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Abstract

Feature representation and object category classifi-
cation are two key components of most object detec-
tion methods. While significant improvements have been
achieved for deep feature representation learning, tradi-
tional SVM/softmax classifiers remain the dominant meth-
ods for the final object category classification. However,
SVM/softmax classifiers lack the capacity of explicitly ex-
ploiting the complex structure of deep features, as they are
purely discriminative methods. The recently proposed dis-
criminative dictionary pair learning (DPL) model involves
a fidelity term to minimize the reconstruction loss and a dis-
crimination term to enhance the discriminative capability
of the learned dictionary pair, and thus is appropriate for
balancing the representation and discrimination to boost
object detection performance. In this paper, we propose
a novel object detection system by unifying DPL with the
convolutional feature learning. Specifically, we incorporate
DPL as a Dictionary Pair Classifier Layer (DPCL) into the
deep architecture, and develop an end-to-end learning al-
gorithm for optimizing the dictionary pairs and the neural
networks simultaneously. Moreover, we design a multi-task
loss for guiding our model to accomplish the three cor-
related tasks: objectness estimation, categoryness compu-
tation, and bounding box regression. From the extensive
experiments on PASCAL VOC 2007/2012 benchmarks, our
approach demonstrates the effectiveness to substantially im-
prove the performances over the popular existing object de-
tection frameworks (e.g., R-CNN [13] and FRCN [12]), and
achieves new state-of-the-arts.

1. Introduction

Aiming at finding instances of real-world objects from
images or video sequences, object detection has been at-
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tracting great interests in computer vision community. Al-
though its performance has been improved substantially in
the past decade [31, 34, 21, 8, 30, 33, 13, 16], object detec-
tion remains a challenge problem under complex and un-
constrained environments.

Recently, ground breaking progress on object detection
has been made due to the advances in deep convolutional
neural networks (CNNs) [19, 28] and the increasing size
of training dataset [5]. The state-of-the-art object detection
methods generally adopt the region-based CNN framework
which includes three components: region proposal, feature
extraction and object category classification. By far, many
region proposal methods [31, 3, 24] and deep CNN archi-
tectures [13, 26, 28, 27, 16, 12] have been proposed, but not
too many methods have been proposed for object category
classification, where the SVM/softmax classifiers are dom-
inantly used. Several complex classifiers, such as network
on convolutional feature maps (NoCs) [25] and structured
SVM [38], have been developed to improve the accuracy
and robustness of object detection. These classifiers, how-
ever, are fully discriminative methods which directly learn
an optimal mapping from the CNN features to the desired
classification output.

Combining of discriminative learning with representa-
tion or generative modeling is beneficial to exploit the com-
plex structure of CNN features for improving object detec-
tion. As an extension of the reconstructive dictionary learn-
ing proposed in image and signal modeling, discriminative
dictionary learning (DDL) has achieved great success in the
last decade [22, 9, 36, 18]. DDL aims to learn a dictio-
nary by considering both its representation accuracy and
discriminative capability, and thus it is more suitable to act
as a classifier for object category classification. However,
the existing DDL methods cannot achieve state-of-the-art
performance for large scale image classification and object
detection, partially due to that the DDL models have only
been evaluated with conventional handcrafted features (e.g.,



SIFT and HOG). Therefore, it is interesting to investigate
whether we can significantly boost the object detection per-
formance of DDL by utilizing more powerful deep CNN
features.

Computational burden is another obstacle which restricts
the application of DDL to large scale scenarios. Most DDL
models involve costly ¢y- or ¢;-norm regularization to gen-
erate sparse coding vectors, limiting their use to the scenario
with high feature dimension and large volumes of data. For-
tunately, Gu et al. [15] suggested a projective dictionary
pair learning (DPL) method, which improves greatly the
computational efficiency. To avoid costly sparse coding,
DPL adopts an analysis dictionary to generate coding vec-
tor via linear projection and a synthesis dictionary for class-
specific discriminative reconstruction, respectively. In this
work, we propose to design a dictionary pair classifier layer
(DPCL) at the end of the CNN for object detection. For
readability, some main abbreviations of this paper are listed
in Tab. 1.

Rather than learning the CNN and the dictionary pair
separately, we adopt a joint training mechanism for simul-
taneous feature learning and classifier learning. A dictio-
nary pair back propagation (DPBP) algorithm is proposed
to jointly update the parameters of CNN and DPCL in an
end-to-end learning manner. With DPBP, we can fine-tune
the trained CNN to extract discriminative features special-
ized to DPCL. Meanwhile, DPCL is tailored to the learned
CNN features and better detection results can be expected.

