b a b

= + ≤
= + >








360
360

if
if .� (1)

The training dataset follows this matrix:

H R

S R

V R

′()
′()
′()





























=
−

1

0 96 0 5. . 11 0 175 4 11
0 02 0 53 0 11 19 09
0 01 0 031 0 82 41

. .
. . . .
. . .

−
− −
− ..5

1



















=

()
()
()























H R

S R

V R 




.

When calculating the transformed color using
the learned matrix, if the result of hue value is out
of range, it should be moduloed by 360 because it
is periodic. The example in Figure 5b demonstrates
the effectiveness of our color stylization method.

Brush Stroke Placement and Rendering
In a color sketch, every region needs to be com-
pletely or partially filled with colored brush strokes.
To do so automatically, we developed a two-step
method. In the first step, our system determines
the center and orientation of every brush stroke.
It then determines the actual color of every brush
and renders these brushes in the region.

In the first step, we compute a smooth orienta-
tion field inside the region and perform anisotro-
pic vector quantization to finalize the center and
orientation of all brush strokes within the region.
Specifically, we calculate the unit tangent vector
at every pixel along the boundary of the region
and propagate these tangent vectors toward the
interior of the region using a distance field of the
boundary and the fast marching method.9 That is,
each interior pixel receives a unit vector from the
nearest boundary pixel. Afterward, we smooth the
propagated vector field with a large Gaussian ker-
nel to make the pixel-wise orientations spatially
coherent. We noticed that, in some special cases,
the direction field of some pixels may become (0,
0) after smoothing. In this case, we simply set
them as an initial direction—that is, (x = 0.57, y =
0.81), as suggested by some skilled painters.

Because every straight brush stroke can be ap-
proximated as a thin ellipse, to obtain a brush
stroke placement scheme within the region, we
perform anisotropic vector quantization on top
of the orientation field to decompose the region
into a number of elongated cells. Our anisotro-
pic vector quantization is based on an anisotropic

distance, which also tries to make the pixel colors
within each cell as uniform as possible. Given the
location (xc, yc), orientation (u, v), and color hc at
a pixel C, the anisotropic distance from another
pixel P = (x, y) with orientation (u′, v′) and color
h is defined as follows:

d P C
x
a

y
b

ha , .()= ×
′






 +

′






 +0 5

2 2 −−








+







′′






 +

′

h
w

x
a

c
2

2 ′′






 +

−















y
b

h h
w

c
2 2

,� (2)

where (x′, y′) are the coordinates of P in the local
frame at C and (x″, y″) are the coordinates of C
in the local frame at P. In these two local frames,
the x axis is aligned with the direction of (u, v)
and (u′, v′), respectively; a and b are respectively
the length of the major and minor axes of the el-
lipse approximating the brush strokes; and w is
a constant balancing the relative importance be-
tween the location and color differences between
the two pixels.

In our experiments, w is always set to 10a. In
practice, anisotropic vector quantization is imple-
mented as an iterative process similar to K-means
clustering, except that the Euclidean distance in
K-means is replaced with the anisotropic distance
and the orientation at the center of a cell is taken
from the above orientation field. This iterative pro-
cess gives rise to nonoverlapping elongated cells in
the end. The location and orientation at the center
of these elongated cells are taken as the center and
orientation of the brush strokes (see Figure 6a).
The shapes of the brush strokes in our system are
taken from a database of 450 colored brush strokes
painted by artists, not from the cells in the aniso-
tropic vector quantization.

We can compare our brush placement strategy
with one that is commonly adopted in syntheti-
cally generated oil paintings, where brush centers
are sampled either randomly or over a coarse grid,
and orientations orthogonal to image gradients
are taken as brush orientations.10 As Figure 7
shows, our strategy generates more spatially co-
herent results that are consistent with gouache
painting styles.

