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Abstract
This paper presents a stochastic grammar for fine-
grained 3D scene reconstruction from a single im-
age. At the heart of our approach is a small number
of grammar rules that can describe the most com-
mon geometric structures, e.g., two straights lines
being co-linear or orthogonal, or that a line lying on
a planar region etc. With these grammar rules, we
re-frame single-view 3D reconstruction problem as
jointly solving two coupled sub-tasks: i) segmenting
of image entities, e.g. planar regions, straight edge
segments, and ii) optimizing pixel-wise 3D scene
model through the application of grammar rules
over image entities. To reconstruct a new image,
we design an efficient hybrid Monte Carlo (HMC)
algorithm to simulate Markov Chain walking to-
wards a posterior distribution. Our algorithm utilizes
two iterative dynamics: i) Hamiltonian Dynamics
that makes proposals along the gradient direction to
search the continuous pixel-wise 3D scene model;
and ii) Cluster Dynamics, that flip the colors of
clusters of pixels to form planar region partition.
Following the Metropolis-hasting principle, these
dynamics not only make distant proposals but also
guarantee detail-balance and fast convergence. Re-
sults with comparisons on public image dataset show
that our method clearly outperforms the alternate
state-of-the-art single-view reconstruction methods.

1 Introduction
Reconstructing 3D scene model from a single image has ab-
stracted a lot of interest because of its wide applications in
robotics, intelligent transportation, and surveillance etc. De-
spite impressive results achieved, existing 3D modeling meth-
ods are likely to miss details of the scene, e.g. rectangles of
windows in facades, zebra crossing on roads, or T-junctions
corners of tables. In most of urban street images, these details
are directly reflected by the geometric relationships between
image entities, e.g. that a straight line being parallel or orthog-
onal to other lines, or that a line be lying on a planar surface, or
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Figure 1: Single-view 3D Scene reconstruction. (a) input
image; (b) novel view of 3D lines; c) novel view of of the
input image ; (d) the recovered depth map.

that two planar regions being orthogonal with each other, etc.
However, it remains unknown how to explore these geometric
constraints efficiently. There are two particular challenges: i)
the segmentation of image entities, e.g. edges, planar regions
etc., has illness nature ; ii) with perspective effect, apparent
structures (e.g. right angle corners) do not necessarily reflect
real structures in 3D world.

In this work, we introduce a stochastic grammar model to
address the above issues. Figure 1 illustrates an exemplar
results. Our grammar includes a set of grammar rules and a
probability model. Each grammar rule describes a particular
geometric relationship between image entities, e.g. co-line
for pixels, orthogonality for straight sedges, co-planar for
straight edges and planar regions, supporting for planar regions
etc. These relationships, once discovered, directly provide
information of the fine-grained scene structure and thus should
be persisted while optimizing a continuous 3D scene model.

To reconstruct an input image, we fit and evaluate a variety
of combinations of grammars rules over the input image. In
order to efficiently exploit this combinational solution space,
we develop a hybrid Monte Carlo (HMC) method to simulate
a Markov chain for sampling the posterior probability. Dif-
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ferent from the conventional sampling methods [Liu et al.,
2014], we design two dynamics to make distant proposals in
both continuous space and discrete spaces in order to enhance
convergence speed. i) Hamiltonian dynamics, that make pro-
posals in the deepest descent direction, in order to search for
the continuous 3D scene model. ii) Cluster dynamics, that
flip the partitions of a cluster of pixels, instead of single one.
These dynamics are iterated until convergence. Note that our
method is different from existing grammar models that only
optimize discrete labeling problems [Liu et al., 2014] [Hoiem
et al., 2005].

Contributions The two major contributions of this work
include: i) we define a set of grammar rules to describe the
geometric constraints between image entities and present an
stochastic optimization method to automatically determine the
valid constraints and recover fine-grained 3D scene model for a
single image; ii) we introduce an iterative hybrid Monte Carlo
method that is capable of making distant proposals in both con-
tinuous and discrete spaces. We apply the proposed method
over both public image datasets and a newly created dataset.
Results with comparisons show that our method clearly out-
performs the state-of-the-art methods.

