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Look into Person: Joint Body Parsing & Pose
Estimation Network and A New Benchmark

Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin

Abstract—Human parsing and pose estimation have recently received considerable interest due to their substantial application
potentials. However, the existing datasets have limited numbers of images and annotations and lack a variety of human appearances
and coverage of challenging cases in unconstrained environments. In this paper, we introduce a new benchmark named “Look into
Person (LIP)” that provides a significant advancement in terms of scalability, diversity, and difficulty, which are crucial for future
developments in human-centric analysis. This comprehensive dataset contains over 50,000 elaborately annotated images with 19
semantic part labels and 16 body joints, which are captured from a broad range of viewpoints, occlusions, and background
complexities. Using these rich annotations, we perform detailed analyses of the leading human parsing and pose estimation
approaches, thereby obtaining insights into the successes and failures of these methods. To further explore and take advantage of the
semantic correlation of these two tasks, we propose a novel joint human parsing and pose estimation network to explore efficient
context modeling, which can simultaneously predict parsing and pose with extremely high quality. Furthermore, we simplify the network
to solve human parsing by exploring a novel self-supervised structure-sensitive learning approach, which imposes human pose
structures into the parsing results without resorting to extra supervision. The datasets, code and models are available at
http://www.sysu-hcp.net/lip/.

Index Terms—Human Parsing, Pose Estimation, Context Modeling, Convolutional Neural Networks.
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1 INTRODUCTION

COMPREHENSIVE human visual understanding of sce-
narios in the wild, which is regarded as one of the

most fundamental problems in computer vision, could have
a crucial impact in many higher-level application domains,
such as person re-identification [51], video surveillance [42],
human behavior analysis [16], [22] and automatic product
recommendation [21]. Human parsing (also named seman-
tic part segmentation) aims to segment a human image into
multiple parts with fine-grained semantics (e.g., body parts
and clothing) and provides a more detailed understanding
of image contents, whereas human pose estimation focuses
on determining the precise locations of important body
joints. Human parsing and pose estimation are two critical
and correlated tasks in analyzing images of humans by
providing both pixel-wise understanding and high-level
joint structures.

Recently, convolutional neural networks (CNNs) have
achieved exciting success in human parsing [23], [25], [26]
and pose estimation [33], [44]. Nevertheless, as demon-
strated in many other problems, such as object detection [24]
and semantic segmentation [52], the performance of such
CNN-based approaches heavily relies on the availability of
annotated images for training. To train a human parsing
or pose network with potential practical value in real-
world applications, it is highly desired to have a large-
scale dataset that is composed of representative instances
with varied clothing appearances, strong articulation, par-
tial (self-)occlusions, truncation at image borders, diverse
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Fig. 1. This example shows that human body structural information is
helpful for human parsing. (a) The original image. (b) The parsing results
by attention-to-scale [8], where the left arm is incorrectly labeled as the
right arm. (c) Our parsing results successfully incorporate the structure
information to generate reasonable outputs.

viewpoints and background clutters. Although training sets
exist for special scenarios, such as fashion pictures [14],
[23], [26], [47] and people in constrained situations (e.g.,
upright) [9], these datasets are limited in their coverage and
scalability, as shown in Fig. 2. The largest public human
parsing dataset [26] to date only contains 17,000 fashion
images, while others only include thousands of images.
The MPII Human Pose dataset [1] is the most popular
benchmark for evaluating articulated human pose estima-
tion methods, and this dataset includes approximately 25K
images that contain over 40K people with annotated body
joints. However, all these datasets only focus on addressing
different aspects of human analysis by defining discrepant
annotation sets. There are no available unified datasets
with both human parsing and pose annotations for holistic
human understanding, until our work fills this gap.

Furthermore, to the best of our knowledge, no attempt
has been made to establish a standard representative bench-
mark that aims to cover a wide range of challenges for
the two human-centric tasks. The existing datasets do not
provide an evaluation server with a secret test set to avoid
potential dataset over-fitting, which hinders further devel-
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(a) MPII and LSP
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(b) ATR and PASCAL-Person-Part
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(c) LIP
Fig. 2. Annotation examples for our “Look into Person (LIP)” dataset and existing datasets. (a) The images in the MPII dataset [1] (left) and LSP
dataset [19] (right) with only body joint annotations. (b) The images in the ATR dataset [26] (left) are fixed in size and only contain stand-up person
instances in the outdoors. The images in the PASCAL-Person-Part dataset [9] (right) also have lower scalability and only contain 6 coarse labels. (c)
The images in our LIP dataset have high appearance variability and complexity, and they are annotated with both human parsing and pose labels.

opment on this topic. With the new benchmark named
”Look into Person (LIP)”, we provide a public server for
automatically reporting evaluation results. Our benchmark
significantly advances the state-of-the-art in terms of ap-
pearance variability and complexity, and it includes 50,462
human images with pixel-wise annotations of 19 semantic
parts and 16 body joints.

The recent progress in human parsing [8], [14], [26],
[27], [29], [37], [45], [47] has been achieved by improving
the feature representations using CNNs and recurrent neu-
ral networks. To capture rich structure information, these
approaches combine CNNs and graphical models (e.g.,
conditional random fields (CRFs)), similar to the general
object segmentation approaches [6], [43], [52]. However,
when evaluated on the new LIP dataset, the results of some
existing methods [3], [6], [8], [31] are unsatisfactory. With-
out imposing human body structure priors, these general
approaches based on bottom-up appearance information
occasionally tend to produce unreasonable results (e.g., right
arm connected with left shoulder), as shown in Fig. 1. Hu-
man body structural information has previously been well
explored in human pose estimation [10], [49], where dense
joint annotations are provided. However, since human pars-

ing requires more extensive and detailed predictions than
pose estimation, it is difficult to directly utilize joint-based
pose estimation models in pixel-wise predictions to incor-
porate the complex structure constraints. We demonstrate
that the human joint structure can facilitate the pixel-wise
parsing prediction by incorporating higher-level semantic
correlations between human parts.

For pose estimation, increasing research efforts [4], [11],
[12], [35] have been devoted to learning the relationships
between human body parts and joints. Some studies [4], [11]
explored encoding part constraints and contextual informa-
tion for guiding the network to focus on informative regions
(human parts) to predict more precise locations of the body
joints, which achieved state-of-the-art performance. Con-
versely, some pose-guided human parsing methods [13],
[46] also sufficiently utilized the peculiarity and relation-
ships of these two correlated tasks. However, previous
works generally solve these two problems separately or
alternatively.