Furthermore, we present a sample weighting scheme in
DPCL to improve the localization accuracy. As analyzed
in [13], poor localization remains the major type of detec-
tion errors. One major cause of inaccurate localization is
that the objective of classifier is to correctly predict the cat-
egory label of the object, while the objective of detection is
to accurately estimate the location. To make classification
conformable with localization, careful selection of thresh-
olds of the intersection-over-union (IoU) with the ground
truth is important to define positive and negative sam-
ples [13]. To alleviate the inaccurate localization, Zhang
et al. [38] adopted the structured SVM classifier to simulta-
neously predict category and location, while Girshick [12]
suggested a multi-task loss to balance between classifica-
tion and localization. Different from [38, 12], we introduce
a predefined weight to each training sample based on its loU
overlapping with the ground truth bounding box, encourag-
ing the samples with higher IoUs (i.e., better localization) to
have lower reconstruction residual (i.e., higher score). Ex-
perimental results show that the weighting scheme in DP-
CLs can further improve the detection performance.

Motivated by the success of multi-task learning [4] in
object detection [12], we present a novel multi-task loss
for joint training of the DPCL and bounding-box regressor.
In [12], Girshick considered two learning tasks, where the

classification task loss is on the probability distribution over
K + 1 categories (K object categories and one background
category), and the location task loss is on the bounding box
regression offsets. In this work, we divide the classifica-
tion task into two related ones, i.e., an objectness task to
distinguish object from background and a categoryness task
to recognize the category of the object. Although the ob-
jectness [2] can be used as a pre-filtering process in object
detection [13, 16], its potential remains untapped and not
fully released. First, most objectness measures are based on
hand-crafted features, while the learned objectness on deep
CNN features can further benefit object detection. Second,
the incorporation of objectness and categoryness allows us
to use the coarse-to-fine strategy for object category classi-
fication. Third, our objectness detection task is not aimed
to learn a general objectness measure but to learn a classi-
fier to distinguish background from objects of interest. To
this end, we employ two separate DPCLs to accomplish
the two correlated tasks, i.e., objectness learning and cat-
egoryness learning, and our multi-task loss includes three
tasks: objectness, categoryness, and localization. Com-
pared with [12], we adopt a hybrid fusion strategy, where
the product rule is used to fuse objectness score and cate-
goryness score into classification score, and the sum rule is
then utilized to combine classification score and localiza-
tion loss. Moreover, DPBP can also be extended to mini-
mize the multi-task loss in an end-to-end manner.

By integrating DPCL classifier training with CNN fea-
ture learning, the proposed method achieves about 3% /2%
mAP gain over the popular existing object detection frame-
works (e.g., R-CNN [13], FRCN [12]) on PASCAL VOC
2007/2012 benchmarks, respectively. This establishes the
significance of the joint learning framework as well as the
proposed multi-task loss. In summary, the contributions of
this work are three-fold. i) A novel deep architecture is de-
veloped by integrating DPCL with CNN for objection de-
tection, and a DPBP algorithm is suggested for the end-
to-end learning of CNN and DPCL parameters. ii) Based
on the R-CNN [13]/FRCN [12] framework, we propose a
novel multi-task loss by combining objectness estimation,
categoryness computation and bounding box regression to
improve the detection performance. iii) A sample weighting
scheme is introduced to assign larger weight to the training
samples with higher IoU with the ground truth, which can
further improve the location accuracy of object detection.

DPL Dictionary Pair Learning
DPCL Dictionary Pair Classifier Layer
DPBP  Dictionary Pair Back Propagation

ODP Objectness Dictionary Pair

CDP Categoryness Dictionary Pair

Table 1. Some main abbreviations are used in this paper.




2. Related Work

Deep Convolutional Neural Networks. By directly
learning features from raw images, deep convolutional neu-
ral networks (CNNs) have made impressive progresses on
image classification, object detection, semantic segmenta-
tion and many other recognition tasks [19, 28, 13, 1, 17].
Motivated by the success of CNNs [19] on the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [5], a
variety of CNN-based object detection methods have been
proposed. Szegedy et al. [30, 6] treated object detection
as a regression problem, and trained CNNs to predict object
bounding boxes (MultiBox) or bounding box masks (Detec-
torNet). Overfeat [26] suggested by Sermanet et al. adopts
the sliding window scheme, and uses two CNNss to predict
the objectness and the true bounding box location, respec-
tively. Deformable parts models (DPMs) can also be ex-
plained from the CNN perspective, and the integration of
DPMs and CNNs has been investigated in [32, 14].