2 Related Works
Our work is closely related to three research streams in com-
puter vision and machine learning.

Single-View 3D modeling has been extensively studied
with a variety of techniques, including generative model [Han
and Zhu, 2003] , context reasoning [Hoiem et al., 2005],
conditional random field [Heitz et al., 2008], physics rea-
soning [Gupta et al., 2010] , attributed grammar [Liu et al.,
2014], etc. Most of these methods were built on the clas-
sification of 2D segmentation, which did not directly solve
3D models or depth values. Other methods [Mobahi et al.,
2012] [Schwing and Urtasun, 2012] [Pero et al., 2011] [Pero
et al., 2012] [Pero et al., 2013] tried to recover global 3D
scene without an explicit representation of scene structures.
In this work we directly optimize continuous pixel-wise 3D
coordinates by exploring the various geometric constraints
between image entities (i.e. edge, planar regions).

Joint Recognition and Reconstruction has been investi-
gated for a varitety of tasks, including scene labeling and re-
construction [Haene et al., 2013] [Liu et al., 2014], reconstruc-
tion of panorama images [Cabral and Furukawa, 2014], object
recognition and modeling [Hejrati and Ramanan, 2014], layout
partition and object modeling [Schwing et al., 2013], joint Ob-
ject Labeling and Structure-from-Motion [Xiao et al., 2013]
and joint tracking and mapping [Kundu et al., 2014] [Zhang
et al., 2013]. Our method follows the same methodology to
introduce a joint formula for segmenting planar regions and
reconstructing the whole scene. We additionally impose the
regularizations of straight lines to guide the reconstruction
process.

Scene grammar has been applied for a number of image
parsing problems in computer vision tasks. Koutsourakis et
al. [Koutsourakis et al., 2009] proposed a shape grammar to
explain building facades with levels of details, their model was
focused on rectified facade images not 3D geometry. Han and
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Figure 2: Illustration of parse graph. The root node S simply
decomposes into a set of nodes with grammar rules R1 to R5.
Each graph node imposes at least one constraint equation over
the desired solution space.

Zhu [Han and Zhu, 2009], Liu et al. [Liu et al., 2014], Zhao
and Zhu [Zhao and Zhu, 2011] and Pero et al. [Pero et al.,
2013] specified generative scene grammar models to model the
compositional of Manhattan structures in images. Furukawa
et al. [Furukawa et al., 2009] studied the reconstruction of
Manhattan scenes from stereo inputs. In this work, we extend
these grammar models to describe the geometric constraints
between image entities, from lines to planar regions to blocks,
which enables detail-preserving 3D scene reconstruction.

3 Stochastic Scene Grammar for 3D Modeling
In this section, we introduce a stochastic scene grammar for
single-view reconstruction problem.

3.1 Scene model
We consider urban street images in this work and use the
world coordinates for the desired 3D model. These scenes are
typical local Manhattan world [Liu et al., 2014] where there
is a family of parallel lines pointing into the sky and two or
more parallel families being parallel to the groundplane. Each
parallel family merges at a vanishing point in imaging plane.
Once vanishing points detected, we utilize the method [Cipolla
et al., 1999] to compute the rotation matrix R and the intrinsic
matrix K. For every image pixel (x, y), its 3D position be
determined as d

i

¯X where ¯X = (KR)

�1
(x, y, 1) is a 3D ray

and d
i

is the depth to solve.

3.2 Scene Grammar
A context-free grammar is specified by a 5-tuple G =

(V
T

, V
N

, R, S, P ) where V
N

is a finite set of non-terminal
nodes, V

T

a finite set of terminal nodes, S 2 V
N

a start sym-
bol, R is a set or grammar rules, and P is the probabilistic
distribution for the grammar.

We apply grammar rules to generate hierarchical represen-
tations of the input image, i.e. parse graph. Figure 2 demon-
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strates a parse graph which includes a root node and a set of
graph nodes. A parse graph is a valid interpretation of the
input 2D image in the 3D space. A grammar generates a large
set of valid parse graphs for one given image of the scene. We
allow children nodes be shared by two or more nodes since
an image entity, e.g. a straight edge, might bear relationships
with two or more other entities.

Terminal Nodes V
T

We partition the input image into a set
of suerpixels [Ren and Malik, 2003] and detect straight edge
segments [Gioi et al., 2008] to obtain terminal nodes. Each
superpixel is the projection of a 3D planar surface and each
edge segment is the projection of a straight line in 3D. There
are around 200-300 superpixels and about 500-700 straight
edge segments for each image. To reconstruct a superpixel
or an straight edge V

i

, we need to determine its geometric
attribute, e.g., 3D position, normal orientation.

