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Context-Aware Semantic Inpainting
Haofeng Li, Guanbin Li, Liang Lin, and Yizhou Yu

Abstract—Recently image inpainting has witnessed rapid
progress due to generative adversarial networks (GAN) that
are able to synthesize realistic contents. However, most existing
GAN-based methods for semantic inpainting apply an auto-
encoder architecture with a fully connected layer, which can-
not accurately maintain spatial information. In addition, the
discriminator in existing GANs struggle to understand high-
level semantics within the image context and yield semantically
consistent content. Existing evaluation criteria are biased towards
blurry results and cannot well characterize edge preservation
and visual authenticity in the inpainting results. In this paper,
we propose an improved generative adversarial network to
overcome the aforementioned limitations. Our proposed GAN-
based framework consists of a fully convolutional design for
the generator which helps to better preserve spatial structures
and a joint loss function with a revised perceptual loss to
capture high-level semantics in the context. Furthermore, we
also introduce two novel measures to better assess the quality
of image inpainting results. Experimental results demonstrate
that our method outperforms the state of the art under a wide
range of criteria.

Index Terms—Image Completion, Image Inpainting, Convolu-
tional Neural Network.

I. INTRODUCTION

IMAGE inpainting aims at synthesizing the missing or
damaged parts of an image. It is a fundamental problem

in low-level vision and has attracted widespread interest in
the computer vision and graphics communities as it can be
used for filling occluded image regions or repairing damaged
photos. Due to the inherent ambiguity of this problem and
the complexity of natural images, synthesizing content with
reasonable details for arbitrary natural images still remains a
challenging task.

High-quality inpainted result should be not only realistic
but also semantically consistent with the image context sur-
rounding the missing or damaged region at different scales.
First, colorization should be reasonable and spatially coherent.
Second, structural features such as salient contours and edges
should be connected inside the missing region or across its
boundary. Third, texture generated within the missing region
should be consistent with the image context and contains
high-frequency details. In addition, missing object parts need
to be recovered correctly, which is challenging and requires
capturing high-level semantics.

Deep convolutional neural networks are capable of learning
powerful image representations and have been applied to
inpainting [3], [4] with varying degrees of success. Recently
semantic image inpainting has been formulated as an image
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Fig. 1: Our proposed CASI with perceptual loss synthesizes
content with a more reasonable colorization and structure

than Content-Aware Fill [1] and Context Encoder [2].

generation problem and solved within the framework of gener-
ative adversarial networks (GAN) [5]. GAN trains a generator
against a discriminator and successfully generates plausible
visual content with sharp details. State-of-the-art results [2],
[6], [7] have been achieved.

However, all existing GAN-based solutions to inpainting
share common limitations. First of all, they utilize an encoder-
decoder architecture with fully connected layers as the bottle-
neck structure in the middle of the network. The bottleneck
structure contains two fully connected (fc) layers. The first fc
layer converts convolutional features with spatial dimensions
to a single feature vector and another fc layer maps the feature
vector backward to features with spatial information. The first
fully connected layer collapses the spatial structure of the input
image so that location related information cannot be accurately
recovered during the decoding process. Second, the discrimi-
nator only takes a synthesized region without its image context
as the input. Thus neither structural continuity nor texture
consistency can be guaranteed between the synthesized region
and its image context. Moveover, existing GANs struggle to
understand high-level semantics within the image context and
yield semantically consistent content.

To overcome the aforementioned limitations, we conceive
a novel fully convolutional generative network for semantic
inpainting. First, we adopt a fully convolutional design without
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the bottleneck structure to preserve more spatial information.
Second, we composite the synthesized region and its image
context together as a whole, and measures the similarity be-
tween this composite image and the ground truth. To increase
such similarity, a perceptual loss is computed for the composite
image. This perceptual loss defined in terms of high-level deep
features is promising in capturing the semantics of the image
context.

Furthermore, noticing that the L2 loss and PSNR are unable
to rate blurry results accurately and quantitative measures do
not exist for assessing how well the intended semantics have
been restored, we define a local entropy error and a semantic
error to resolve these two issues respectively. The semantic
error (SME) is defined as the hinge loss for the confidence
that a composite image with a synthesized region should be
assigned the groundtruth label of its real counterpart, where the
confidence value is estimated by a pre-trained image classifier.
In our experiments, images synthesized by our inpainting
model can successfully reduce the semantic error estimated by
a powerful image classifier. This indicates that our model is
capable of inferring semantically valid content from the image
context.

In summary, this paper has the following contributions:
• We present a fully convolutional generative adversarial

network without a fully-connected layer for maintaining
the original spatial information in the input image. This
network can process images with a variable size.

• We introduce a novel context-aware loss function includ-
ing a perceptual loss term, which measures the simi-
larity between a composite image and its corresponding
groundtruth real image.