Most recent object detection methods are based on the
R-CNN framework [13], which includes three main com-
ponents: region proposal, feature extraction and object cat-
egory classification. To improve the efficiency of region
proposal generation, Szegedy et al. [29] improved Multi-
Box by using the Inception-style network, contextual fea-
tures and robust loss, while Ren et al. [24] suggested a re-
gion proposal network (RPN). To improve the efficiency of
detection network and avoid region proposal resizing, spa-
tial pyramid pooling networks (SPPnets) [16] and fast R-
CNN [12] proposed to introduce a Rol-pooling layer to ex-
tract fixed-size proposal features from shared convolutional
feature maps of the entire image. For better classification
and localization, Girshick adopted a multi-task loss, and
Zhang et al. [38] used a fine-grained Bayesian search al-
gorithm for region proposal refining and a structured SVM
classifier for simultaneous classification and localization.
Besides, contextual information, e.g., background, parts,
and segmentation, can also be utilized to improve the de-
tection performance [11, 39].

Discriminative Dictionary Learning. Discriminative
dictionary learning (DDL) plays an important role in sparse
representation or collaborative representation based classi-
fier [35, 37], and has been intensively studied in computer
vision community. Generally, there are two approaches to
enhance the discriminative capability of the learned dictio-
nary. First, the discrimination can be imposed on the coding
vectors to have a better classification performance. Jiang et
al. [18] introduced a binary class label sparse code matrix
to encourage samples from the same class to have similar
sparse codes. Mairal et al. [22] proposed a task driven dic-
tionary learning (TDDL) framework, which minimizes dif-
ferent risk functions of the coding coefficients for different
tasks. Yang et al. [36] proposed a Fisher discrimination dic-
tionary learning (FDDL) method which applies the Fisher

criterion to representation coefficients.

Second, the discrimination can also be obtained by learn-
ing structured dictionary, i.e., learning a sub-dictionary for
each class and minimizing the class-specific residual [36].
Ramirez et al. [23] used a structured incoherence term to
enforce the independence of the sub-dictionaries. Besides
the sub-dictionaries, Gao et al. [10] learned an extra shared
dictionary to encode common features shared by all classes.
To improve the efficiency of DDL, Gu et al. [15] proposed a
projective projective dictionary pair learning (DPL) model
by utilizing an analytic dictionary to estimate the represen-
tation coefficients efficiently.

3. Integration of DPCL and CNN
3.1. The Dictionary Pair Classifier Layer
3.1.1 Layer Description

Let X = [XQ, ey X, ...,XK] X, € Rdxnk, ng 1is
the number of training samples for the k-th category)
denote a set of previous layer’s d-dimensional outputs
for the input image regions I from K + 1 categories.
The DPCL aims to find a class-specific analysis dictio-
nary P = [Pg,....Py,...Pg] € RMEFUxd (P, ¢
R™*4) and a class-specific synthesis dictionary D =
[Do, ..., D, ..., D] € R>*™E+D (D, € R¥X™) to an-
alytically encode and reconstruct the feature X, where m is
the number of dictionary atoms. The sub-dictionaries Py,
and Dy, form a dictionary pair for the k-th category. Given
P and Dy, the encoding coefficients Ay of the k-th cat-
egory training samples X over synthesis Dy, can be ana-
Iytically obtained as Ay = Py X,. Compared to the costly
lp-norm or /;-norm non-linear sparse coding operation in
most of the existing DDL methods, it is quite efficient to re-
solve the code Ay, for the representation of Xy, in DPL. To
learn such an analysis dictionary P together with the syn-

thesis dictionary D, the DPL model [15] is formulated as:
K

{P*, D*} = arg %1’1]51;70 ||Xk — DkPka”?:

ey
+o{P,D,X,Y},

where Y represents the category label matrix of samples

in X, and ®{P,D, X, Y} is some discrimination term to

promote the discriminative power of D and P.

In the original DPL [15], the sub-dictionary Py is en-
forced to project the samples X, from another category i,
i # k, to a nearly null space, i.e., PyX,; ~ 0,Vk # 1.
With this constraint, the coefficient matrix Ay is nearly
block diagonal. However, the original DPL does not con-
sider the fact that different training samples may play dif-
ferent importance in training a discriminative model. In this
work, we introduce a diagonal importance weight matrix
W to the k-th category of training samples, and the pro-
posed DPCL is then defined as:
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Figure 1. The flowchart of our multi-loss CNN+DPCL model. Our model is stacked up by convolutional layers, fully connected layers,
objectness DPCL and categoryness DPCL. The four values inside 2 x 2 grids are corresponding to the four input regions. The final score
for each image region is the combination of objectness and categoryness.

K

P*,D*} = argmin X — DyPLX, Wi ||2
{ } gP’DkZ:O”( k — DiPr Xy ) Wil @

+A|Pe Xk |7 + &[| D |7

where A > 0 and x > 0 are scalar constants, X, denotes the
complementary data matrix of Xy, from the whole training
samples X. To avoid the trivial solution of P;, = 0, an extra
constraint term || Dy ||% is added.