Nonterminal Nodes V
N

are produced by merging terminal
nodes with grammar rules. Each node in V

N

indicates a com-
bination of terminal nodes or non-terminal nodes. We impose
six grammar rules, R0 through R6, each for a specific relation-
ship between image entities. i) R0, that generates the input
image into a set of grammar nodes; ii) R1, that merges two
co-linear edge segments; ii) R2, that merges two orthogonal
edge segments; iii) R3, that merges one edge segment and a
planar that are co-planar; iv) R4, that merges two neighbor-
ing planar regions that are projections of the same 3D plane;
and v) R5, that merges two neighboring planar regions that
are orthogonal and intersected with each other. Note that a)
the grammar rule R4 can be recursively applied to get graph
nodes that are used for children nodes of R0, R3, R5 and R4

itself; b) different graph nodes may share the same children
nodes, which basically allows multiple interpretations of a
single image entity. Among these rules, R0 is used to generate
the input image into a set of grammar modes.

In contrast to the previous methods [Liu et al., 2014], in
this work, the parse graph is not deep and the search space
in 3D construction is relatively smaller. The sharing between
nonterminals also make it a redundant representation that is
potentially more robust against noises.

3.3 Probabilistic Formulation
Given an input image, our goals include i) partitioning it into
image entities, i.e. planar regions and straight edges; ii) re-
construct each image entity in 3D. We achieve such goals
by constructing an optimal parse graph and estimate the at-
tributes of every graph node. To do this, we introduce a unified
probabilistic framework. Let I denote the input image, our
objective is to compute an optimal solution representation
W = (G,X (G),K) where K is the number of planar regions,
X (G) organizes all attributes of graph nodes.

The optimal solution W ⇤ can be obtained by maximizing a
posterior probability (MAP):

p(W |I) / exp{�K � E(I, V
N

)} (1)
where the first term of K is used to encourage compact planar
partition. The energy term E(I, V

N

) is defined over the non-
terminals,

E(I, V
N

) =

X

V 2VN

�kE(I, V |R
k

) (2)

where �k is a constant related to the grammar rule k,
E(I, V |R

k

) is conditioned on the grammar rule R
k

. Note
that R0 is a lose grammar rule and does not affect the energy.
In the rest of this section, we denote a terminal node of edge
segment as a, a non-terminal of planar region as B.

Grammar rule R1: V ! (a
i

, a
j

) involves two children
edge segments, a

i

and a
j

, that are projections of the same
straight line in 3D. R1 requires that a

i

and a
j

are spatially
adjacent in 2D image. The attributes of an edge segment is
defined as X (a

i

) = (d
i

, n̄
i

) where d
i

denote the depth of the
central point of the edge, n̄

i

is the edge direction.
The energy term E(I, V |R1) is defined over the mutual

consensus between the attributes of a
i

and b
j

. Let �
ij

denote
a constant such that the following linear equation holds:

d
i

¯X
i

+ �
ij

n̄
i

= d
j

¯X
j

(3)

where ¯X
i

and ¯X
j

are 3D rays that are known (suppose we
have calibrated the camera). We define the related energy as
�(d

i

, n̄
i

; d
j

) as the following least square form:

�(d
i

, n̄
i

; d
j

) = min

�ij

kd
i

¯X
i

+ �
ij

n̄
i

� d
j

¯X
j

k2 (4)

Accordingly, we define �(d
j

, n̄
j

; d
i

) as well. Thus, we have
E(I, V |R1) defined as follows:

E(I, V |R1) = �(d
i

, n̄
i

; d
j

) + �(d
j

, n̄
j

; d
i

)

+kn̄
i

� n̄
j

k2. (5)

where the last term is used to enforce the co-linear constraint.
Eq. (5) is a convex smoothing function of four continuous
variables to solve : d

i

,d
j

,n̄
i

, n̄
j

. In this work, we assume that
the number of unknown variables are far less than the number
of nonterminal nodes, which is reasonable because we allow
sharing of children nodes between nonterminal nodes.

Grammar rule R2: V ! (a
i

, a
j

) is used to associate two
children edge segments in images. This rule requires that
two children edges are the projections of two straight lines
in 3D that are orthogonal and intersected with each other.
In local Manhattan world [Liu et al., 2014], it follows that
two children lines should share the same Z-component in the
world coordinate, denoted as [d

i

¯X
i

]

Z

. We define E(I, V |R2)

as follows:

E(I, V |R2) = ([d
i

¯X
i

]

Z

� [d
j

¯X
j

]

Z

)

2
+ n̄T

i

n̄
j

(6)

where the second term is used to enforce orthogonality con-
straint.