In this work, we aim to seamlessly integrate human
parsing and pose estimation under a unified framework. We
use a shared deep residual network for feature extraction,
after which there are two distinct small networks to encode
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TABLE 1
Overview of the publicly available datasets for human parsing and pose estimation. For each dataset, we report the number of images in the

training, validation and test sets; parsing categories, including background; and body joints.

Dataset #Total #Training #Validation #Test Parsing Categories Body Joints
Fashionista [48] (Parsing) 685 456 - 229 56 -

PASCAL-Person-Part [9] (Parsing) 3533 1,716 - 1,817 7 -
ATR [26] (Parsing) 17,700 16,000 700 1,000 18 -

LSP [19] (Pose) 2,000 1,000 - 1,000 - 14
MPII [1] (Pose) 24987 18079 - 6908 - 16

J-HMDB [18] (Pose) 31838 - - - 2 13
LIP 50,462 30,462 10,000 10,000 20 16

and predict the contextual information and results. Then,
a simple yet efficient refinement network tailored for both
parsing and pose prediction is proposed to explore efficient
context modeling, which makes human parsing and pose
estimation mutually beneficial. In our unified framework,
we propose a scheme to incorporate multi-scale feature com-
binations and iterative location refinement together, which
are often posed as two different coarse-to-fine strategies
that are widely investigated for human parsing and pose
estimation separately. To highlight the merit of unifying the
two highly correlated and complementary tasks within an
end-to-end framework, we name our framework the joint
human parsing and pose estimation network (JPPNet).

However, note that annotating both pixel-wise labeling
maps and pose joints is unrealized in previous human-
centric datasets. Therefore, in this work, we also design
a simplified network suited to general human parsing
datasets and networks with no need for pose annotations. To
explicitly enforce the produced parsing results to be seman-
tically consistent with the human pose and joint structures,
we propose a novel structure-sensitive learning approach
for human parsing. In addition to using the traditional pixel-
wise part annotations as the supervision, we introduce a
structure-sensitive loss to evaluate the quality of the pre-
dicted parsing results from a joint structure perspective.
This means that a satisfactory parsing result should be able
to preserve a reasonable joint structure (e.g., the spatial
layouts of human parts). We generate approximated human
joints directly from the parsing annotations and use them as
the supervision signal for the structure-sensitive loss. This
self-supervised structure-sensitive network is a simplified
verson of our JPPNet, denoted as SS-JPPNet, which is ap-
propriate for the general human parsing datasets without
pose annotations

Our contributions are summarized in the following three
aspects. 1) We propose a new large-scale benchmark and an
evaluation server to advance the human parsing and pose
estimation research, in which 50,462 images with pixel-wise
annotations on 19 semantic part labels and 16 body joints
are provided. 2) By experimenting on our benchmark, we
present detailed analyses of the existing human parsing and
pose estimation approaches to obtain some insights into
the successes and failures of these approaches and thor-
oughly explore the relationship between the two human-
centric tasks. 3) We propose a novel joint human parsing
and pose estimation network, which incorporates the multi-
scale feature connections and iterative location refinement

in an end-to-end framework to investigate efficient context
modeling and then enable parsing and pose tasks that are
mutually beneficial to each other. This unified framework
achieves state-of-the-art performance for both human pars-
ing and pose estimation tasks. The simplified network for
human parsing task with self-supervised structure-sensitive
learning also significantly surpasses the previous methods
on both the existing PASCAL-Person-Part dataset [9] and
our new LIP dataset.

2 RELATED WORK

Human parsing and pose datasets: The commonly used
publicly available datasets for human parsing and pose are
summarized in Table 1. For human parsing, the previous
datasets were labeled with a limited number of images or
categories. The largest dataset [26] to date only contains
17,000 fashion images with mostly upright fashion models.
These small datasets are unsuitable for training models with
complex appearance representations and multiple compo-
nents [12], [20], [39], which could perform better. For human
pose, the LSP dataset [19] only contains sports people, and
it fails to cover real-life challenges. The MPII dataset [1]
has more images and a wider coverage of activities that
cover real-life challenges, such as truncation, occlusions,
and variability of imaging conditions. However, this dataset
only provides 2D pose annotations. J-HMDB [18] provides
densely annotated image sequences and a larger number of
videos for 21 human actions. Although the puppet mask and
human pose are annotated in the all 31838 frames, detailed
part segmentations are not labeled.

Our proposed LIP benchmark dataset is the first effort
that focuses on the two human-centric tasks. Containing
50,462 images annotated with 20 parsing categories and 16
body joints, our LIP dataset is the largest and most com-
prehensive human parsing and pose dataset to date. Some
other datasets in the vision community were dedicated to
the tasks of clothes recognition, retrieval [30] and fashion
modeling [38], whereas our LIP dataset only focuses on
human parsing and pose estimation.

Human parsing approaches: Recently, many research
efforts have been devoted to human parsing [8], [26], [29],
[37], [45], [47], [48]. For example, Liang et al. [26] proposed a
novel Co-CNN architecture that integrates multiple levels of
image contexts into a unified network. In addition to human
parsing, there has also been increasing research interest in
the part segmentation of other objects, such as animals or
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Fig. 3. The data distribution on 19 semantic part labels in the LIP
dataset.

cars [32], [41], [43]. To capture the rich structure informa-
tion based on the advanced CNN architecture, common
solutions include the combination of CNNs and CRFs [7],
[52] and adopting multi-scale feature representations [7],
[8], [45]. Chen et al. [8] proposed an attention mechanism
that learns to weight the multi-scale features at each pixel
location.

Pose estimation approaches: Articulated human poses
are generally modeled using a combination of a unary term
and pictorial structures [2] or graph model, e.g., mixture of
body parts [10], [34], [50]. With the introduction of Deep-
Pose [40], which formulates the pose estimation problem
as a regression problem using a standard convolutional
architecture, research on human pose estimation began to
shift from classic approaches to deep networks. For exam-
ple, Wei et al. [44] incorporated the inference of the spatial
correlations among body parts within ConvNets. Newell
et al. proposed a stacked hourglass network [33] using a
repeated pooling down and upsampling process to learn
the spatial distribution.

Some previous works [13], [46] explored human
pose information to guide human parsing by generating
“pose-guided” part segment proposals. Additionally, some
works [4], [11] generated attention maps of the body part to
guide pose estimation. To further utilize the advantages of
parsing and pose and their relationships, our focus is a joint
human parsing and pose estimation network, which can si-
multaneously predict parsing and pose with extremely high
quality. Additionally, to leverage the human joint structure
more effortlessly and efficiently, we simplify the network
and propose a self-supervised structure-sensitive learning
approach.