Our system further determines the actual
painting color of every brush according to the
color mapping we discussed earlier. To make the
brush marks less visible, we need to control the
amount of permissible color variation within a re-
gion. Let ∆H, ∆S, and ∆V be the maximum varia-
tion permitted for the three channels of the HSV

g3lix.indd 76 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

	 IEEE Computer Graphics and Applications� 77

color space respectively. We empirically found that
∆H = 8, ∆S = 20, and ∆V = 12 (out of the largest
possible range of 100) yield realistic color varia-
tions in colored sketches. Let (Have, Save, Vave) be
the average of the original pixel colors in the entire
region and (Hi, Si, Vi) be the average color of pixels
covered by the ith brush stroke. If (Hi, Si, Vi) is out-
side the maximum permissible range, we perform
additional scaling to suppress the dynamic range
of brush colors as follows:

H
H

H H
H H

H H H

H
H H

i

i
i

i

* min=
+

−
−

∆ <

+
−

ave
ave

ave
ave

ave

if

aave

ave
aveif

H H
H H Hi

max −
∆ >











� (3)

where Hmin = miniHi and Hmax = maxiHi. The same
operations are applied to the S and V channels.
Because the hue channel is periodic on a circle,
the difference between two hue values should be
calculated in a recurring mode. Specifically, if |Hi
– Have| > 180, they should be updated according
to Equation 1 before operating on Equation 3, and
if Hi

* is out of range, it should be moduloed by
360. After such color adjustment, each new color
is mapped to a painting color using the mapping
we described earlier. We then search our brush
database for a brush stroke with the most similar
color (see Figure 6b).

Gouache paints are mostly opaque, so different
rendering orders of the same set of brush strokes
could give rise to different sketching results. Thus,
the final rendering order of previously computed
brush strokes becomes important. When artists
draw a set of brush strokes to color a region, in-
stead of following a random order, they typically
brush one subregion first before moving to the
next. Inspired by this observation, we order the
brush strokes as follows. We first compute the av-
erage orientation of all computed brush strokes
within a region. Again, if in some extreme cases,
the average orientation becomes (0, 0), we simply
set it as an initial direction (x = 0.57, y = 0.81).
We then project the centers of all strokes onto the
line defined by the average orientation and sort
all strokes according to the position of their pro-
jections on the line. Finally, all computed brush
strokes are rendered following this order (from
bottom left to top right projections), and feath-
ering is performed within a narrow band at the
boundary of every stroke to make the transition
less noticeable. When two strokes overlap each
other, the later added stroke simply covers the
previous ones.

Blank Area Creation
Some regions in a color sketch are intentionally
left blank to indicate occlusion or highlight par-
ticular regions. Blank areas can either appear in-
side a region or next to a portion of the region
boundary. Our system can automatically detect
occlusion boundaries and create blank areas next
to them. It also provides an interactive tool to let
users create a blank area around a highlight in
the reference photo. In both scenarios, the actual

(a)

(b)

Figure 6. Brush stroke placement and rendering. (a) In the sample
anisotropic clustering result in the sky region, the white circles are
cluster centers, and the white lines represent their orientations.
Cluster centers and orientations are directly taken as brush centers
and orientations. (b) These sample brush strokes are from our brush
database of 450 colored brush strokes painted by artists.

(a) (b)

Figure 7. Comparison of brush-placement strategies: (a) brush
placement with our anisotropic clustering and (b) brush placement
using random locations as brush centers and directions orthogonal to
image gradients as brush orientations. Our brush placement strategy
generates more spatially coherent results.

g3lix.indd 77 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

78	 May/June 2017

Feature Article

shape of the blank areas is automatically deter-
mined by the solution of a Poisson equation.

As we discussed earlier, for two adjacent regions,
if one region is occluded by the other, artists tend
to leave a blank area near the boundary of the oc-
cluded region, except for large background regions
such as the sky and ocean. To simultaneously cre-
ate blank areas near occlusion boundaries as the
user draws, we use the precalculated depth map
to determine occlusion relationships between ad-
jacent regions. When a new pencil stroke is de-
termined to be part of a precomputed occlusion
boundary or if there is a depth discontinuity
along the shared boundary between two adjacent
regions, our system automatically creates a blank
area in the partially occluded region near the oc-
clusion boundary. Figure 8 shows an example of
this effect produced by our system.

Let S be a region inside the reference photo I.
Suppose we are to create a blank area next to a
portion of the boundary of S denoted as ∂S′. We
define a scalar function f over S such that it takes
large values along ∂S′ and supports a smooth tran-
sition to smaller values along ∂S – ∂S′. Given f and
a threshold τ, S can be easily divided into two sub-
regions. In one of the subregions, f is greater than
τ, and it is smaller than τ in the other. The former
subregion should be left blank because it is next to
∂S′. In practice, we obtain the function f by solving
the following equation:

s.t.