Grammar rule R3: V ! (a
i

, B
j

) is used to associate an
edge segment a

i

with a planar region B
j

. The attributes of B
j

are defined as X (B
j

) = (d
j

, n̄
j

, l
j

) where n̄
j

is the normal
orientation, d

j

¯X
j

is the 3D position of the planar center. Thus,
we require that the line with a

i

lies on the plane B
j

and define
E(I, V |R3) using the following objective,

E(I, V |R3) =
⇥
n̄T

j

(d
j

¯X
j

� d
i

¯X
i

)

⇤2 (7)

which encourages the line segment a
i

to be lying on the planar
B

j

.
Grammar rule R4: V ! (B

i

, B
j

) states that two children
planar surfaces share the same normal orientation, and thus
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should belong to the same planar surface. The surfaces B
i

and
B

j

should be spatially adjacent in both image and 3D space.
In practice, in order to address occlusions and noises, we allow
the grouping of disjoint regions in image by this rule if they
have high affinity in appearance. The node V is a composition
of its children planar surfaces.

The energy function E(I, V
N

|R4) is defined over both geo-
metric attributes and appearance of graph nodes:

E(I, V
N

|R4) =

X

V 2VN

Egeo

(I, V ) + Eapp

(I, V
N

) (8)

The geometric energy Egeo

(I, V ) is defined to encourage
that: the central point d

i

¯X
i

of the planar B
i

should lie on the
plane B

j

and vice versa. Thus, Egeo

(I, V ) is defined as:

Egeo

(I, V ) =

⇥
n̄T

j

(d
j

¯X
j

� d
i

¯X
i

)

⇤2

+

⇥
n̄T

i

(d
i

¯X
i

� d
j

¯X
j

)

⇤2 (9)
The appearance energy Eapp

(I, V
N

) is defined over the
planar partition by all the non-terminal nodes. We use the
typical Ising/Potts model in statistical mechanics. Let < s, t >
denote a pair of adjacent superpixels, l

s

and l
t

their planar
index or colors. We have

Eapp

(I, V
N

) = ��
X

<s,t>

f
st

1(l
s

= l
t

) (10)

where � > 0 is an constant, f
st

indicates the appearance simi-
larity between B

i

and B
j

, 1(l
s

= l
t

) returns 1 if superpixels s
and t have the same label; otherwise, returns 0.

Grammar rule R5: V ! (B
i

, B
j

) is used to group two
adjacent planar regions that have different yet orthogonal nor-
mal orientations. The parent node V indicates a composite
structure, e.g. building blocks, or a facade standing on ground-
plane. Hence, we define E(I, V |R5) to be the following:

E(I, V |R5) = n̄T

i

n̄
j

(11)
which enforces the orthogonality between B

i

and B
j

.

4 Inference via Hybrid Monte Carlo Method
with Hamiltonian Dynamics

Our inference aims to construct an optimal parse graph by
applying the grammar rules and solving the optimal attributes
for each graph node, which are however intractable. We de-
velop a Hybrid Monte Carlo method (HMC) to sample the
posterior distribution in Eq. (1). It starts with an initial graph
that includes a root node and a set of terminal nodes, i.e. su-
perpixels or edge segments. Then we design a set of dynamics
to reconfigure the parse graph and simulate a Markov chain
in the solution space. The dynamics are either jump moves,
e.g. creating new graph nodes, or diffusion moves, e.g. esti-
mating 3D positions or normal orientation for a planar region.
These stochastic dynamics are paired with each to make the
solution changes reversible in order to guarantee convergence
to p(W |I).

Formally, a dynamic is proposed to drive the solution status
from W to W 0, which is accepted with the probability in the
Metropolis-hasting form:

min(1,
p(W 0|I)Q(W ! W 0

)

p(W |I)Q(W 0 ! W )

) (12)

where Q(·) is the proposal probability. We use three dynam-
ics, including two jump moves in the discrete space and one
diffusion move in the continuous space.

Dynamic I: Birth/Death of Non-terminal Nodes. This
pair of jumps are used to create or delete a nonterminal node
and thus transition the current solution into a new solution.