• We propose two novel measures, a local entropy error
based on middle-level statistics and a semantic error
based on high-level features, for evaluating inpainting
results.

II. RELATED WORK

Recently, deep neural networks including generative adver-
sarial networks have exhibited great performance in image
generation, image transformation and image completion. This
section discusses previous work relevant to image inpainting
and our proposed method.

A. Image Inpainting

Many algorithms on recovering holes in images or videos
have been proposed [8], [9], [10], [11], [12], [13], [14], [15].
Some existing methods for image completion are related to
texture synthesis [16], [17] or patch-based synthesis [18], [19],
[20]. Efros and Leung [16] proposed a method for predicting
pixels from the context boundary while [17] searches for
matching patches and quilts them properly. Drori et.al. [21]
computed a confidence map to guide filling while Komodakis
et.al. [22] proposed a priority belief propagation method. How-
ever, these exemplar based approaches struggle to generate
globally consistent structures despite producing seamless high-
frequency textures. Hays and Efros [23] filled large missing
regions using millions of photographs and presented seamless

results. However, in this method, missing regions need to be
prepared carefully by completely removing partially occluded
objects. Synthesizing content for arbitrary missing regions
remains a challenging task (e.g., recovering body parts for
a partially occluded object).

B. Generative Adversarial Networks

Generative adversarial networks (GAN), which estimate
generative models by simultaneously training two adversarial
models were first introduced by Goodfellow et.al. [5] for
image generation. Radford et.al. [24] further developed a more
stable set of architectures for training generative adversarial
networks, called deep convolutional generative adversarial net-
works (DCGAN). Recently GAN has widely applied to image
generation [25], image transformation[26], image completion
[2] and texture synthesis [27]. Context Encoder [2] uses a
novel channel-wise fully connected layer for feature learning
but keeps the traditional fully connected layer for semantic in-
painting. Yeh et.al. [6] employed GAN with both a perceptual
loss and a contextual loss to solve inpainting. Notice that the
perceptual loss in [6] is essentially an adversarial loss and the
contextual loss considers the context only (excluding the syn-
thesized region). Yang et.al. [7] conducted online optimization
upon a pre-trained inpainting model primarily inherited from
Context Encoder. The optimization is too expensive for real-
time or interactive applications. Common disadvantages exist
in these GAN based approaches. First, the fully connected
layer in the encoder-decoder framework cannot preserve ac-
curate spatial information. Second, the discriminator in current
GANs only evaluates the synthesized region but not the
semantic and appearance consistency between the predicted
region and the image context.

C. Fully Convolutional Networks

Fully convolutional networks (FCNs), which was first used
in [28] for semantic image segmentation, provides an end-to-
end learnable neural network solution for pixel-level image
comprehension. Without fully connected layers, FCNs occupy
less memory and can learn and predict more efficiently. Be-
sides, FCNs preserve spatial information and extract location
sensitive features. Recently FCNs have achieved excellent
results on semantic segmentation [28], edge detection [29],
saliency detection [30] and other pixel-wise labeling tasks.
In this paper, we exploit the idea of FCN in GAN-based
inpainting to better capture object contours, preserve spatial
information in features, and infer coherent visual content from
context.

D. Context-Aware Perceptual Loss

Perceptual loss is a feature reconstruction loss defined
by deep neural networks [31]. It guides neural models to
generate images visually similar to their corresponding tar-
gets (e.g., ground truth) and has been widely utilized in style
transfer [32]. Dosovitskiy and Brox et.al. [25] presented a
similar concept, called DeePSiM, which successfully generates
images with sharp details. So far perceptual loss has been
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Fig. 2: Network Architecture

applied to style transfer [32], [31], super resolution [31] and
texture synthesis[33]. However, these topics primarily use
the “texture network”, a part of the VGG network [34] to
extract middle-level features while high-level features from
the fully connected layers have not been investigated for
image completion. In this paper we exploit high-level deep
features in the definition of perceptual loss to synthesize
regions semantically consistent with their contexts.

III. METHOD

As shown in Figure 2b, our proposed Context-Aware Se-
mantic Inpainting method (CASI) is composed of an inpainting
generation pipeline (on the left) and a joint loss function (on
the right). The fully convolutional generative network takes an
image context as the input, where the missing region is filled
with the mean pixel value. The missing region is generated by
point-wise multiplication (denoted as ‘mask operation’) with

a mask. The inverse operation turns one into zero, and zero
into one. The output of the generative network is a synthesized
image with the same size as the input. Then this output image
is cropped using the boundary of the missing region and placed
within the image context to form a composite image (denoted
as ‘prediction-context’), via a point-wise addition (denoted as
‘compose operation’). The discriminator network receives the
synthesized content within the missing region and the ground
truth within the same region respectively, and attempts to
classify the received content as either ‘real’ or ‘fake’. The
classification error is formulated as the adversarial loss, one
of the components in the proposed loss. Our joint loss function
is a linear combination of a pixel-wise L2 loss, the adversarial
loss and a perceptual loss.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