The rest of this paper is organized as follows. We present
the analysis of existing human parsing and pose estimation
datasets and then introduce our new LIP benchmark in
Section 3. In Section 4, we present the empirical study of
current methods based on our LIP benchmark and discuss
the limitations of these methods. Then, to address the chal-
lenges raised by LIP, we propose a unified framework for
simultaneous human parsing and pose estimation in Section
5. At last, more detailed comparisons between our approach
and state-of-the-art methods are exhibited in Section 6.
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Fig. 4. The numbers of images that show diverse visibilities in the LIP
dataset, including occlusion, full body, upper body, lower body, head
missing and back view.

3 LOOK INTO PERSON BENCHMARK

In this section, we introduce our new “Look into Person
(LIP)” dataset, which is a new large-scale dataset that fo-
cuses on semantic understanding of human bodies and that
has several appealing properties. First, with 50,462 anno-
tated images, LIP is an order of magnitude larger and more
challenging than previous similar datasets [9], [26], [48]. Sec-
ond, LIP is annotated with elaborate pixel-wise annotations
with 19 semantic human part labels and one background
label for human parsing and 16 body joint locations for pose
estimation. Third, the images collected from the real-world
scenarios contain people appearing with challenging poses
and viewpoints, heavy occlusions, various appearances and
in a wide range of resolutions. Furthermore, the background
of the images in the LIP dataset is also more complex and
diverse than that in previous datasets. Some examples are
shown in Fig. 2. With the LIP dataset, we propose a new
benchmark suite for human parsing and pose estimation
together with a standard evaluation server where the test
set will be kept secret to avoid overfitting.

3.1 Image Annotation

The images in the LIP dataset are cropped person instances
from Microsoft COCO [28] training and validation sets. We
defined 19 human parts or clothes labels for annotation,
which are hat, hair, sunglasses, upper clothes, dress, coat,
socks, pants, gloves, scarf, skirt, jumpsuit, face, right arm,
left arm, right leg, left leg, right shoe, and left shoe, as well as
a background label. Similarly, we provide rich annotations
for human poses, where the positions and visibility of 16
main body joints are annotated. Following [1], we annotate
joints in a “person-centric” manner, which means that the
left/right joints refer to the left/right limbs of the person. At
test time, this requires pose estimation with both a correct
localization of the limbs of a person along with the correct
match to the left/right limb.

We implemented an annotation tool and generate multi-
scale superpixels of images to speed up the annotation.
More than 100 students are trained well to accomplish
annotation work which lasts for five months. We super-
vise the whole annotation process and check the results
periodically to control the annotation quality. Finally, we
conduct a second-round check for each annotated image and
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selecte 50,000 usable and well-annotated images strictly and
carefully from over 60,000 submitted images.

3.2 Dataset Splits

In total, there are 50,462 images in the LIP dataset, including
19,081 full-body images, 13,672 upper-body images, 403
lower-body images, 3,386 head-missing images, 2,778 back-
view images and 21,028 images with occlusions. We split
the images into separate training, validation and test sets.
Following random selection, we arrive at a unique split that
consists of 30,462 training and 10,000 validation images with
publicly available annotations, as well as 10,000 test images
with annotations withheld for benchmarking purposes.

Furthermore, to stimulate the multiple-human parsing
research, we collect the images with multiple person in-
stances in the LIP dataset to establish the first standard and
comprehensive benchmark for multiple-human parsing and
pose estimation. Our LIP multiple-human parsing and pose
dataset contains 4,192 training, 497 validation and 458 test
images, in which there are 5,147 multiple-person images in
total.

3.3 Dataset Statistics

In this section, we analyze the images and categories in the
LIP dataset in detail. In general, face, arms, and legs are the
most remarkable parts of a human body. However, human
parsing aims to analyze every detailed region of a person,
including different body parts and different categories of
clothes. We therefore define 6 body parts and 13 clothes
categories. Among these 6 body parts, we divide arms and
legs into the left side and right side for a more precise
analysis, which also increases the difficulty of the task. For
clothes classes, we not only have common clothes such as
upper clothes, pants, and shoes but also have infrequent
categories, such as skirts and jumpsuits. Furthermore, small-
scale accessories such as sunglasses, gloves, and socks are
also taken into account. The numbers of images for each
semantic part label are presented in Fig. 3.

In contrast to other human image datasets, the images
in the LIP dataset contain diverse human appearances,
viewpoints, and occlusions. Additionally, more than half
of the images suffer from occlusions of different degrees.
An occlusion is considered to have occurred if any of the
semantic parts or body joints appear in the image but are
occluded or invisible. In more challenging cases, the images
contain person instances in a back view, which gives rise
to more ambiguity in the left and right spatial layouts. The
numbers of images of different appearances (i.e., occlusion,
full body, upper body, head missing, back view and lower
body) are summarized in Fig. 4.

4 EMPIRICAL STUDY OF STATE-OF-THE-ART

In this section, we analyze the performance of leading
human parsing or semantic object segmentation and pose
estimation approaches on our benchmark. We take advan-
tage of our rich annotations and conduct a detailed analysis
of the various factors that influence the results, such as
appearance, foreshortening, and viewpoints. The goal of

TABLE 2
Comparison of human parsing performance with five state-of-the-art

methods on the LIP validation set.

Method Overall accuracy Mean accuracy Mean IoU
SegNet [3] 69.04 24.00 18.17

FCN-8s [31] 76.06 36.75 28.29
DeepLab (VGG-16) [7] 82.66 51.64 41.64

Attention [8] 83.43 54.39 42.92
DeepLab (ResNet-101) [7] 84.09 55.62 44.80
JPPNet (with pose info) 86.39 62.32 51.37

SS-JPPNet 84.36 54.94 44.73

TABLE 3
Comparison of human parsing performance with five state-of-the-art

methods on the LIP test set.

Method Overall accuracy Mean accuracy Mean IoU
SegNet [3] 69.10 24.26 18.37

FCN-8s [31] 76.28 37.18 28.69
DeepLab (VGG-16) [7] 82.89 51.53 41.56

Attention [8] 83.56 54.28 42.97
DeepLab (ResNet-101) [7] 84.25 55.64 44.96
JPPNet (with pose info) 86.48 62.25 51.36

SS-JPPNet 84.53 54.81 44.59

this analysis is to evaluate the robustness of the current ap-
proaches in various challenges for human parsing and pose
estimation and identify the existing limitations to stimulate
further research advances.