To create a non-terminal node, we first randomly select
one of the five grammar rules R1, ..., or R5, and create a list
of candidates that are plausible according to the predefined
constraints. Taking R1 as example, two children edge seg-
ments should i) have the same orientation; ii) be spatially
connected. Each candidate in this list is represented by its po-
tential. Let Bk

i

denote the ith candidate for the grammar rule
R

k

, |Bk

i

| the size of the region associated with Bk

i

, its energy
is E(I, Bk

i

|R
k

). The proposal probabilities for selecting Bk

i

is calculated based on the weighted list,

Q(W ! W 0
) = 1� |Bk

i

|E(I, Bk

i

|R
k

)P
j

|Bk

j

|E(I, Bk

j

|R
k

)

(13)

Similarly, we obtain another set of candidate nodes to delete
based on their energies, and the proposal probabilities for
deleting the node Dk

i

is calculated as

Q(W ! W 0
) =

|Dk

i

|E(I,Dk

i

|R
k

)P
j

|Dk

j

|E(I,Dk

j

|R
k

)

(14)

Dynamic II: Hamiltonian Dynamic We use the Hamilto-
nian mechanics [Audin and Babbitt, 2008] [Almeida, 1992]
to make proposals for the continuous variables in W , i.e. d

i

and n̄
i

. Hamiltonian method uses physical system dynamics
rather than probability distribution to make proposals. Let a
vector ✓ = ({d

i

, n̄
i

}) organize all the desired continuous at-
tributes. E(✓) is the energy defined in Eq. (2). Consider ✓ as a
position at the energy landscape, h as the momentum at time t.
Sampling ✓ is equal to moving ✓ through the energy landscape
with a varying moment h. The energy H(✓, h) at a time-step,
known as Hamiltonian, is a combination of the energy E(✓)
and the kinetic energy K(h), i.e. H(✓, h) = E(✓) + K(h).
We set K(h) = hTh/2 as conventional. The partial deriva-
tives of the Hamiltonian determine how ✓ and h change over
time, according to the Hamilton’s equations:

@✓

@t
=

@K(h)

@h
= h,

@h

@t
= �@E(✓)

@✓
(15)

Starting with initial state at time t=0, we can iteratively com-
pute the states of ✓ and the moment h at each time, following
the Euler’s method [Audin and Babbitt, 2008]:

✓t+1
= ✓t � ↵ht ht+1

= ht � ↵
E(✓)

@✓
(16)

where the subscript t denotes the state at time t. The pro-
posal probability for Hamiltonian Dynamic is defined over the
energy changes after L times updates. Let (✓, h) denote the
initial state, (✓⇤, h⇤

) the updated states after L times, we have

Q(W ! W 0
) =

1

Z exp{H(✓, h)�H(✓⇤, h⇤
)} (17)

where Z is a normalization constant. We set Z such that the
sum of probabilistic of all the proposals is unit one.
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Algorithm 1 Inference .
1: Input: a single image;

Output: parse graph and 3D scene model;
2: Initialization: detecting straight edge segments; partition-

ing superpixels; initialize the parse graph G;
3: Iterate until convergence,

- Randomly select one of the two MCMC dynamics;
- Make proposals accordingly to reconfigure the cur-

rent parse graph;
- Accept the change with a probability

Hamiltonian dynamics can make proposals that are far from
the current solution state and can still be accepted with high
probability, i.e., distant proposals, because it exploits the steep-
est descent direction and current moment, rather than proba-
bilistic distribution in other MCMC methods [Liu et al., 2014].
In addition, Hamiltonian dynamics has been approved to be
reversible and ergodic [Almeida, 1992].

Dynamic III: Merge/split planar regions This pair of
jumps is used to regroup superpixels around the boundaries
of planar regions. We obtain the list of candidate proposals
for the merge/split dynamics as follows. Firstly, we select
the superpixels that locate on the boundaries of two different
regions and use them as graph nodes. These superpixels are
usually with big ambiguities. Secondly, we link every two
adjacent nodes to form an adjacent graph, and measure the
edge weight using the appearance similarities of neighbor su-
perpixels. Thirdly, we sample the edge status of ’on’ or ’off’
based on their edge weights to obtain connected components
(CCP). We select one of the CCPs and change its semantic
label to get a new solution state W 0. This procedure is similar
to that used by Barbu et al. [Barbu and Zhu, 2007] for graph
labeling problem. Let CCPk

i

denote the ith CCP, g(CCPk

i

|W )

denote the confidence of its label in the solution W , the pro-
posal probability for selecting the ith candidate is defined as
follows:

Q(W ! W 0
) =

g(CCPk

i

|W 0
)/g(CCPk

i

|W )

P
j

g(CCPk

j

|W 0
)/c(CCPk

j

|W )

(18)

The confidence g(CCPk

i

|W ) is defined as the appearance sim-
ilarity between the selected CCP and the other nodes with the
same color [Barbu and Zhu, 2007].

Algorithm 1 summarizes the proposed inference algorithm.
It starts with an initial parse graph and uses a set of reversible
dynamics to reconfigure the parse graph until convergence.
Different from previous sampling-based methods [Liu et al.,
2014] [Tu and Zhu, 2002], the proposed algorithm can make
distant proposals in both continuous and discrete space and
thus can converge fast to the target distribution.