A. Fully Convolutional Generative Network

The fully convolutional generative network consists of three
blocks: down-sampling, flatting and up-sampling. First, the
down-sampling block plays the role of an encoder, which
reduces each spatial dimension to 1/8 of the input size. The
flatting block discovers and maintains essential edges without
further changing the spatial size. Finally, the up-sampling
block plays the role of a decoder, which transforms the feature
map to an RGB image with the same resolution as the input.

The down-sampling block has three convolutional layers
using 4×4 kernels and two convolutional layers using 3×3
kernels. The first layer of this block performs 4×4 convolution.
Then these two types of convolutional layers alternate and
the block ends with a 4×4 convolutional layer. The 4×4
convolutions use a stride of 2 and 1 pixel padding to reduce the
spatial size by half while doubling the number of channels in
the feature map. Reduced spatial dimensions allow convolution
kernels to have larger receptive fields in the input image. The
3×3 convolutions use a stride of 1 and 1 pixel padding to
keep the same spatial size and channel number. Such layers
enhance the recognition capacity of the network. The flatting
block has three convolutional layers using 3×3 kernels and
two residual blocks. These residual blocks enhance prediction
accuracy for semantic inpainting. The middle layer doubles
the number of channels while the last layer reduces it by half.
Thus the flatting block keeps the number of channels the same
in the input and output feature maps. The up-sampling block
has three de-convolutional layers using 4×4 kernels and three
convolutional layers using 3×3 kernels. Similar to the down-
sampling block, the two types of layers alternate, and the first
layer performs 4×4 deconvolution. In the up-sampling block,
4×4 deconvolution acts as parameterized interpolation which
doubles the spatial size while each 3×3 convolutional layer
reduces the number of channels by half. The last layer of the
up-sampling block generates an RGB image with the same
size as the input.

Our proposed generative network does not have a bottle-
neck fully connected layer, and enjoys the benefits of fully
convolutional architecture. It is capable of locating essential
boundaries, maintaining fine details and yield consistent struc-
tures in missing regions.

B. Discriminative Network

Our discriminator shares a similar but shallower structure
with the down-sampling block in the generator network.
Compared with the down-sampling block, the discriminator
removes all 3×3 convolutional layers to avoid overfitting.
Otherwise, the capacity of the discriminator would be so large
that the generator does not have a chance to confuse the
discriminator and improve itself. A fully connected layer is
employed to perform binary classification at the end of the
discriminator.

Normalization and non-linear activations are used in CASI.
Except for the last layer, every convolutional layer in the
generator and the discriminator is followed with a batch
normalization (batchnorm) layer. Rectified linear units (ReLU)

follow each batchnorm layer in the generator while Leaky-
rectified Linear Units (LeakyReLU) are used in the discrimi-
nator according to the architecture guidelines in DCGAN. A
Sigmoid layer is adopted in the last layer of the generator
and the discriminator to map pixel and confidence values
respectively.

C. Loss Function

Given the analysis in Section I, existing GAN based se-
mantic inpainting methods fail to grasp high-level semantics
and synthesize semantically consistent content for the missing
region. In this paper, we propose to composite the synthesized
region and its image context together as a whole, and measures
the visual similarity between this composite image and the
ground truth using a perceptual loss. Our overall loss function
consists of a pixel-wise L2 loss, an adversarial loss and a
perceptual loss. It can be formulated as follows,

Linp = λpixlpix + λadvladv + λperlper, (1)

where Linp denotes the overall inpainting loss. lper, ladv , lpix
denote our perceptual loss, adversarial loss and pixel-wise L2
loss respectively while λper, λadv and λpix are the weights of
the respective loss terms.

Pixel-wise L2 loss, lpix, is a straightforward and widely
used loss in image generation. It measures the pixel-wise dif-
ferences between the synthesized region and its corresponding
ground truth. lpix is defined in Eq. (2),

lpix(x, z) = ||M � (x− z)||22, (2)

where M is a binary mask where a value of 1 indicates the
missing region and a value of 0 indicates the known context
region, � is the element-wise product, x is the ground-truth
image and z is the corresponding inpainting result computed
as in Eq. (3),

z = ((1−M)� x)⊕ (M �G((1−M)� x)), (3)

where ⊕ is the element-wise addition, G is the CASI generator,
(1−M)� x is the context region of x, and M �G(·) is the
missing region in the generator’s output. ⊕ in Eq. (3) merges
the known context region and the synthesized missing region
to obtain the final inpainting result.