4.1 Human Parsing

In our analysis, we consider fully convolutional net-
works [31] (FCN-8s), a deep convolutional encoder-decoder
architecture [3] (SegNet), deep convolutional nets with
atrous convolution and multi-scale [7] (DeepLab (VGG-16),
DeepLab (ResNet-101)) and an attention mechanism [8] (At-
tention), which all have achieved excellent performance on
semantic image segmentations in different ways and have
completely available codes. For a fair comparison, we train
each method on our LIP training set until the validation
performance saturates, and we perform evaluation on the
validation set and the test set. For the DeepLab methods, we
remove the post-processing, dense CRFs. Following [8], [45],
we use the standard intersection over union (IoU) criterion
and pixel-wise accuracy for evaluation.

4.1.1 Overall Performance Evaluation

We begin our analysis by reporting the overall human
parsing performance of each approach, and the results are
summarized in Table 2 and Table 3. On the LIP valida-
tion set, among the five approaches, DeepLab (ResNet-
101) [7] with the deepest networks achieves the best result
of 44.80% mean IoU. Benefitting from the attention model
that softly weights the multi-scale features, Attention [8]
also performs well with 42.92% mean IoU, whereas both
FCN-8s [31] (28.29%) and SegNet [3] (18.17%) perform sig-
nificantly worse. Similar performance is observed on the LIP
test set. The interesting outcome of this comparison is that
the achieved performance is substantially lower than the
current best results on other segmentation benchmarks, such
as PASCAL VOC [15]. This result suggests that detailed hu-
man parsing due to the small parts and diverse fine-grained
labels is more challenging than object-level segmentation,
which deserves more attention in the future.
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Fig. 5. Human parsing performance comparison evaluated on the LIP
validation set with different appearances, including occlusion, full body,
upper body, head missing and back view.

4.1.2 Performance Evaluation under Different Challenges
We further analyze the performance of each approach with
respect to the following five challenging factors: occlusion,
full body, upper body, head missing and back view (see
Fig. 5). We evaluate the above five approaches on the LIP
validation set, which contains 4,277 images with occlusions,
5,452 full-body images, 793 upper-body images, 112 head-
missing images and 661 back-view images. As expected,
the performance varies when the approaches are affected by
different factors. Back view is clearly the most challenging
case. For example, the IoU of Attention [8] decreases from
42.92% to 33.50%. The second most influential factor is
the appearance of the head. The scores of all approaches
are considerably lower on head-missing images than the
average score on the entire set. The performance also greatly
suffers from occlusions. The results of full-body images are
the closest to the average level. By contrast, upper body is
relatively the easiest case, where fewer semantic parts are
present and the part regions are generally larger. From these
results, we can conclude that the head (or face) is an impor-
tant cue for the existing human parsing approaches. The
probability of ambiguous results will increase if the head
part disappears in the images or in the back view. Moreover,
the parts or clothes on the lower body are more difficult
than those on the upper body because of the existence of
small labels, such as shoes or socks. In this case, the body
joint structure can play an effective role in guiding human
parsing.

4.1.3 Per-class Performance Evaluation
To discuss and analyze each of the 20 labels in the LIP
dataset in more detail, we further report the performance of
per-class IoU on the LIP validation set, as shown in Table 4.
We observe that the results with respect to labels with larger
regions such as face, upper clothes, coats, and pants are con-
siderably better than those on the small-region labels, such
as sunglasses, scarf, and skirt. DeepLab (ResNet-101) [7] and
Attention [8] perform better on small labels thanks to the
utilization of deep networks and multi-scale features.

4.1.4 Visualization Comparison
The qualitative comparisons of the five approaches on our
LIP validation set are visualized in Fig. 6. We present exam-
ple parsing results of the five challenging factor scenarios.

For the upper-body image (a) with slight occlusion, the five
approaches perform well with few errors. For the back-view
image (b), all five methods mistakenly label the right arm
as the left arm. The worst results occur for the head-missing
image (c). SegNet [3] and FCN-8s [31] fail to recognize arms
and legs, whereas DeepLab (VGG-16) [7] and Attention [8]
have errors on the right and left arms, legs and shoes.
Furthermore, severe occlusion (d) also greatly affects the
performance. Moreover, as observed from (c) and (d), some
of the results are unreasonable from the perspective of
human body configuration (e.g., two shoes on one foot)
because the existing approaches lack the consideration of
body structures. In summary, human parsing is more diffi-
cult than general object segmentation. Particularly, human
body structures should receive more attention to strengthen
the ability to predict human parts and clothes with more
reasonable configurations. Consequently, we consider con-
necting human parsing results and body joint structure to
determine a better approach for human parsing.

4.2 Pose Estimation
Similarly, we consider three state-of-the-art methods for
pose estimation, including a sequential convolutional ar-
chitecture [44] (CPM) and a repeated bottom-up, top-down
network [33] (Hourglass). ResNet-101 with atrous convolu-
tions [7] is also taken into account, for which we reserve
the entire network and change the output layer to generate
pose heatmaps. These approaches achieve top performance
on the MPII [1] and LSP [19] datasets and can be trained on
our LIP dataset using publicly available codes. Again, we
train each method on our LIP training set and evaluate on
the validation set and the test set. Following MPII [1], the
evaluation metric that we used is the percentage of correct
keypoints with respect to head (PCKh). PCKh considers a
candidate keypoint to be localized correctly if it falls within
the matching threshold which is 50% of the head segment
length.

4.2.1 Overall Performance Evaluation
We again begin our analysis by reporting the overall pose es-
timation performance of each approach, and the results are
summarized in Table 5 and Table 6. On the LIP validation
set, Hourglass [33] achieves the best result of 77.5% total
PCKh, benefiting from their multiple hourglass modules
and intermediate supervision. With a sequential composi-
tion of convolutional architectures to learn implicit spatial
models, CPM [44] also obtains comparable performance. In-
terestingly, the achieved performance is substantially lower
than the current best results on other pose estimation bench-
marks, such as MPII [1]. This wide gap reflects the higher
complexity and variability of our LIP dataset and the sig-
nificant development potential of pose estimation research.
Similar performance on the LIP test set is again consistent
with our analysis.

4.2.2 Performance Evaluation under Different Challenges
We further analyze the performance of each approach with
respect to the four challenging factors (see Fig. 7). We leave
head-missing images out because the PCKh metric depends
on the head size of the person. In general and as expected,
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Fig. 6. Visualized comparison of human parsing results on the LIP validation set. (a) The upper-body images. (b) The back-view images. (c) The
head-missing images. (d) The images with occlusion. (e) The full-body images.