5 Experiment
Datasets We use the three datasets [Liu et al., 2014]: CMU
dataset, LMW-A, and LMW-B. The CMU dataset was origi-
nally collected by Hoiem et al. [Hoiem et al., 2008]. It includes
a subset of 100 images provided by Liu et al. [Gupta et al.,
2010]. We used 50 images for training and the rest for testing

as [Gupta et al., 2010]. LMW-A consists of 50 images from
the collections in [Hoiem et al., 2008]. There are 4.6 VPs
per image on average. LMW-B consists of 50 images from
the dataset of EurasianCities in [E.Tretyak et al., 2012] with
4.2 VPs per image on average. We further collect 950 images
from different sources, i.e. LMW-C, and manually annotate
VPs, region labels and surface normal orientations . These
images are selected from the PASCAL VOC [Everingham et
al., 2015] and Labelme projects [Russell et al., 2007]. There
are 3.5 VPs per image on average.

Baseline We compare our method with three popular single-
view 3D reconstruction methods: i) the geometric parsing
method Hoiem et al. [Hoiem et al., 2005]; ii) the method by
Gupta et al. [Gupta et al., 2010], and iii) the recently proposed
attributed grammar method by Liu et al. [Liu et al., 2014]. We
use the implementation parameters in their respective papers.
To evaluate the effects of individual grammar rules, we imple-
ment three variants of the proposed method in order . i) Ours-I,
that explores geometric relationships between lines/edges with
three grammar rules: R1 (co-linear), R2 (orthogonality), and
R3 (attachment). ii) Ours-II, that explores geometric relation-
ships between planars/regions with the grammar rules: R4

(co-planar) and R5 (supporting). iii) Ours-III, that uses all
five grammar rules.

Implementation To calibrate camera, we assume the cam-
era optical center coincides with the image center. Thus, we
select the parameter configuration that achieves the maximum
log-probability. Similar simulation based maximum likelihood
estimation (MLE) method has been used in previous works [Tu
and Zhu, 2002] [Zhao and Zhu, 2011]. We train our models
on the subset of CMU dataset, and use other three datasets for
testing. We train our models on the subset of CMU dataset,
and use other three datasets for testing. To make proposals
for R1 through R5, we set the spatial distance between two
children nodes (i.e. edge or planar region) to be less than 40

pixels, and the orientation angles, if applicable, to be less than
10 degrees. We extract the appearance features in [Hoiem et
al., 2005] from image regions. All images without groundtruth
annotations in our dataset are used for the self-taught learning.
The maximal iterations of HMC algorithm is fixed to 2000.
For each image, the average processing time is 50 seconds on
a Workstation(i7@3.6GHZ with 16GB memory).

Qualitative Evaluation Fig. 3 visualizes exemplar results
by the proposed method Ours-III. We plot input images in
the 1

st column. In the 2

nd column, we show the synthesized
edge maps from novel viewpoints, obtained by applying the
dynamic-I only (i.e., optimizing Eq. 2). We use the Matlab
optimization toolbox to solve the quadratic programming prob-
lem. In the 3

rd column, we plot the synthesized images from
novel viewpoints. In the next two columns, we plot the depth
maps recovered by our method and the method by Hoiem et
al. [Hoiem et al., 2008], respectively. The obtained depth maps
are much better than those by [Hoiem et al., 2008]. Note that
the method in [Hoiem et al., 2008] [Gupta et al., 2010] [Liu
et al., 2014] needs a post-processing step to approximate the
depth map. In contrast, our method directly optimizes 3D
depth values while respecting different types of geometric
constraints.

Quantitative Results For surface orientation estimation,
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Figure 3: Results on LMW-A. Column-1: input images; Column-2: reconstructed 3D edge mode; Column-3: novel viewpoint
synthesized; Column-4: depth map recovered by the proposed method Ours-III; Column-5: depth map by Hoiem et al.[16]

Table 1: Numerical comparisons on surface orientation.
CMU [Hoiem et al., 2008] LMW-A LMW-B LMW-C

Ours-III 82.31 % 72.56 % 70.90 % 64.17 %

Ours-II 79.14 % 71.92 % 65.89 % 62.34 %

Ours-I 78.39 % 79.46 % 64.35 % 61.47 %

Liu et al. [Liu et al., 2014] 76.34 % 67.90 % 64.30 % 62.34 %

Hoiem et al. [Hoiem et al., 2008] 68.80 % 56.30 % 52.70 % 53.28 %

Gupta et al. [Gupta et al., 2010] 73.72 % 62.21 % 59.21 % 58.39 %

Table 2: Numerical comparisons on region labelling
CMU[Hoiem et al., 2008] LMW-A LMW-B LMW-C