However, calculating loss within the image space cannot
guarantee to generate an image perceptually similar to the
ground truth as neural networks tend to predict pixel values
close to the mean of the training data. In practice, the pixel-
wise L2 loss only produces blurred images without clear edges
or detailed textures. Thus we exploit an adversarial loss and a
novel perceptual loss to overcome this problem.

The adversarial loss ladv is defined on the objective function
of the discriminator. As the discriminator aims at distinguish-
ing synthesized content from its corresponding ground truth,
its objective is to minimize a binary categorical entropy e in
Eq. (4).

e(D(M � x), D(M � z))
= −[log(D(M � x)) + log(1−D(M � z))],

(4)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

where e denotes binary categorical entropy and D is the CASI
discriminator. The discriminator D predicts the probability that
the input image is a real image rather than a synthesized one.
If the binary categorical entropy is smaller, the accuracy of
the discriminator is better. Note that D is not a pre-trained or
constant model during the training stage. Instead, G and D
are trained alternatively. As minimizing the binary categorical
entropy e is equivalent to maximizing the negative of the
binary categorical entropy, the final objective value of the
discriminator is described in the right side of Eq. (5). As the
generator acts as an adversarial model of the discriminator,
it tends to minimize the negative of the binary categorical
entropy. Thus the adversarial loss of the generator ladv can be
formally described as

ladv = max
D

[log(D(M � x)) + log(1−D(M � z))]. (5)

ladv makes the synthesized region deviate from the overly
smooth result obtained using the pixel-wise L2 loss as real
images are not very smooth and typically have fine details.
Although the adversarial loss promotes fine details in the
synthesized result, it also has disadvantages. First, existing
discriminators are unaware of the image context and do not
explicitly consider the composite image consisting of both
the synthesized region and the image context. Second, binary
classification is not challenging enough for the discriminator
to learn the appearance of different objects and parts. Note
that semantic inpainting needs to not only synthesize textures
consistent with the context but also recover missing object
parts, which requires high-level features extracted from the
image context. Thus we propose a perceptual loss based on
high-level semantic features.

Our perceptual loss, lper, is defined in Eq. (6),

lper(x, z) = e(F (x), F (z))

=
1

CjHjWj
||Fj(x)− Fj(z)||22,

(6)

where F is a pre-trained feature network that extracts a generic
global feature from the input, Fj denotes the activations of
the j-th layer of F , Fj(x) and Fj(z) are a Cj × Hj ×Wj

tensor respectively. In our experiments, we use ResNet-18 pre-
trained over the ImageNet dataset [35] as the feature network
F , and the 512-dimensional feature from the second last layer
of ResNet-18 as Fj . Similar high-level features extracted by F
give rise to similar generated images, as suggested in [25]. In
addition, a perceptual loss based on high-level features makes
up for the missing global information typically represented
in a fully connected layer in the generator. Different from
DeepSiM, our feature is extracted from the composite image
consisting of the synthesized region and the image context
rather than from the synthesized region alone.

IV. IMPLEMENTATION

Let us discuss the details of our inpainting pipeline. Training
images for CASI require no labels. As shown in Algorithm 1,
the training stage consists of a limited number of iterations.
During each training iteration, the discriminator is updated
Diters times and the generator is trained once. In each

iteration that updates the discriminator, each training image
is separated into an image center and an image context. The
image center has the same size of the central region, and the
image context is the image filled with the mean pixel value
in the central region. The image center and image context of
a training image form a training pair. The generator takes the
image context as the input and synthesizes the image center.
The discriminator attempts to distinguish the synthesized con-
tent from the ground-truth image center. The adversarial loss
is calculated and then the parameters of the discriminator are
updated. In the rest of each training iteration, the pixel-wise L2
loss is computed, the feature network extracts a feature from
the composite image, and three loss functions are combined
to obtain the joint inpainting loss. The generator is finally
updated according to the joint loss. This process is repeated
until the joint loss converges. In the testing stage, each testing
image is first filled with the mean pixel value in the center and
then passed to the CASI generator. The central region of the
generator’s output is cropped and pasted back into the testing
image to yield the final inpainting result.

Our CASI is implemented on top of DCGAN [24] and
Context Encoder [2] in Torch and Caffe [36]. ADAM [37]
is adopted to perform stochastic gradient descent. As in [2],
CASI predicts a larger region which overlaps with the context
region (by 4px). 10× weight is used for the pixel-wise L2 loss
in the overlapping area. Using a TITAN XP GPU, training on
a dataset of 20000 images costs 3 to 4 days. Inpainting a single
image takes less than 0.2 seconds. Recovering a batch of 20
images costs less than 1 second.