TABLE 4
Performance comparison in terms of per-class IoU with five state-of-the-art methods on the LIP validation set.

Method hat hair gloves sunglasses u-clothes dress coat socks pants jumpsuit scarf skirt face l-arm r-arm l-leg r-leg l-shoe r-shoe Bkg Avg
SegNet [3] 26.60 44.01 0.01 0.00 34.46 0.00 15.97 3.59 33.56 0.01 0.00 0.00 52.38 15.30 24.23 13.82 13.17 9.26 6.47 70.62 18.17

FCN-8s [31] 39.79 58.96 5.32 3.08 49.08 12.36 26.82 15.66 49.41 6.48 0.00 2.16 62.65 29.78 36.63 28.12 26.05 17.76 17.70 78.02 28.29
DeepLab (VGG-16) [7] 57.94 66.11 28.50 18.40 60.94 23.17 47.03 34.51 64.00 22.38 14.29 18.74 69.70 49.44 51.66 37.49 34.60 28.22 22.41 83.25 41.64

Attention [8] 58.87 66.78 23.32 19.48 63.20 29.63 49.70 35.23 66.04 24.73 12.84 20.41 70.58 50.17 54.03 38.35 37.70 26.20 27.09 84.00 42.92
DeepLab (ResNet-101) [7] 59.76 66.22 28.76 23.91 64.95 33.68 52.86 37.67 68.05 26.15 17.44 25.23 70.00 50.42 53.89 39.36 38.27 26.95 28.36 84.09 44.80
JPPNet (with pose info) 63.55 70.20 36.16 23.48 68.15 31.42 55.65 44.56 72.19 28.39 18.76 25.14 73.36 61.97 63.88 58.21 57.99 44.02 44.09 86.26 51.37

SS-JPPNet 59.75 67.25 28.95 21.57 65.30 29.49 51.92 38.52 68.02 24.48 14.92 24.32 71.01 52.64 55.79 40.23 38.80 28.08 29.03 84.56 44.73

TABLE 5
Comparison of human pose estimation performance with state-of-the-art methods on the LIP test set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
ResNet-101 [7] 91.2 84.4 78.5 75.7 62.8 70.1 70.6 76.8

CPM [44] 90.8 85.1 78.7 76.1 64.7 70.5 71.2 77.3
Hourglass [33] 91.1 85.3 78.9 76.2 65.0 70.2 72.2 77.6

JPPNet (with parsing info) 93.3 89.3 84.4 82.5 70.0 78.3 77.7 82.7

TABLE 6
Comparison of human pose estimation performance with state-of-the-art methods on the LIP validation set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
ResNet-101 [7] 91.2 84.3 78.0 74.9 62.3 69.5 71.1 76.5

CPM [44] 91.1 85.1 78.7 75.0 63.7 69.6 71.7 77.0
Hourglass [33] 91.2 85.7 78.7 75.5 64.8 70.5 72.1 77.5

JPPNet (with parsing info) 93.2 89.3 84.6 82.2 69.9 78.0 77.3 82.5

the performance decreases as the complexity increases.
However, there are interesting differences. The back-view
factor clearly influences the performance of all approaches
the most, as the scores of all approaches decrease nearly 10%
compared to the average score on the entire set. The second
most influential factor is occlusion. For example, the PCKh
of Hourglass [33] is 4.60% lower. These two factors are re-
lated to the visibility and orientation of heads in the images,
which indicates that similar to human parsing, the existing
pose estimation methods strongly depend on the contextual
information of the head or face. In this case, exploring and

leveraging the correlation and complementation of human
parsing and pose estimation is advantageous for reducing
this type of dependency.

4.2.3 Visualization Comparison
The qualitative comparisons of the pose estimation results
on our LIP validation set are visualized in Fig. 8. We select
some challenging images with unusual appearances, trunca-
tions and occlusions to analyze the failure cases and obtain
some inspiration. First, for the persons standing or sitting
sideways, the existing approaches typically failed to predict
their occluded body joints, such as the right arm in Col 1,
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Fig. 7. Pose estimation performance comparison evaluated on the LIP
validation set with different appearances.

the right leg in Col 2, and the right leg in Col 7. Second, for
the persons in back view or head missing, the left and right
arms (legs) of the persons are always improperly located,
as with those in Cols 3 and 4. Moreover, for some images
with strange appearances where some limbs of the person
are very close (Cols 5 and 6), ambiguous and irrational
results will be generated by these methods. In particular, the
performance of the gray images (Col 8) is also far from being
satisfactory. Learning from these failure cases, we believe
that pose estimation should fall back on more instructional
contextual information, such as the guidance from human
parts with reasonable configurations.

Summarizing the analysis of human parsing and pose
estimation, it is clear that despite the strong connection
of these two human-centric tasks, the intrinsic consistency
between them will benefit each other. Consequently, we
present a unified framework for simultaneous human pars-
ing and pose estimation to explore this intrinsic correlation.

5 METHODS

5.1 Overview
In this section, we first summarize some insights about the
limitations of existing approaches and then illustrate our
joint human parsing and pose estimation network in detail.
From the above detailed analysis, we obtain some insights
into the human parsing and pose estimation tasks. 1) A
major limitation of the existing human parsing approaches
is the lack of consideration of human body configuration,
which is mainly investigated in the human pose estimation
problem. Meanwhile, the part maps produced by the detec-
tion network contain multiple contextual information and
structural part relationships, which can effectively guide
the regression network to predict the locations of the body
joints. Human parsing and pose estimation aim to label
each image with different granularities, that is, pixel-wise
semantic labeling versus joint-wise structure prediction. The
pixel-wise labeling can address more detailed information,
whereas joint-wise structure provides more high-level struc-
ture, which means that the two tasks are complementary. 2)
As learned from the existing approaches, the coarse-to-fine
scheme is widely used in both parsing and pose networks
to improve accuracy. For coarse-to-fine, there are two dif-
ferent definitions for parsing and pose tasks. For parsing or
segmentation, it means using the multi-scale segmentation

or attention-to-zoom scheme [8] for more precise pixel-
wise classification. Conversely, for the pose task, it indicates
iterative displacement refinement, which is widely used in
pose estimation [44]. It is reasonable to incorporate these
two distinct coarse-to-fine schemes together in a unified
network to further improve the parsing and pose results.