Ours-III 85.42% 73.51 % 73.29 % 79.81 %

Ours-II 82.19% 71.48 % 72.54 % 78.63 %

Ours-I 70.32% 69.72 % 71.08 % 77.28 %

Liu et al. [Liu et al., 2014] 72.71% 66.45% 65.14 % 63.17 %

Hoiem et al. [Hoiem et al., 2005] 65.32 % 58.37% 57.70 % 59.25 %

Gupta et al. [Gupta et al., 2010] 68.85% 59.21% 60.28% 60.19%

we use the metric of accuracy, calculated by the percentage
of pixels that have the correct label and averaged over the test
images.

Table 1 reports the numerical comparisons on four datasets.
Only results on verticle classes are reported. From the results,
we can observe the following. Firstly, the proposed Ours-III
clearly outperforms other baseline methods on all the four
datasets. Taking the CMU dataset for instance, the method by
Gupta et al. [Gupta et al., 2010] has an average performance of
73.72%, whereas ours performs at 82.31%. On the other three
datasets that have accurate normal orientation annotations, the
improvements by our method are even more. As stated by
Gupta et al. [Gupta et al., 2010], it is hard to improve vertical
subclass performance. Our method, however, can improve
these two baselines with large margins. Secondly, Ours-III
clearly outperforms other two variants, i.e., Ours-I and Ours-II

that use less types of grammar rules. These comparisons jus-
tify the effectiveness of the proposed grammar model. Thirdly,
Ours-III has good margins over our previous method [Liu
et al., 2014]. Although [Liu et al., 2014] follows the same
methodology, this work directly optimize pixel-wise 3D co-
ordinates while respecting the variety of knowledge imposed
with grammar rules, which leads to better performance.

Table 2 reports the region labeling performance on the four
datasets. We use the best spatial support metric as [Gupta et
al., 2010], which first estimates the best overlap score of each
ground truth labeling and then averages it over all ground-
truth labeling. Our method improves the method [Gupta et al.,
2010] with the margins of 9.47, 16.57, 14.30, 13.10 and 19.20
percentages on the four datasets, respectively. Note that all the
three variants of our methods outperform the baseline methods,
which demonstrates that jointly solving reconstruction of lines
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and planes can bring considerable improvements in region
labeling.

6 Conclusion
This paper introduced a grammar model for single-view
3D scene reconstruction. Each grammar rule describes
a geometric relationship between straight lines/edges and
planes/regions. We specify a probability model to deal with
uncertainty reasoning, and introduce a Hybrid Monte Carlo
(HMC) algorithm that can make distant proposals in both
continuous and discrete spaces. Extensive evaluations on chal-
lenging images show that our method can clearly outperform
the state-of-the-art methods. This paper contributes a generic
framework for optimizing joint representation that comprises
of both continuous and discrete variables. The developed tech-
niques can be applied to solve existing vision tasks, e.g. joint
tracking and segmentation, or motivate novel vision tasks.

References
[Almeida, 1992] A. Almeida. Hamiltonian systems: Chaos

and quantization. Cambridge monographs on mathematical
physics, 1992.

[Audin and Babbitt, 2008] M. Audin and D. Babbitt. Hamilto-
nian systems and their integrability. American Mathmatical
Society, 2008.

[Barbu and Zhu, 2007] A. Barbu and S-C. Zhu. Generalizing
swendsen-wang to sampling arbitrary posterior probabilities.
TPAMI, 2007.

[Cabral and Furukawa, 2014] R. Cabral and Y. Furukawa. Piece-
wise planar and compact floorplan reconstruction from images.
In CVPR, 2014.

[Cipolla et al., 1999] R. Cipolla, T. Drummond, and D. Robert-
son. Camera calibration from vanishing points in images of
architectural scenes. In BMVC, 1999.

[E.Tretyak et al., 2012] E.Tretyak, O. Barinova, P. Kohli, and
V. Lempitsky. Geometric image parsing in man-made environ-
ments. IJCV, 97(3):305–321, 2012.

[Everingham et al., 2015] M. Everingham, S. Eslami, L. Van
Gool, C. Williams, and A. Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. IJCV, 111(1):98–136,
2015.

[Furukawa et al., 2009] Y. Furukawa, B. Curless, S. Seitz, and
R. Szeliski. Manhattan-world stereo. In CVPR, 2009.