Algorithm 1
1: F ← LOADMODEL()
2: G← INITWEIGHT(), D ← INITWEIGHT()
3: for i← 1,maxIterations do
4: x, z,M
5: for j ← 1, Diters do
6: x← SAMPLEBATCH()
7: Compute z using Eq. (3)
8: Compute ladv using Eq. (4)
9: Update D

10: end for
11: lpix ← MSE(x, z)
12: fx ← F (x), fz ← F (z)
13: Compute lper using Eq. (6)
14: Compute Linp using Eq. (1)
15: Update G
16: end for

V. EVALUATION

This section evaluates our proposed deep neural network ar-
chitecture and joint loss function on a subset of ImageNet [35]
and the Paris StreetView dataset [2], [38]. This subset contains
20 randomly sampled categories, denoted as “ImageNet-20”.
ImageNet-20 consists of 25, 000 training images and 1, 000
testing images. Paris StreetView contains 14, 900 training
samples and 100 testing samples.
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Input Image (a) (b) (c) (d) Ground-Truth NN-inpainting
L2 L2+per L2+adv L2+adv+per

Fig. 3: Comparison among different combinations of loss functions and Nearest-Neighbor(NN)-inpainting. The adversarial
loss promotes low-level sharp details while the perceptual loss improves high-level semantic consistency.

A. Effectiveness of Perceptual Loss

We first verify whether adding a perceptual loss improves
the results. CASI is trained using 4 different loss functions
respectively to compare their performance. For these loss
functions, the hyper-parameters of CASI are set in the same
way, and the perceptual loss is defined using the same feature
extracted using the same feature network. The four loss
functions are: (a) pixel-wise L2 loss, (b) L2 loss + perceptual
loss, (c) L2 loss + adversarial loss, (d) L2 loss + adversarial
loss + perceptual loss. In the following we use (a)-(d) to refer
to these loss functions.

Figure 3 show qualitative results of the above loss functions.
The resolution of each images is 128×128. This result includes
4 samples representing different cases. All the missing regions
are at the center of the image. From left to right, each column
corresponds to a loss function from (a) to (d), respectively. As
shown in this figure, (a) and (b) generate over-smooth results
while (c) and (d) present sharper details. This conforms that
the adversarial loss indeed alleviate the blurriness caused by
the L2 loss. Between (a) and (b), (a) is more blurry while
subtle textures or wrinkles can be observed in (b). Between
(c) and (d), although they both preserve sharp edges, (d) is
more semantically consistent with the context region. These
results reveal that the adversarial loss works in the middle
level to yield patches with consistent sharp details while the
perceptual loss synthesizes consistent high-level contents.

TABLE I: Quantitative results on ImageNet-20. CASIs
without the adversarial loss achieve lower mean L2 error and
higher PSNR but generate blurry results, which indicates that

mean L2 error and PSNR inaccurately assess over-smooth
cases.

Method mean L1 mean L2 PSNR
error error

Context Encoder 12.15% 3.31% 15.59dB
CASI,L2 11.07% 2.57% 17.08dB
CASI,L2 + per 11.21% 2.64% 16.95dB
CASI,L2 + adv 11.15% 2.93% 16.68dB
CASI,L2+adv+per 10.89% 2.83% 16.81dB

Table I shows quantitative results from this experiment. It
presents numerical errors between synthesized contents and
their ground truth using three commonly employed measures,
mean L1 error, mean L2 error and PSNR. Notations (a)-(d) are
used to denote four trained CASI models. As shown in Table I,
(a) achieves the smallest mean L2 error and PSNR while (d)
achieves the smallest mean L1 error. Mean L2 error is smaller
for solutions close to the mean value but such solutions are
overly smooth and undesirable (see (a) and (b) in Figure 3).
Models trained without the adversarial loss have advantage in
mean L2 error due to their blurry results. Similar results have
been reported in [25]. Between (c) and (d), (d) has smaller
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TABLE II: Investigation of Perceptual Loss

Method mean L1 error mean L2 error PSNR

λper = 0 11.15% 2.93% 16.68dB
λper = 0.2 10.89% 2.83% 16.81dB
λper = 0.4 11.12% 2.93% 16.60dB
λper = 0.7 11.43% 3.06% 16.44dB

TABLE III: Effectiveness of Fully Convolutional Architecture

Method mean L1 error mean L2 error PSNR

CASI+fc 9.70% 1.71% 18.83dB
CASI 7.49% 1.37% 20.37dB

mean L2 error than (c). And (d) also has smaller mean L1 error
than (c). Thus the perceptual loss is effective in improving our
CASI model.