5.2 Joint Human Parsing and Pose Estimation Network

To utilize the coherent representation of human parsing and
pose to promote each task, we propose a joint human pars-
ing and pose estimation network, which also incorporates
two distinct coarse-to-fine schemes, i.e., multi-scale features
and iterative refinement, together. The framework architec-
ture is illustrated in Fig. 9 and the detailed configuration is
presented in Table 7. We denote our joint human parsing
and pose estimation network as JPPNet.

In general, the basic network of the parsing framework
is a deep residual network [17], while the pose framework
prefers a stacked hourglass network [33]. In our joint frame-
work, we use a shared residual network to extract human
image features, which is more efficient and concise. Then,
we have two distinct networks to generate parsing and pose
features and results. They are followed by a refinement net-
work, which takes features and results as input to produce
more accurate segmentation and joint localization.

Feature extraction. We employ convolution with upsam-
pled filters, or “atrous convolution” [7], as a powerful tool to
repurpose ResNet-101 [17] in dense prediction tasks. Atrous
convolution allows us to explicitly control the resolution
at which feature responses are computed within DCNNs.
It also effectively enlarges the field of view of filters to
incorporate larger context without increasing the number
of parameters or the amount of computation. The first four
stages of ResNet-101 (i.e., Res-1 to Res-4) are shared in our
framework. The deeper convolutional layers are different to
learn for distinct tasks.

Parsing and pose subnet. We use ResNet-101 with
atrous convolution as the basic parsing subnet, which con-
tains atrous spatial pyramid pooling (ASPP) as the output
layer to robustly segment objects at multiple scales. ASPP
probes an incoming convolutional feature layer with filters
at multiple sampling rates and effective fields of view,
thus capturing objects and image context at multiple scales.
Furthermore, to generate the context used in the refinement
stage, there are two convolutions following Res-5. For the
pose subnet, we simply add several 3 × 3 convolutional
layers to the fourth stage (Res-4) of ResNet-101 to generate
pose features and heatmaps.

Refinement network. We also design a simple but effi-
cient refinement network, which is able to iteratively refine
both parsing and pose results. We reintegrate the interme-
diate parsing and pose predictions back into the feature
space by mapping them to a larger number of channels
with an additional 1 × 1 convolution. Then, we have four
convolutional layers with an incremental kernel size that
varies from 3 to 9 to capture a sufficient local context and to
increase the receptive field size, which is crucial for learning
long-term relationships. Next is another 1×1 convolution to
generate the features for the next refinement stage. To refine
pose, we concatenate the remapped pose and parsing results
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TABLE 7
The detailed configuration of our JPPNet .

Component Name Input Kernel size Channels

Part module conv-1 Res-5 3 × 3 512
conv-2 conv-1 3 × 3 256

Joint module

conv-1 Res-4 3 × 3 512
conv-2 conv-1 3 × 3 512
conv-3 conv-2 3 × 3 256
conv-4 conv-3 3 × 3 256
conv-5 conv-4 3 × 3 256
conv-6 conv-5 3 × 3 256
conv-7 conv-6 1 × 1 512
conv-8 conv-7 1 × 1 16

Pose refinement

remap-1 pose maps 1 × 1 128
remap-2 parsing maps 1 × 1 128

concat
remap-1

- 512remap-2
pose context

conv-1 concat 3 × 3 512
conv-2 conv-1 5 × 5 256
conv-3 conv-2 7 × 7 256
conv-4 conv-3 9 × 9 256
conv-5 conv-4 1 × 1 256
conv-6 conv-5 1 × 1 16

Parsing refinement

remap-1 pose maps 1 × 1 128
remap-2 parsing maps 1 × 1 128

concat
remap-1

- 512remap-2
parsing context

conv-1 concat 3 × 3 512
conv-2 conv-1 5 × 5 256
conv-3 conv-2 7 × 7 256
conv-4 conv-3 9 × 9 256
conv-5 conv-4 1 × 1 256
ASPP conv-5 - 20

and the pose features from the last stage. For parsing, we
concatenate the two remapped results and parsing features
and use ASPP again to generate parsing predictions. The
entire joint network with refinement can be trained end-
to-end, feeding the output of the former stage into the
next. Following other pose estimation methods that have
demonstrated strong performance with multiple iterative

stages and intermediate supervision [5], [33], [44], we apply
a loss upon the prediction of intermediate maps.

5.3 Self-supervised Structure-sensitive Learning

The joint human parsing and pose estimation network
(JPPNet) leverages both pixel-wise supervision from human
part annotations and high-level structural guidance from
joint annotations. However, in some cases, e.g., in previous
human parsing datasets, the joint annotations may not be
available. In this section, we show that high-level human
structure cues can still help the human parsing task even
without explicit supervision from manual annotations. We
simplify our JPPNet and propose a novel self-supervised
structure-sensitive learning for human parsing, which intro-
duces a self-supervised structure-sensitive loss to evaluate
the quality of the predicted parsing results from a joint
structure perspective, as illustrated in Fig. 10.

Specifically, in addition to using the traditional pixel-
wise annotations as the supervision, we generate the ap-
proximated human joints directly from the parsing anno-
tations, which can also guide human parsing training. For
the purpose of explicitly enforcing the produced parsing
results to be semantically consistent with the human joint
structures, we treat the joint structure loss as a weight of
segmentation loss, which becomes our structure-sensitive
loss.

Self-supervised Structure-sensitive Loss: Generally, for
the human parsing task, no other extensive information is
provided except the pixel-wise annotations. This situation
means that rather than using augmentative information,
we have to find a structure-sensitive supervision from the
parsing annotations. Because the human parsing results are
semantic parts with pixel-level labels, we attempt to explore
pose information contained in human parsing results. We
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Fig. 9. The proposed JPPNet learns to incorporate the image-level context, body joint context, body part context and refined context into a unified
network, which consists of shared feature extraction, pixel-wise label prediction, keypoint heatmap prediction and iterative refinement. Given an
input image, we use ResNet-101 to extract the shared feature maps. Then, a part module and a joint module are appended to capture the part
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maps, we combine pose heatmaps and parsing score maps into one map separately. For better viewing of all figures in this paper, please see the
original zoomed-in color pdf file.
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Fig. 10. Illustration of our SS-JPPNet for human parsing. An input image
goes through parsing networks, including several convolutional layers,
to generate the parsing results. The generated joints and ground truths
of joints represented as heatmaps are obtained by computing the center
points of corresponding regions in parsing maps, including head (H),
upper body (U), lower body (L), right arm (RA), left arm (LA), right leg
(RL), left leg (LL), right shoe (RS), and left shoe (LS). The structure-
sensitive loss is generated by weighting segmentation loss with joint
structure loss. For a clear observation, we combine nine heatmaps into
one map here.