The introduction of Wy, is to improve the localization
performance. To this end, we assign higher weights to the
samples with better localization. By this way, lower recon-
struction residual will be expected for sample with higher
weight, and thus the reconstruction residual can be adopted
to find the proposal with better localization. Therefore, we
use the IoU with the ground truth bounding box of the k-th
object category to define Wy,.

3.1.2 Learning of the Dictionary Pair

To exploit the alternating minimization algorithm for dic-
tionary pair learning, we relax Eqn. (2) by introducing a
coding coefficient matrix A:

K

{P*, A", D*} = arg Pryrx&) kzio (X — DkAk-)WkH%

+7(|(PrX — Ar)Wiclz + A[PeXp || % + & Dy,
3)
where 7 is a scalar constant. All terms in the above objective
function are characterized by the squared Frobenius norm,
and thus Eqn. (3) can be efficiently solved by alternating
minimization.
By initializing P and D with random matrices with unit
Frobenius norm, the minimization for Eqn. (3) can be per-
formed by alternating between the following three steps:

(i) Fix {D, P, X}, and update A via:

A = (D{Dy +7I) (7P Xy + Di X)) (4

(ii) Fix {D, A, X}, and update P via:

P; = 7AW, WEXT (+ X, W W XT
o )
XX, D)

where the constant « is empirically set as 0.0001 according
to the validation set.
(iii) Fix {A, P, X}, update D via:

D; = X, W, WFAT (AW, WFAT kD)7 (6)

Since all steps have closed-form solutions for {A, P,
D}, the 3-step minimization is quite efficient. We stop the
iteration when the difference between the energy in two ad-
jacent iterations is less than a threshold (e.g., 0.01).

3.2. Dictionary Pair Back Propagation

In this section, we propose a dictionary pair back prop-
agation (DPBP) algorithm for joint learning of DPCL and
CNN parameters in an end-to-end manner.

The dictionary pair (D, P}) of the DPCL model can be
optimized separately, and thus Eqn. (2) can be decomposed
into the following K + 1 sub-problems:

in L. (P, D
arg min k(Pr, Dy)
= arg Pnku]glk ||(Xk — DkPka)Wk”% @)
FAPe X |7 + &[|Dg| -

In DPBP, the partial derivatives with respect to
{P}, Dy} are defined as:

0L, (P, D
OLik(Pr, Di) _ —2D. (I — DPy) X, Wi W X[
OP,
—|—2)\Pkikiz
L (P, D
w = 22X, Wi (I — D, P )WIXIPT
k

+2l€Dk
®)



With L = Z,If:o Ly, the partial derivatives with respect
to X is then defined as:

oL
X, 2(I-PID})(Xy — DyPiXy) W W/
)
+ > 2PLPLX,
k' £k
Once all 68—)& are obtained, we can perform the standard
back propagation [20] to update the CNN parameters.

3.3. Object Detection on Test Image

Given a proposal I from the test image, we first extract
the CNN feature x from I, and then define the reconstruc-
tion residual for the k-th category as:

C(X;Dk,Pk) = HX_DI@PI@XH%‘ (10)

The classification rule of the DPCL is
y = argmin £(x; Dy, P;). (11)

When y # 0, we further use bounding box regression to
refine the location of the object location.

4. Optimization with Multi-Task Loss
4.1. Multi-Task Loss

The proposed DPCL is a category classification method
and is not conformable with localization task. To improve
localization, Girshick [12] adopted a multi-task loss to bal-
ance classification and localization. In this method, each
proposal is classified into either background or one of the
object categories, which may not work well in distinguish-
ing background from object categories. To address this is-
sue, we further decompose the classification task into two
related ones. As illustrated in Fig. 1, the feature extracted
by the CNN layers is duplicated and simultaneously fed into
two DPCLs: the objectness DPCL layer and the category-
ness DPCL layer. The former estimates the score for being
an object, while the latter computes the scores for being a
specific object category.

Objectness Dictionary Pair Classifier Layer. The ob-
jectness usually is defined as the score of covering objects
of any category. For the purpose of measuring the object-
ness of the input region, the proposed Objectness Dictionary
Pair (ODP) layer applies two dictionary pairs {D,, P, } and
{Dy, P} to represent objects of any category and back-
ground, respectively. If a region feature x can be better rep-
resented by the background dictionary pairs {D;, Py}, it
is very unlikely to have objects inside. Rather than directly
identify the background according to Eqn. (11), ODP cal-
culates objectness of the input feature x for further object
detection in a soft way: a threshold 7 is used to distinguish
the region with large background. With the reconstruction

residual defined in Eqn. (10), the objectness score Q(x) for
the feature x of the input region is defined as:

_ L(x;Do,Po) . L(x;Do,Po) .
Q(x) = 1 Yic{oy £(xDi,Pi)?  L(x,Dy,Py) <T;
0, otherwise,

(12)
where T controls the precision and recall rate of detecting
background (larger 7 results in higher precision and lower
recall rate), and is empirically set as 0.5 according to the
validation set. Thus, our model is able to identify the back-
ground based on whether (x) is O or not.