B. Investigation of Perceptual Loss

This section investigates how the parameter of perceptual
loss effect the performance of our method. We set the hyper-
parameters in our algorithm as follows. The summation of the
weights of all loss terms is 1.0. The weight of the adversarial
loss is 0.001, as suggested by [2]. We determine the weight of
the perceptual loss λper by cross validation on the ImageNet-
20 dataset. As shown in Table II, setting the weight of the
perceptual loss to 0.2 achieves the lowest mean L1 error, mean
L2 error and the highest PSNR value among four different
parameter settings.

C. Effectiveness of Fully Convolutional Architecture

This section investigates whether applying fully convolu-
tional architecture benefits semantic inpainting. We design
a CASI+fc model by inserting two fully connected layers
after the third layer of the CASI flatting block (described in
Figure 2a). The first fully connected layer takes a convolutional
feature map as input and outputs a 2048-d feature vector which
is followed by a Tanh layer. The second fully connected layer
takes the output of the activation layer as input and output a
feature map with spatial dimensions. Then the fourth layer of
the CASI flatting block takes the feature map as input. We
compared CASI+fc model and CASI model on Paris Street
View dataset. As Table III shows, CASI outperforms CASI+fc
by 2.21% in mean L1 error, 0.34% in mean L2 error and
1.54dB with regards to PSNR although CASI+fc contains
more parameters than CASI. The result suggests applying fully
convolutional architecture is more conducive for generative
network as the fully connected layers could collapse the spatial
structure of the image features.

D. Effectiveness of Residual Block

This section verifies whether adding residual blocks enhance
the performance. We design a CASI- model by removing
the two residual blocks in CASI model and demonstrate
comparison results between them. As shown in the upper part
in Table IV, CASI outperforms CASI- by 0.2% in mean L1

TABLE IV: Effectiveness of Residual Block

Method mean L1 error mean L2 error PSNR

CASI- 11.09% 2.93% 16.31dB
CASI 10.89% 2.83% 16.81dB

CASI- 7.79% 1.43% 20.14dB
CASI 7.49% 1.37% 20.37dB

TABLE V: High-resolution Case on Paris StreetView

Method mean L1 error mean L2 error PSNR

ContextEncoder 9.04% 1.82% 18.90dB
CASI 8.04% 1.53% 19.79dB

NeuralPatch 9.59% 2.07% 18.42dB
CASI+ 8.62% 1.73% 19.18dB

error, 0.1% in mean L2 error and 0.5dB in PSNR, on the
ImageNet-20 dataset. As the lower part in Table IV shows,
CASI presents better performance than CASI- in mean L1
error, mean L2 error and PSNR value, on the Paris Street
View dataset. The above results suggest that adding residual
blocks improves prediction accuracy for the CASI model.

E. High-resolution Case

This section investigates how our method performs on high-
resolution cases. The motivation of investigation on high-
resolution cases is that most existing neural network based
inpainting methods can only deal with input images not larger
than 128× 128. This section demonstrates how the proposed
method perform with input images of 512× 512. Two groups
of experiments are presented. The first group compare our
method to [2] by scaling image to match with the input size
of [2]. As shown in upper part of Table V, our CASI model
presents lower mean L1 error, lower mean L2 error and higher
PSNR value than ContextEncoder [2] in high-resolution Paris
Street View dataset. The second group investigates whether
adding a post-optimization based on our model deals with
high-resolution cases. One concurrent work, NeuralPatch [7],
trains its network to synthesize content at the image center
and presents high-resolution object removal results during
testing. We have integrated our method with post-optimization
in [7] (denoted as CASI+) and demonstrate better performance
than NeuralPatch [7]. As the lower part in Table V shows,
the CASI+ method achieves lower mean L1 error, lower
mean L2 error and higher PSNR value in comparison to
NeuralPatch [7], which suggests that the proposed CASI can
provide more accurate reference content for post-optimization
based image completion methods. Figure 4 is a qualitative
comparison between [7] and CASI+. As Figure 4 shows,
CASI+ extends more reasonable edges and preserves more
details than [7]. More comparison results can be found in the
supplementary document.

F. General and In-the-wild Case

This section investigates how the proposed method perform
on general and in-the-wild cases. The first experiment in this
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Input Image NeuralPatch CASI+ Ground-Truth

Fig. 4: High-resolution Cases on Paris StreetView

Input Image Content-Aware Fill StructCompletion ImageMelding Context Encoder CASI Ground-Truth

Fig. 5: Comparison on ImageNet-20 dataset

section is to test the proposed method on high-resolution real
images that are collected out of ImageNet and Paris StreetView
dataset. The qualitative results of the first experiment are
shown in Figure 6. The resolution of the input images in
Figure 6 are 430 × 645, 708 × 1062 and 426 × 570. The
results verify that our proposed method could perform well
on in-the-wild cases.