∆ =

()=
()= ()

∈∂ ′

∈∂ −∂ ′

f

f c c

f p I p

p S

p S S

0

� (4)

where pixels in ∂S′ are set to a large constant c and
pixels in ∂S – ∂S′ are fixed to their intensity values
from the reference photo I. In our experiments, c
is always set to five and the threshold τ is typically
set to four if pixel intensities ∈ [0, 1]. Equation 4
is actually a special case of the more generic Pois-
son equation.11 It can be discretized into a sparse
linear system that can be solved efficiently.12

To create blank areas inside a region to indicate
highlights, the process is slightly different. The user
can first draw line segments inside the region. Pixels
on these line segments are set to a large constant,
while all pixels on the region boundary are fixed to
their original intensity values. Then an equation
similar to Equation 4 can be solved to obtain a sca-
lar function f defined over the region. Finally, all the
pixels where f is larger than a threshold τ are left
blank, and τ is again set to four in our experiment.

Evaluation
To evaluate the effectiveness and performance
of our color sketching system, we conducted a
two-stage user study. In the first stage, we asked
subjects to produce two color sketches of a given
reference image using Photoshop and our Color-
Sketch interface. In the second stage, we invited a

(a) (b)

(c) (d)

Figure 8. Flow chart for blank area creation: (a) occlusion boundary, (b) depth map, (c) without blank areas,
and (d) with blank areas. Blank areas are created in partially occluded regions near depth discontinuities.

g3lix.indd 78 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

	 IEEE Computer Graphics and Applications� 79

separate group of subjects to evaluate the drawings
collected in the first stage.

Drawing Stage
We invited 20 people to participate in the first
stage. Ten of them had previously received for-
mal training in drawing and painting, and the
remaining subjects were novices who had little
drawing experience. For each subject, we selected
a reference image and asked him/her to draw two
color sketches, one with Photoshop tools such as
brushes, pencils, color pickers, the lasso tool, and
the quick selection tool and the other one with our
ColorSketch interface.

Because the order of the two tools used could
influence the user experience and results, we had
half of the participants use Photoshop first, and
the rest began with ColorSketch. The users were
encouraged to do their best, and there were no re-
strictions on the Photoshop and ColorSketch tools
they were allowed to use.

Our study utilized 10 reference images, each of
which was used by a skilled painter and a paint-
ing layman. The content of the reference images in-
cludes human figures, buildings, and natural scenes.

Before the user study, we gave the subjects a
tutorial on the two systems and allowed them to
practice on a simple image so they could become
familiar with both systems. After the training,
each participant was given 20 minutes to generate
a color sketch with Photoshop and another 20 min-
utes to generate a second sketch with our system.

Figures 3 and 9 shows sample color sketches
drawn with our sketching system. As a compari-
son, Figure 9 also shows sample color sketches
drawn with Photoshop.

Evaluation Stage
The evaluation consisted of two parts. In the first
part, we asked the participants from the drawing
stage to complete the following short questionnaire:

■■ Rate the usefulness of our system from 1 to 5,
where 1 indicates useless and 5 indicates quite
useful.

■■ Rate our system’s ease of use from 1 to 5, where
1 indicates very difficult to use and 5 indicates
very easy to use.

■■ Compare the sketch generated using our system
with the one generated in Photoshop, and rate
it from 1 to 5, which 1 is much worse and 5 is
much better.

■■ Please provide additional comments.

In the second part, we invited 30 additional sub-
jects to evaluate the color sketches created in the
drawing stage. There were 20 pairs of color sketches
in total. For each pair (in random order), we placed
the two sketches side by side and asked the par-
ticipants to choose the one that is more visually
appealing. We allowed the participants to indicate
a tie if they could not decide. Every participant was
asked to evaluate all 20 pairs of sketches.