define 9 joints to construct a pose structure, which are the
centers of the regions of head, upper body, lower body, left
arm, right arm, left leg, right leg, left shoe and right shoe.
The head regions are generated by merging the parsing
labels of hat, hair, sunglasses and face. Similarly, upper
clothes, coat and scarf are merged to be upper body, and
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Fig. 11. Some examples of self-supervised human joints generated from
our parsing results for different bodies.

pants and skirt are merged for lower body. The remaining
regions can also be obtained by the corresponding labels.
Some examples of generated human joints for different
humans are shown in Fig. 11. Following [36], for each
parsing result and corresponding ground truth, we compute
the center points of regions to obtain joints represented as
heatmaps for training more smoothly. Then, we use the
Euclidean metric to evaluate the quality of the generated
joint structures, which also reflects the structure consistency
between the predicted parsing results and the ground truth.
Finally, the pixel-wise segmentation loss is weighted by the
joint structure loss, which becomes our structure-sensitive
loss. Consequently, the overall human parsing networks
become self-supervised with the structure-sensitive loss.

Formally, given an image I , we define a list of joint
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configurations CP
I = {cpi |i ∈ [1, N ]}, where cpi is the

heatmap of the i-th joint computed according to the parsing
result map. Similarly, CGT

I = {cgti |i ∈ [1, N ]}, which is ob-
tained from the corresponding parsing ground truth. Here,
N is a variable decided by the human bodies in the input
images, and it is equal to 9 for a full-body image. For the
joints missed in the image, we simply replace the heatmaps
with maps filled with zeros. The joint structure loss is the
Euclidean (L2) loss, which is calculated as follows:

LJoint =
1

2N

N∑
i=1

‖cpi − cgti ‖
2
2 (1)

The final structure-sensitive loss, denoted as Lstructure, is
the combination of the joint structure loss and the parsing
segmentation loss, and it is calculated as follows:

LStructure = LJoint · LParsing (2)

where LParsing is the pixel-wise softmax loss calculated based
on the parsing annotations.

We name this learning strategy “self-supervised” be-
cause the above structure-sensitive loss can be generated
from existing parsing results without any extra information.
Our self-supervised structure-sensitive JPPNet (SS-JPPNet)
thus has excellent adaptability and extensibility, which can
be injected into any advanced network to help incorporate
rich high-level knowledge about human joints from a global
perspective.

6 EXPERIMENTS

6.1 Experimental Settings
Network architecture: We utilize the publicly available
model DeepLab (ResNet-101) [7] as the basic architecture
of our JPPNet, which employs atrous convolution, multi-
scale inputs with max-pooling to merge the results from all
scales, and atrous spatial pyramid pooling. For SS-JPPNet,
our basic network is Attention [8] due to its leading accuracy
and competitive efficiency.

Training: To train JPPNet, the input image is scaled
to 384 × 384. We first train ResNet-101 on the human
parsing task for 30 epochs using the pre-trained models
and networks settings from [7]. Then, we train the joint
framework end-to-end for another 30 epochs. We apply data
augmentation, including randomly scaling the input images
(from 0.75 to 1.25), randomly cropping and randomly left-
right flipping during training.

When training SS-JPPNet, we use the pre-trained models
and network settings provided by DeepLab [7]. The scale
of the input images is fixed as 321 × 321 for training
networks based on Attention [8]. Two training steps are
employed to train the networks. First, we train the basic
network on our LIP dataset for 30 epochs. Then, we perform
the “self-supervised” strategy to fine-tune our model with
the structure-sensitive loss. We fine-tune the networks for
approximately 20 epochs. We use both human parsing and
pose annotations to train JPPNet and only parsing labels for
SS-JPPNet.

Inference: To stabilize the predictions, we perform
inference on multi-scale inputs (with scales = 0.75, 0.5, 1.25)
and also left-right flipped images. In particular, we compute

TABLE 8
Human parsing performance comparison in terms of mean IoU. Left:

different test sets. Right: different sizes of objects.

Method ATR LIP small medium large
SegNet [3] 15.79 21.79 16.53 18.58 18.18

FCN-8s [31] 34.44 32.28 22.37 29.41 28.09
DeepLab (VGG-16) [7] 48.64 43.97 28.77 40.74 43.02

Attention [8] 49.35 45.38 31.71 41.61 44.90
DeepLab (ResNet-101) [7] 53.28 46.99 31.70 43.14 47.62
JPPNet (with pose info) 54.45 53.99 44.56 50.52 52.58

SS-JPPNet 52.69 46.85 33.48 43.12 46.73

TABLE 9
Comparison of human parsing performance with four state-of-the-art

methods on the PASCAL-Person-Part dataset [9].

Method head torso u-arms l-arms u-legs l-legs Bkg Avg
DeepLab-LargeFOV [7] 78.09 54.02 37.29 36.85 33.73 29.61 92.85 51.78

HAZN [45] 80.79 59.11 43.05 42.76 38.99 34.46 93.59 56.11
Attention [8] 81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39

LG-LSTM [25] 82.72 60.99 45.40 47.76 42.33 37.96 88.63 57.97
SS-JPPNet 83.26 62.40 47.80 45.58 42.32 39.48 94.68 59.36

as the final result the average probabilities from each scale
and flipped images, which is the same for predicting both
parsing and pose. The difference is that we utilize predic-
tions of all stages for parsing, but for pose, we only use the
results of the last stage.

6.2 Results and Comparisons

6.2.1 Human Parsing

We compare our proposed approach with the strong base-
lines on the LIP dataset, and we further evaluate SS-JPPNet
on another public human parsing dataset.

LIP dataset: We report the results and the comparisons
with five state-of-the-art methods on the LIP validation set
and test set in Table 2 and Table 3. On the validation set, the
proposed JPPNet framework improves the best performance
from 44.80% to 51.37%. The simplified architecture can also
provide a substantial enhancement in average IoU: 3.09%
better than DeepLab (VGG-16) [7] and 1.81% better than
Attention [8]. On the test set, the JPPNet also considerably
outperforms the other baselines. This superior performance
achieved by our methods demonstrates the effectiveness of
our joint parsing and pose networks, which incorporate the
body joint structure into the pixel-wise prediction.