The second experiment in this section is to test the proposed
method on real images with irregular corrupted region. The
qualitative results of the second experiment are displayed
in Figure 7. These input images are also collected in-the-
wild out of ImageNet and Paris StreetView datasets and their
resolutions are 357×500, 332×450 and 332×450 respectively.
The results suggest that the proposed algorithm is capable of

repairing images with irregular corrupted region.

G. Investigation of Generalization Ability

This section investigates the generalization ability of the
CASI model. If the CASI model has weak generalization
ability and overfits the training data, it may predict what it
memorize from the training data. Thus we conduct a nearest
neighbor inpainting (NN-inpainting) experiment. For each
testing input image, we search for the most matching patch
from the training dataset to complete the image, using the
algorithm proposed in [23]. The qualitative results of NN-
inpainting are displayed in Figure 3. The CASI results (in
Figure 3d) are quite different from the NN-inpainting results
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Input Image CASI+ Ground-Truth

Fig. 6: Inpainting Results of CASI with In-the-wild Cases

and demonstrate the superiority in preserving both appearance
and structure coherence, which indicates that the CASI model
does not simply copy or memorize patch from the training
dataset while repairing the input images.

H. Comparison with the State of the Art

We compare our proposed CASI model trained using the
joint loss with other 4 state-of-the-art image inpainting meth-
ods, including Content-Aware Fill [39], StructCompletion [8],
ImageMelding [20] and Context Encoder [2]. As shown in
Figure 5, methods [39], [8], [20] without using neural network
fail to recover the dog face in the first sample, extend the bus
window in the second sample and connect the snake body in
the third sample. These methods fail to recover the high-level
semantics. Context Encoder struggles to display clear structure
while the proposed CASI shows visually acceptable results in
Figure 5.

The second experiment in this section compares our method
with other state-of-the-art inpainting methods [1], [39], [7],
[8], [20], [2] on the Paris StreetView dataset. Table VI
shows the quantitative results. Results from PatchMatch [39],
Neural Patch Synthesis (NeuralPatch) and Context Encoder
are collected from [7], [7] and [2], respectively. As shown in
Table VI, our results exceed others by a considerable margin
under all three measures. Our method outperforms the second

TABLE VI: Quantitative results on Paris StreetView

Method mean L1 mean L2 PSNR
error error

PatchMatch 12.59% 3.14% 16.82dB
NeuralPatch 10.01% 2.21% 18.00dB
StructCompletion 9.67% 2.07% 18.03dB
ImageMelding 9.55% 2.19% 18.05dB
Context Encoder 9.37% 1.96% 18.58dB
CASI 7.49% 1.37% 20.37dB

best by 1.58% in mean L1 error, 0.53% in mean L2 error and
1.56dB in PSNR.

I. Investigation of Criteria for Inpainting

In this section, we use more criteria to evaluate CASI and
Context Encoder, and propose two new criteria for semantic
inpainting. There are three major experiments. In the first
experiment, we evaluate inpainting methods using structural
similarity index (SSIM) [40] and feature similarity index
(FSIM) [41]. These indices are originally applied to image
quality assessment (IQA) that attempts to quantify the visibil-
ity of differences between two images. Here we investigate
the visual differences between inpainting results and their
corresponding ground truth. Thus we test inpainting methods
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Input Image CASI+ Ground-Truth

Fig. 7: Examples of Inpainting Results on Irregular Corrupted Regions

TABLE VII: Similarity Indices on ImageNet-20.

Method SSIM FSIM FSIMc

Context Encoder 0.2579 0.6977 0.6899
CASI,L2 0.5196 0.6255 0.6202
CASI,L2 + per 0.4927 0.6843 0.6779
CASI,L2 + adv 0.5141 0.7202 0.7148
CASI,L2+adv+per 0.5198 0.7239 0.7187

λper = 0 0.5141 0.7202 0.7148
λper = 0.2 0.5198 0.7239 0.7187
λper = 0.4 0.5093 0.7203 0.7149
λper = 0.7 0.4951 0.7163 0.7108

TABLE VIII: Local Entropy Errors on ImageNet-20.

Method LEMSE LEMAE

Context Encoder 0.5872 0.5391
CASI,L2 1.8926 1.0795
CASI,L2 + per 0.8454 0.7219
CASI,L2 + adv 0.4869 0.4945
CASI,L2+adv+per 0.4611 0.4847

λper = 0 0.4869 0.4945
λper = 0.2 0.4611 0.4847
λper = 0.4 0.4470 0.4759
λper = 0.7 0.4492 0.4771

using the two IQA indices. SSIM is a classical index defined
by structural similarity while FSIM is the state of the art based
on two low-level features, phase congruency (PC) and gradient
magnitude. FSIM is defined in Eq. (7),

FSIM =

∑
SPC(x) · SG(x) · PCm(x)∑

PCm(x)
, (7)

where SPC(x) and SG(x) are PC similarity and gradient
similarity respectively at position x, and PCm(x) is the PC
value of x as a weight. As shown in Table VII, all CASI
models achieve higher similarity with the ground truth than
Context Encoder under SSIM, FSIM and FSIMc (FSIM for
color image). It indicates that our method not only recovers
more consistent structures but also synthesizes content with
higher visual quality. However, SSIM and FSIM are still biased
towards blurry results of CASI, L2 (+lper).