Results
The goal of our participant survey was to evaluate
our system in term of its usefulness, usability, and
helpfulness. Regarding our system’s usefulness
and usability, the novices gave a mean usability
rating of 4.6/5.0, and the skilled painters gave it
a 4.2/5.0. For usefulness, the novices gave a mean
rating of 4.1/5.0, and the skilled painters gave it a
3.4/5.0. These ratings indicate all users agreed that

Skilled painters
Ph

ot
os

ho
p

C
ol

or
Sk

et
ch

Novices

Figure 9. Comparison of color sketches generated with Photoshop and our sketching interface during the user study. In each
vertical pair, the upper one was created with Photoshop, and the bottom one was created with ColorSketch. From left to right,
the first two columns were drawn by skilled painters, and the last two were drawn by novices.

g3lix.indd 79 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

80	 May/June 2017

Feature Article

our system is useful in producing color sketches
and it is also easy to use. Novice painters found
our system more useful than skilled painters.

Figure 10a presents the participants’ self ratings
of the sketches produced with our system com-
pared with those produced using Photoshop. We
can see that most people, regardless of their paint-
ing experience, felt that our system helped them
generate the color sketches. In addition, six out of
the 10 skilled painters found that they could pro-
duce much better results with our system, and 90
percent of the novices claimed that they achieved
better results with our system.

In the second part of the evaluation, the par-
ticipants considered the sketch generated with
ColorSketch better than the one generated with
Photoshop for seven out of 10 pairs of sketches
created by the skilled painters. The percentage
is even higher for the sketches produced by the
novices, which shows that all users generated bet-
ter results with our system. Figure 10b shows the
total number of supporting votes received by our
system. In the group of skilled painters, sketches
produced with our system received 65 percent of
the votes, and 80 percent of the votes went to our
system in the group of novices.

To make a fairer comparison, we also asked eight
of the participants (including four novice users

and four skilled painters) to draw a color sketch
with CoreDRAW (a vector-based tool). None of
the novices thought CoreDRAW was easier to use
than Photoshop for color sketch drawing because
Photoshop includes tools like the lasso and quick
selection, which can help them quickly select a re-
gion for editing. Photoshop also has a pen tool to
help them efficiently delineate the contour, unlike
CoreDRAW. Most of the skilled painters thought
both CoreDRAW and Photoshop could be used to
create color sketches conveniently because they
were skilled in using the Wacom device. Although
CoreDRAW can be used to create vectorized im-
ages, the comparison is not relevant here because
ColorSketch could only create bitmap images.

Overall, our results show that ColorSketch
can help users create better color sketches and
is considered more helpful for novice users. Dur-
ing the user study, we found that users had dif-
ficulty selecting proper colors and brush sizes in
Photoshop, which resulted in poor sketches. This
was especially true for reference images with rich
colors or complex structural details. Choosing
the right colors and brush sizes for such images
requires much time and painting knowledge. In
contrast, with our system, the user only needs
to focus on placing pencil strokes along certain
region boundaries, without worrying about brush
strokes and color stylization. Of course, experi-
enced painters can generate better results in Pho-
toshop if given more time. Nevertheless, all users
can save time with our system. According to our
observation, it usually takes a novice user about
six minutes to generate a color sketch with our
system, whereas it takes an experienced painter
more than 15 minutes to draw a color sketch with
a similar quality.

The ColorSketch system mainly focuses on gen-
erating color sketches that imitate the gouache

painting style. Utilizing the data-driven methods
to generate other styles of paintings is worth ex-
ploring in the future. What’s more, generalizing
this system to give users more artistic freedom
(such as more color selections and brush styles,
more freedom to draw parts of the objects in an
image, and the option to synthesize different parts
from multiple images) is another direction in our
future research.�

Acknowledgments
Guanbin Li was supported by a Hong Kong Post-
graduate Fellowship. This work was also partially

(a)

(b)

Skilled painter
Novice

N
um

be
r

of
 v

ot
es

N
um

be
r

of
 v

ot
es

0

1

2

3

4

5

User rating

Novice Skilled painter

1 2 3 4 5

ColorSketch
Photoshop
Tie

0

50

100

150

200

250

Figure 10. User study results. (a) Users’ self-rating
of the sketches produced with our system and
Photoshop. (b) Total number of votes received by all
sketches produced with ColorSketch and Photoshop,
respectively.

g3lix.indd 80 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

	 IEEE Computer Graphics and Applications� 81

supported by the Hong Kong Research Grants Coun-
cil under General Research Funds (HKU17209714).
Yingqing Xu was supported in part by the National
Key Research and Development Program of China un-
der grant 2016YFB1001402 and in part by the Na-
tional Nature Science Foundation of China (NSFC)
under grant 61373072.