Categoryness Dictionary Pair Classifier Layer. The
categoryness score S(x, k) denotes the likeliness that the
feature x belongs to the k-th category. In order to compute
the categoryness for object detection, the proposed Catego-
ryness Dictionary Pair (CDP) layer consists of K dictionary
pairs, where K is the number of object categories. Once
the feature x of the input region is fed, CDP will encode x
over the K category-specific dictionary pairs {Dy, P} and
output the reconstruction residual for each dictionary pair.
We define the categoryness S(x, k) using the reconstruction
residual as:

: . eBL(x;Dy,Pi)
S(X, k) -1 ﬁ(X, Dkapk) €

Y LD, Py) - PLDLPY

where the constant 3 is empirically set as 0.003 according
to the validation set.

Then, the product rule is used to fuse objectness score
and categoryness score, and the classification score Fy, that
x belongs to the k-th category is defined as:

Fr(x) = S(x, k) * Q(x). (14)

Let ¢ denote the function of the CNN layers and I; de-
note the input region with the category label y;, we have the
feature x = ¢(I,w). With the classification score Fy, the
final classification loss is defined as:

13)

K
Lao(I) = 3" 1y = k) log F(6(7,))
k=0 (15)
+(1 —1(y = k)) log(1 — Fi(o(1,w)))
+R{w,D,P},

where 1 € {0, 1} is the indicator function, and R{w, D, P}
denotes the regularization term on the parameters of CNN
and two DPCLs.

Bounding Box Regression Loss. Our defined multi-task
loss can easily append other correlated loss, e.g., the ro-
bust loss in [12]. Let t*(I) = (¢%,¢5, ¢k, ty) and t*(1) =

(ty:ty:t,, t},) be the predicted and ground truth bounding
boxes of the proposal I, where k denotes that the proposal
I belongs to the k-th object category. Then, the bounding

box regression loss is defined as:

Line(t* (1), (1)) = Y Hi(tf—¢), (16

i€x,y,w,h



Algorithm 1 Multi-Task CNN+DPCL Learning
Input:
Training samples I = [I1, 12, ..., Ik, I;] for K + 1 classes (I; denotes
background), pre-trained CNN layers’ parameters.
Output:
Dictionary pairs {D,P} = {{D1,P1}, {D2,P2},....,{Dk,Px},
{Do,Po},{Dys,Pp}}, fine-tuned CNN parameter w, bounding box
regressors wy.
Initialization:
1. Initialize CNN parameters w with pre-trained network;
2. Obtain output features x; = ¢(I;;w) for all training samples;
3. Regard ¢(Ip;w) as background samples and the other ¢([o;w) =
[¢(I1;w), p(I2;w), ..., (I x;w)] as object samples;
5. Optimize dictionary pair {D, P} as described in Sect. 3.1.2:
i. Given ¢(Ip;w) and ¢(Io; w), train {Do, Po}, {Dp, Py}
ii. Given ¢(I;w), train {Dg,Pr},k=1,..., K.
repeat
6. Fine-tune {D, P, w, w,} via mini-batch based back propagation on
Lmt;
until Eqn.(18) converges.

where H;(z) is the Huber loss

0.522,
Hi(z) = {|z| ~05

which is robust to outliers.
We can adopt the sum rule in [12] to combine L.;s and
Ljoc, and the multi-task loss is defined as:

if|z] <1

otherwise ’ a7

N
1 " "
Lot = —N(;Lcls(li) + P Lo (t* (1), (1)),

(18)
where p; is an indicator to denote whether the proposal I;
is an object.

4.2. Optimization

After obtaining the partial derivatives of L,,; with re-
spect to Dy, Py, D,, P,, Dy, Py, Xi, we can extend
DPBP to fine-tune CNN+DPCL to update the dictionary
pairs, CNN parameters and bounding box regressors. To
optimize L,,;, we initialize the CNN parameters with some
pre-trained network, e.g., AlexNet [19] or VGG [27], and
initialize the dictionary pairs using the dictionary pair learn-
ing algorithm in Sect. 3.1.2. Then the DPBP algorithm is
adopted to further optimize CNN+DPCL in an end-to-end
manner. We summarize the whole learning procedure as
Alg. 1.