In the second experiment, we introduce a novel local en-
tropy error to rate blurry predictions more accurately. Entropy
in texture analysis is a statistic characterizing the texture
within an image region, as defined in [42]. The local entropy
at a pixel is defined as the entropy within a 9×9 neighborhood
of the pixel. We define local entropy error as the mean
squared error (denoted as LEMSE) or the mean absolute error
(LEMAE) of local entropy within the synthesized region. As
shown in Table VIII, our proposed CASI delivers the lowest
LEMSE and LEMAE among all methods. In addition, CASI
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TABLE IX: Semantic Errors on ImageNet-20

Method SME-r50 SME-r101 SME-r152 SME-r200 SME-v16 SME-v19

baseline 0.2063 0.1735 0.1852 0.2063 0.1794 0.2086
Context Encoder 0.1467 0.1462 0.1442 0.1467 0.1001 0.1123
CASI,L2 0.1862 0.1908 0.1886 0.1877 0.1444 0.1652
CASI,L2 + per 0.1542 0.1631 0.1671 0.1626 0.1213 0.1384
CASI,L2 + adv 0.1276 0.1359 0.1349 0.1362 0.0846 0.0952
CASI,L2+adv+per 0.1070 0.1180 0.1201 0.1200 0.0721 0.0775

λper = 0 0.1276 0.1360 0.1350 0.1363 0.0846 0.0952
λper = 0.2 0.1070 0.1180 0.1201 0.1200 0.0721 0.0775
λper = 0.4 0.1074 0.1125 0.1218 0.1215 0.0704 0.0767
λper = 0.7 0.0994 0.1126 0.1117 0.1131 0.0632 0.0702

with L2 loss and CASI with L2+per loss achieve the largest
and second largest errors under both LEMSE and LEMAE,
which is consistent with most of the visual results (a subset is
given in Figure 3) and confirms that our proposed local entropy
error is capable of rating over-smooth results accurately.

In the third experiment, we propose a high-level criterion,
semantic error, which aims at measuring how successful an
inpainting method recovers the semantics. Semantic error
(SME) is defined with respect to a pre-trained image classifier
that outputs a probability of the image being part of each
possible category. SME is based on two probabilities that the
groundtruth image and the synthesized image belong to the
groundtruth category respectively. It is formulated as in the
following equation,

SME =
1

n

n∑
i=1

max(0, P yi
xi
− P yi

zi ), (8)

where n is the number of testing samples, xi, zi and yi are
the groundtruth image, synthesized image (with real context)
and the groundtruth category of the i-th sample. P yi

xi
is the

probability that image xi belongs to category yi, estimated by
a pre-trained classifier (e.g., residual network [43] or VGG
network[34]). Here we associate the probability of assigning
the correct label with our semantic error because we focus on
to what extent a corruption “makes a dog unlike a dog” and to
what extent the restored content “makes a dog look like a dog
again”. A baseline model simply fills the missing region with
the mean pixel value. The SME of this baseline measures how
much a corrupted region harms the semantic information of
an image. In Table IX, SME-rL represents the SME achieved
by applying an L-layer residual network as the classifier while
SME-vL represents the SME achieved by adopting an L-layer
VGG network as the classifier. Notice that our feature network
is simpler than the ResNets used for estimating SME, which
implies that harvesting knowledge using a low-capacity model
can reduce the SME estimated by a high-capacity classifier. As
shown in Table IX shows, our proposed network outperforms
other inpainting methods by achieving the smallest semantic
error.

Perceptual loss weight is also investigated on the above
new criteria for semantic inpainting, as shown in the lower
part of Table VII, Table VIII and Table IX. λper = 0.7

performs better on similarity indices and semantic errors while
λper = 0.4 demonstrates better results on local entropy error.
To compromise different criteria, λ is chosen from 0.2 to 0.4.

VI. CONCLUSION

In this paper, we have presented a fully convolutional
generative adversarial network with a context-aware loss func-
tion for semantic inpainting. This network employs a fully
convolutional architecture in the generator, which does not
have a fully connected layer as the bottleneck layer. The joint
loss includes a perceptual loss to capture semantic information
around the synthesized region. In addition, we have developed
two new measures for evaluating sharpness and semantic
validity respectively. In summary, our method delivers state-
of-the-art results in qualitative comparisons and under a wide
range of quantitative criteria.
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