References
	 1.	 E. Cooper, California: A Sketchbook, Chronicle Books,

2000.
	 2.	 E. Cooper, A Year in New York, City & Co, 1995.
	 3.	 Y. Lee, C. Zitnick, and M. Cohen, “ShadowDraw:

Real-Time User Guidance for Freehand Drawing,”
ACM Trans. Graphics, vol. 30, no. 4, 2011, article
no. 27.

	 4.	 Q. Su et al., “EZ-Sketching: Three-Level Optimization
for Error-Tolerant Image Tracing,” ACM Trans.
Graphics, vol. 33, no. 4, 2014, article no. 54.

	 5.	 P. Arbelaez et al., “Contour Detection and
Hierarchical Image Segmentation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 33, no.
5, 2011, pp. 898–916.

	 6.	 D. Martin et al., “A Database of Human Segmented
Natural Images and Its Application to Evaluating
Segmentation Algorithms and Measuring Ecological
Statistics,” Proc. Int’l Conf. Computer Vision (ICCV),
2001, pp. 416–423.

	 7.	 D.G. Lowe, “Organization of Smooth Image Curves
at Multiple Scales,” Int’l J. Computer Vision, vol. 3,
no. 2, 1989, pp. 119–130.

	 8.	 D. Hoiem et al., “Recovering Occlusion Boundaries
from a Single Image,” Proc. 11th Int’l Conf. Computer
Vision (ICCV), 2007, pp. 1–8.

	 9.	 J. Sethian, Level Set Methods and Fast Marching
Methods, Cambridge Univ. Press, 1999.

	10.	 K. Zeng et al., “From Image Parsing to Painterly
Rendering,” ACM Trans. Graphics, vol. 29, no. 1,
2009, article no. 2.

	11.	 P. Pérez, M. Gangnet, and A. Blake, “Poisson Image
Editing,” ACM Trans. Graphics, vol. 22, 2003, pp.
313–318.

	12.	 S. Toledo, V. Rotkin, and D. Chen, “Taucs: A Library
of Sparse Linear Solvers, Version 2.2,” tech report,
Tel-Aviv Univ., 2003.

Guanbin Li is a PhD candidate in the Department of
Computer Science at the University of Hong Kong. His re-
search interests include computer vision, image processing,
and deep machine learning. Li has an MS in computer
science from Sun-Yat Sen University. He is a recipient of a
Hong Kong Postgraduate Fellowship. Contact him at gbli
@cs.hku.hk.

Sai Bi is a research assistant at the University of Hong
Kong. His research interests include computer graphics and
computer vision. Bi has a BE in computer science from the
University of Hong Kong. He is a recipient of the HK-SAR
Government Scholarship, HKU Foundation Scholarship, and
HKU Undergraduate Research Fellowship. Contact him at
fsbi@cs.hku.hk.

Jue Wang is a principal scientist at Adobe Research. His
research interests include image and video processing and
computational photography. Wang has a PhD in electrical
engineering from the University of Washington. He received
the Microsoft Research Fellowship and the Yang Research
Award from the University of Washington. He is a senior
member of IEEE and a member of the ACM. Contact him at
juewang@adobe.com.

Yingqing Xu is a Cheung Kong Scholar Chair Professor at
Tsinghua University. His research interests include human-
computer interaction, computer graphics, and e-heritage.
Xu has a PhD in computer graphics from the Chinese Acad-
emy of Sciences. He is a distinguished member of the China
Computer Federation and a member of the ACM, Siggraph,
and Chinese Artists Association. Contact him at yqxu
@tsinghua.edu.cn.

Yizhou Yu is a professor in the College of Computer Sci-
ence and Technology at Zhejiang University. His research
interests include computer graphics, computer vision, digital
geometry processing, video analytics, and biomedical data
analysis. Yu has a PhD from the University of California,
Berkeley. He is a recipient of the US National Science Foun-
dation Career Award, Microsoft Graduate Fellowship, and
ACM SIGGRAPH/EG Symposium on Computer Animation
Best Paper Award. He is on the editorial board of Interna-
tional Journal of Software and Informatics and a senior
member of IEEE. Contact him at yizhouy@acm.org.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

g3lix.indd 81 4/3/17 5:29 PM

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 19:30:12 UTC from IEEE Xplore. Restrictions apply.