4.3. Inference

The inference task is to predict the detection scores and
bounding box to a given image region I. Formally, we
perform forward propagation to output the CNN feature
¢(I,w) of the region, and then feed it into the ODP layer
and the CDP layer, simultaneously. With the learned dictio-
nary pairs, we calculate reconstruction residuals of the fea-
ture via Eqn. (10), and obtain the objectness Q(¢(1,w)) via

Eqn. (12) as well as the categoryness S(¢(I,w)) for each
category via Eqn. (13). Finally, our model outputs the final
object detection score via Eqn. (14) for each object cate-
gory. If Q(¢(I,w)) > 0, we further use the bounding box
regressors to predict the object location.

S. Experiments

We demonstrate the performance of our proposed joint
feature and DPCL learning framework on serveral object
detection benchmarks. The experiments are conducted on
the commonly used Pascal VOC 2007/2012 datasets [7].
During evaluation, we adopt the PASCAL Challenge proto-
col: a correct detection should has more than 0.5 IoU with
the ground truth bounding-box. The performance is evalu-
ated by mean Average Precision (mAP).

5.1. Parameter Setting

In all experiments, we set {7,\ k,[5,7,7T,m} as
{0.01,0.01,0.001,0.003,0.0001, 0.5,64}. We consider R-
CNN [13] with AlexNet [19] / VGG [27] and FRCN with
VGG [27] as the baseline model. Following the same exper-
iment settings in [13], the employed CNN parameters are
firstly pretrained on ImageNet, and then fine-tuned on the
corresponding VOC training and validation sets by stochas-
tic gradient descent (SGD) with a 21-way softmax loss (20
object categories plus one background). Then we replace
the softmax classification layer with our proposed model,
and fine-tune the network via DPBP with learning rate start-
ing at 0.00001 and momentum beginning at 0.9. During
the fine-tuning, all regions with < 0.5 IoU overlap with a
ground-truth bounding box are treated as background, while
those with > 0.5 IoU are considered as positives for the cor-
responding object category. The weight of these positives
is defined as the IoU with the ground truth bounding box.
For instance, if a region has 0.6 IoU with the ground-truth
bounding box from the cat category, then it is a positive
sample with the weight 0.6 for the further dictionary pair
learning of the cat category.

5.2. Results and Comparisons

We denote by R-CNN(Alex/VGG) [13] and FRCN [12]
the used CNN frameworks, by ODP and CDP the proposed
objectiveness and categoryness dictionary pair layers, and
by BB the Bounding Box regression in the R-CNN frame-
work. From Tab. 2, BB regression can consistently achieve
3% ~ 4% performance gain by mAP. Therefore, we have
included BB regression for all the results listed in the Tab.
3~5, and the comparison is fair. Our full implemented
model with the proposed DPBP in AlexNet [19] is then de-
noted as “R-CNN(Alex) + CDP + ODP”. Other variants of
our implementation are represented similarly.

In Tab. 2, we report in detail the accuracy on all ob-
ject categories of VOC 2007, compared with the meth-