[Gioi et al., 2008] R. Gioi, J. Jakubowicz, J. Morel, and G. Ran-
dall. Lsd: A fast line segment detector with a false detection
control. TPAMI, 2008.

[Gupta et al., 2010] A. Gupta, Al. Efros, and M Hebert. Blocks
world revisited: Image understanding using qualitative geome-
try and mechanics. In ECCV, 2010.

[Haene et al., 2013] C. Haene, C. Zach, A. Cohen, R. Angst, and
M. Pollefeys. Joint 3d scene reconstruction and class segmen-
tation. In CVPR, 2013.

[Han and Zhu, 2003] F. Han and S-C. Zhu. Bayesian reconstruc-
tion of 3d shapes and scenes from a single image. In Proc. of
Int’l workshop on High Level Knowledge in 3D Modeling and
Motion, October 2003.

[Han and Zhu, 2009] F. Han and S-C. Zhu. Bottom-up/top-down
image parsing with attribute grammar. TPAMI, 31(1):59–73,
2009.

[Heitz et al., 2008] G. Heitz, S. Gould, A. Saxena, and D. Koller.
Cascaded classification models: Combining models for holistic
scene understanding. In NIPS, 2008.

[Hejrati and Ramanan, 2014] M. Hejrati and D. Ramanan. Anal-
ysis by synthesis: Object recognition by object reconstruction.
In CVPR, 2014.

[Hoiem et al., 2005] D. Hoiem, A. Efros, and M. Hebert. Geo-
metric context from a single image. ICCV, 2005.

[Hoiem et al., 2008] D. Hoiem, A. Efros, and M. Hebert. Closing
the loop on scene interpretation. In CVPR, 2008.

[Koutsourakis et al., 2009] P. Koutsourakis, L. Simon, O. Teboul,
G. Tziritas, and N. Paragios. Single view reconstruction using
shape grammars for urban environments. In ICCV, pages 1795–
1802, 2009.

[Kundu et al., 2014] A. Kundu, Y. Li, F. Daellert, F. Li, and
J. Rehg. Joint semantic segmentation and 3d reconstruction
from monocular video. In ECCV, 2014.

[Liu et al., 2014] X. Liu, Y. Zhao, and S-C. Zhu. Single-view 3d
scene parsing by attributed grammar. In CVPR, 2014.

[Mobahi et al., 2012] H. Mobahi, Z. Zhou, A. Yang, and Y. Ma.
Holistic 3d reconstruction of urban structures from low-rank
textures. In ACCV, 2012.

[Pero et al., 2011] L. Pero, J. Guan, E. Brau, J. Schlecht, and
K. Barnard. Sampling bedrooms. In CVPR, 2011.

[Pero et al., 2012] L. Pero, J. Guan, E. Hartley, B. Kermgard, and
K. Barnard. Bayesian geometric modeling of indoor scenes. In
CVPR, 2012.

[Pero et al., 2013] L. Pero, J. Guan, E. Hartley, B. Kermgard, and
K. Barnard. Understanding bayesian rooms using composite 3d
object models. In CVPR, 2013.

[Ren and Malik, 2003] X. Ren and J. Malik. Learning a classifi-
cation model for segmentation. In ICCV, 2003.

[Russell et al., 2007] B. Russell, A. Torralba, K. Murphy, and
W. T. Freeman. Labelme: a database and web-based tool for
image annotation. International Journal of Computer Vision,
2007.

[Schwing and Urtasun, 2012] A. Schwing and R. Urtasun. Effi-
cient exact inference for 3d indoor scene understanding. In
ECCV, 2012.

[Schwing et al., 2013] A. Schwing, S. Fidler, M. Pollefeys, and
R. Urtasun. Box in the box: Joint 3d layout and object reason-
ing from single images. In ICCV, 2013.

[Tu and Zhu, 2002] Z. Tu and S-C. Zhu. Image segmentation by
data-driven markov chain monte carlo. TPAMI, 24(5):657–673,
2002.

[Xiao et al., 2013] J. Xiao, A. Owens, and A. Torralba. Sun3d:
A database of big spaces reconstructed using sfm and object
labels. In ICCV, 2013.

[Zhang et al., 2013] H. Zhang, A. Geiger, and R. Urtasun. Under-
standing high-level semantics by modeling traffic patterns. In
ICCV, 2013.

[Zhao and Zhu, 2011] Y. Zhao and S-C. Zhu. Image parsing via
stochastic scene grammar. In NIPS, 2011.

3431