Method data mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
DPM [8] 07 337 332 603 102 16.1 273 543 582 23.0 20.0 241 267 127 58.1 482 432 120 21.1 36.1 46.0 435
SS [31] 07 337 435 465 104 120 93 494 537 394 125 369 422 264 470 524 235 121 299 363 422 488
Regionlet [34] 07 417 542 520 203 240 20.1 555 68.7 426 192 442 49.1 266 570 545 434 164 36.6 377 594 523
DetNet [30] 07 305 292 352 194 167 3.7 532 502 272 102 348 302 282 466 41.7 262 103 328 268 39.8 47.0
R-CNN(Alex) [13] 07 542 642 69.7 500 419 320 62.6 71.0 60.7 327 585 465 56.1 60.6 668 542 315 528 489 579 647
SPP(Alex) [16] 07 552 655 659 51.7 384 327 62.6 686 69.7 33.1 66.6 53.1 582 636 688 504 274 537 482 61.7 64.7
Best approach of [32] 07 469 493 695 319 287 404 615 615 41.5 255 445 478 320 675 618 467 259 405 460 57.1 582
R-CNN(Alex)+ODP+CDP 07 575 648 71.5 54.6 46.1 50.7 689 78.2 569 36.2 583 47.1 512 675 67.8 660 347 61.5 428 58.7 66.7
R-CNN(VGQG) [13] 07 622 71.6 735 58.1 422 394 70.7 760 745 387 71.0 569 745 679 69.6 593 357 62.1 640 665 712
R-CNN(VGG)+BB [13] 07 660 734 770 634 454 446 75.1 78.1 798 405 737 622 794 781 731 642 356 668 672 704 71.1
Best approach of [38] with BB 07 68.5 74.1 83.2 67.0 50.8 51.6 762 814 772 48.1 789 656 773 784 751 70.1 414 69.6 60.8 70.2 73.7
R-CNN(VGG)+ODP+CDP 07 657 71.0 765 62.8 49.5 583 769 81.1 740 435 725 58.1 71.8 752 740 702 422 652 569 649 70.0
R-CNN(VGG)+ODP+CDP+BB 07 68.6 75.0 79.3 653 528 60.9 80.2 81.7 77.0 452 755 625 76.1 803 748 717 42.1 68.1 594 723 71.7
Table 2. Test set mAP for VOC 2007. The entries with the best APs for each object category are bold-faced. Training data key: “07”:
VOCO7 trainval.
Method data  mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
FRCN 07 669 745 783 692 532 36.6 773 782 820 407 727 679 79.6 792 73.0 69.0 30.1 654 702 758 65.8
FRCN+CDP+ODP 07 71.1 78.6 789 704 578 477 831 825 842 518 757 69.1 804 821 777 763 424 69.0 68.6 77.6 673
FRCN 07+12 700 77.0 78.1 69.3 594 383 816 78.6 867 428 788 689 847 820 76.6 699 31.8 70.1 748 804 704
FRCN+CDP+ODP 07+12 734 79.6 80.0 70.6 65.1 50.0 86.1 854 84.1 542 795 715 820 839 793 77.1 446 692 741 833 69.2
Table 3. Test set mAP for VOC 2007. The entries with the best APs for each object category are bold-faced. Training data key: “07":
VOCO7 trainval, “07+12”: VOCO07 trainval union with VOC12 trainval, “07++12”: VOCO07 trainval and test with VOC12 trainval.
Method data  mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
FRCN 12 657 803 747 669 469 377 739 68.6 877 417 71.1 51.1 86.0 77.8 79.8 69.8 321 655 638 764 61.7
FRCN+CDP+ODP 12 669 81.0 751 69.8 500 43.6 734 71.0 877 444 69.6 544 855 772 718 720 37.1 664 588 710 655
FRCN 07++12 684 823 784 70.8 523 387 778 71.6 893 442 730 550 875 80.5 808 720 351 683 657 804 642
FRCN+CDP+ODP 07++12 69.7 824 78.1 72.1 557 443 77.6 733 894 49.1 734 563 870 802 79.5 744 409 670 669 789 673

Table 4. Test set mAP for VOC 2012. The entries with the best APs for each object category are bold-faced. Training data key: “12”:
VOCO7 trainval, “07++12”: VOCO07 trainval and test with VOC12 trainval.

ods based on hand-crafted feature engineering [8, 34, 31]
and deep CNNs [30, 13, 16, 38, 32]. Given the same
CNN and region proposals (AlexNet), our proposed model,
R-CNN(Alex)+ODP+CDP, achieves the mAP of 57.5%,
distinctly superior to the other six competing methods,
ie.,, 33.7% [8], 33.7% [31], 41.7% [34], 46.9% [32],
30.5% [30], 54.2% [13] and 55.2% [16]. Given another
network architecture VGG, our R-CNN(VGG)+ODP+CDP
model obtains 65.7%/68.6% mAP with/without bounding
box regression, and is comparable with the recently pub-
lished state-of-the-art method [38].

Tab. 3 and Tab. 4 demonstrate that our proposed model
FRCN+CDP+ODP can consistently achieve 3% and 2%
performance gain over FRCN on VOC 2007 and VOC 2012
datasets, and also justify that our model is robust to different
CNN frameworks.

Fig. 2 demonstrates some object detection examples ob-
tained by the proposed method and FRCN. Thanks to the
use of reconstruction residual in both objectness estimation
and categoryness calculation, the selected bounding box
with optimal detection score by our method has fewer back-
ground, as shown in Fig. 2 (a). When one bounding box
covers more background, its reconstruction residual over
the objectness dictionary pairs will be larger, resulting in
a lower detection score. Thanks to the divide-and-conquer
manner brought by ODP and CDP, our model can recognize

Figure 2. Detection examples from PASCAL VOC 2007 dataset.
The boxes and category labels obtained by baseline FRCN is in
green, and those obtained by the proposed structure model is in
red.

more objects (Fig. 2 (b)) in the image with better accuracy
(Fig. 2 (¢)).

5.3. Analysis

For further evaluation, we conduct the following three
empirical analysis under different settings. To show the ad-
vantages of the proposed model, we directly employ the pre-



Method data mAP areo bike bird boat bottle bus

car cat chair cow table dog horse mbike person plant sheep sofa train tv

FRCN 07+12 70.0 77.0 78.1 69.3 59.4 383 81.6
FRCN+softmax+ODP 07+12 723 813 79.7 71.6 65.4 479 86.6
FRCN+CDP (w/o FT) 07+12 702 74.7 76.1 68.3 60.2 43.6 79.8

FRCN+CDP 07+12 709 78.1 78.8 70.1 57.8 47.8 84.1
FRCN+CDP+ODP (w/o FT)  07+12 724 83.0 834 77.1 56.1 427 835

FRCN+CDP+ODP (w/o weights) 07+12 71.1 789 79.0 70.5 59.0 47.2 83.7
FRCN+CDP+ODP 07+12 73.4 79.6 80.0 70.6 65.1 50.0 86.1

78.6 86.7 42.8 788 689 847 82.0 76.6 699 31.8 70.1 748 80.4 70.4
84.0 856 484 78.6 702 804 829 776 70.8 437 69.8 713 81.8 69.6
79.1 827 505 773 699 839 810 720 688 374 733 71.8 772 76.7
829 84.1 51.7 752 675 79.7 823 77.0 762 425 682 684 77.6 67.7
72.8 90.5 525 733 62.0 90.0 81.8 851 69.1 440 712 73.6 851 72.0
82.7 847 51.5 753 69.1 803 824 776 762 418 678 694 773 67.7
854 84.1 542 79.5 71.5 82.0 83.9 793 771 44.6 692 74.1 833 69.2

Table 5. Test set mAP for VOC 2007. The entries with the best APs for each object category are bold-faced. “07+12”: VOCO07 trainval

union with VOCI12 trainval.

trained CNN models (VGG [27]) under the FRCN frame-
work, and perform component analysis on the VOC 2007
dataset.

(I) We demonstrate the effectiveness of incorporating
objectness estimation into our model for object detection.
That is, we discard the ODP in our model, and train it only
with the CDP via DPBP. Note that, the number of dictio-
nary pairs is now 21 (20 object categories plus background).
We denote the model without ODP as “FRCN+CDP”. Sim-
ilarly, we introduce ODP into FRCN and keep its softmax
layer and denote this scheme as “FRCN+softmax+ODP”. In
FRCN-+softmax+ODP, we directly adopt the FRCN model
fine-tuned on PASCAL VOC 07+12, which is provided
by the authors. Based on its feature representation, we
train an extra ODP classifier, and use the original soft-
max classifier to replace CDP for object detection. As
Tab. 5 reports, FRCN+softmax+ODP achieves 2.3% per-
formance gain. “FRCN+CDP” drops by 1.0% the perfor-
mance. This is because there are too many background sam-
ples to achieve fine level representation of objects. Hence,
owe to detecting objects in a divide-and-conquer strategy,
ODP makes great contributions to improve the detection ac-
curacy.

(IT) To clarify the significance of the proposed DPBP for
network fine-tuning, we directly replace the softmax layer
of FRCN by the proposed ODP and CDP layers. We de-
note these models as “FRCN+ODP+CDP (w/o FT)” and
“FRCN+CDP (w/o FT)”. The results demonstrate that fine-
tuning can obtain about 1.0% performance gain.

(IIT) To demonstrate the effectiveness of predefined
weights for training samples, we set all weights to 1 in our
model. That is, the training samples have the same weights
during the dictionary pair training inside ODP and CDP. We
denote this model as “Ours (w/o weights)”, and compare
it with the original version “Ours (full)”. As illustrated in
Fig. 3, the test error rate of “Ours (w/o weights)” is much
higher than ”Ours (full)” after 10,000 iterations. The reason
is that the category-specific dictionary pair is introduced to
represent the parts of other category or background inside
the training examples. By means of regarding the IoU as the
predefined weights of training samples, this phenomenon
can be suppressed. From Fig. 3, one can see that the in-
troduced weights can make the training phase stable and
achieve a lower error rate. Tab. 5 also demonstrates that
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Figure 3. Test error rates with/without weighted training samples
in the deep model. The solid curve represents our full model, and
the dashed curve represents our model without using weights.

“FRCN+ODP+CDP” with weights can improve about 2%
mAP, compared with “FRCN+ODP+CDP (w/o weights)”.

Acknowledgment

This work was supported in part by the Hong Kong
Polyutechnic University’s Joint Supervision Scheme with
the Chinese Mainland, Taiwan and Macao Universities
(Grant no. G-SB20). This work was also supported in part
by the Guangdong Natural Science Foundation under Grant
S52013050014548 and 2014A030313201, in part by Special
Program for Applied Research on Super Computation of
the NSFC-Guangdong Joint Fund (the second phase), and
in part by the Fundamental Research Funds for the Central
Universities.

6. Conclusion

In this paper, we presented dictionary pair classifier-
driven CNNs for object detection, where dictionary pair
back propagation (DPBP) is proposed for the end-to-end
learning of dictionary pair classifiers and CNN representa-
tion, and sample weighting is adopted to improve the local-
ization performance. Furthermore, a multi-task loss is sug-
gested for joint training of the DPCLs and bounding-box
regressor. Experiments demonstrated the superiority of the
proposed framework. In the future, we will apply our model
with other powerful CNNs to improve detection accuracy.
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