In Fig. 5, we show the results with respect to the different
challenging factors on our LIP validation set. With our
unified framework that models the contextual information
of body parts and joints, the performance of all kinds of
types is improved, which demonstrates that human joint
structure is conducive for the human parsing task.

We further report per-class IoU on the LIP validation
set to verify the detailed effectiveness of our approach, as
presented in Table 4. With the consideration of human body
joints, we achieved the best performance on almost all the
classes. As observed from the reported results, the proposed
JPPNet significantly improves the performance of the labels
such as arms, legs, and shoes, which demonstrates its ability
to refine the ambiguity of left and right. Furthermore, the
labels covering small regions such as socks, and gloves are
better predicted with higher IoUs. This improvement also
demonstrates the effectiveness of the unified framework,
particularly for small labels.
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TABLE 10
Comparison of human pose estimation performance of the models trained on the LIP training set and evaluated on the MPII training set (11431

single person images).

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
ResNet-101 [7] 89.2 86.7 79.5 77.7 75.5 66.7 61.8 77.9

CPM [44] 86.6 83.6 75.8 72.1 70.9 62.0 59.1 74.0
Hourglass [33] 86.4 84.7 77.5 73.9 74.0 63.3 58.4 75.2

JPPNet (with parsing info) 90.4 91.7 86.4 84.0 82.5 76.5 71.3 84.1

TABLE 11
Human pose estimation comparison between different variants of the proposed JPPNet on the LIP test set using the PCKh metric.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
Joint 93.1 87.2 81.1 79.3 66.8 72.6 72.9 79.6

Joint + MSC 92.9 88.1 82.8 81.0 67.8 74.3 75.7 80.9
Joint + S1 93.5 88.8 83.6 81.6 70.2 76.4 76.8 82.1

Joint + MSC + S1 93.4 88.9 84.2 82.1 70.8 77.2 77.3 82.5
Joint + MSC + S2 93.3 89.3 84.4 82.5 70.0 78.3 77.7 82.7

For a better understanding of our LIP dataset, we train
all methods on LIP and evaluate them on ATR [26], as re-
ported in Table 8 (left). As ATR contains 18 categories while
LIP has 20, we test the models on the 16 common categories
(hat, hair, sunglasses, upper clothes, dress, pants, scarf, skirt,
face, right arm, left arm, right leg, left leg, right shoe, left
shoe, and background). In general, the performance on ATR
is better than those on LIP because the LIP dataset contains
instances with more diverse poses, appearance patterns,
occlusions and resolution issues, which is more consistent
with real-world situations.

Following the MSCOCO dataset [28], we have conducted
an empirical analysis on different object sizes, i.e., small
(area < 1532), medium (1532 ≤ area < 3212) and large
(area ≥ 3212). The results of the five baselines and the
proposed methods are reported in Table 8 (right). As shown,
our methods show substantially superior performance for
different sizes of objects, thus further demonstrating the
advantage of incorporating the human body structure into
the parsing model.

PASCAL-Person-Part dataset [9]. The public PASCAL-
Person-Part dataset with 1,716 images for training and
1,817 for testing focuses on the human part segmentation
annotated by [9]. Following [8], [45], the annotations are
merged to be six person part classes and one background
class, which are head, torso, upper / lower arms and upper
/ lower legs. We train and evaluate all methods using the
training and testing data in PASCAL-Person-Part dataset [9].
Table 9 shows the performance of our model and compar-
isons with four state-of-the-art methods on the standard IoU
criterion. Our SS-JPPNet can significantly outperform the
four baselines. For example, our best model achieves 59.36%
IoU, which is 7.58% better than DeepLab-LargeFOV [7] and
2.97% better than Attention [8]. This large improvement
demonstrates that our self-supervised strategy is signifi-
cantly beneficial for the human parsing task.

6.2.2 Pose Estimation

LIP dataset: Table 5 and Table 6 report the comparison of the
PCKh performance of our JPPNet and previous state-of-the-
art at a normalized distance of 0.5. On the LIP test set, our
method achieves state-of-the-art PCKh scores of 82.7%. In

particular, for the most challenging body parts, e.g., hip and
ankle, our method achieves 5.0% and 5.5% improvements
compared with the closest competitor, respectively. Similar
improvements also occur on the validation set.

We present the results with respect to different challeng-
ing factors on our LIP validation set in Fig. 7. As expected,
with our unified architecture, the results of all different
appearances become better, thus demonstrating the positive
effects of the human parsing to pose estimation.

MPII Human Pose dataset [1]: To be more convincing,
we also perform evaluations on the MPII dataset. The MPII
dataset contains approximately 25,000 images, where each
person is annotated with 16 joints. The images are extracted
from YouTube videos, where the contents are everyday
human activities. There are 18079 images in the training
set, including 11431 single person images. We evaluate the
models trained on our LIP training set and test on these
11431 single person images from MPII, as presented in
Table 10. The distance between our approach and others
provides evidence of the higher generalization ability of our
proposed JPPNet model.

6.3 Ablation Studies of JPPNet

We further evaluate the effectiveness of our two coarse-to-
fine schemes of JPPNet, including the multi-scale features
and iterative refinement. “Joint” denotes the JPPNet without
multi-scale features (“MSC”) or refinement networks. “S1”
means one stage refinement and “S2” is noted for two
stages. The human parsing and pose estimation results are
shown in Table 12 and Table 11. From the comparisons, we
can learn that multi-scale features greatly improve for hu-
man parsing but slightly for pose estimation. However, pose
estimation considerably benefits from iterative refinement,
which is not quite helpful for human parsing, as two stage
refinements will decrease the parsing performance.

6.4 Qualitative Comparison

Human parsing: The qualitative comparisons of the parsing
results on the LIP validation set are visualized in Fig. 6.
As can be observed from these visual comparisons, our
methods output more semantically meaningful and precise
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TABLE 12
Human parsing comparison between different variants of the proposed

JPPNet on the LIP test set.

Method Overall accuracy Mean accuracy Mean IoU
Joint 86.10 59.64 49.48

Joint + MSC 86.18 61.40 50.83
Joint + S1 86.09 57.95 49.58

Joint + MSC + S1 86.48 62.25 51.36
Joint + MSC + S2 86.42 61.12 50.64

predictions than the other five methods despite the existence
of large appearance and position variations. Taking (b) and
(c) for example, our approaches can also successfully handle
the confusing labels, such as left arm versus right arm and
left leg versus right leg. These regions with similar appear-
ances can be recognized and separated by the guidance
from joint structure information. For the most difficult head-
missing image (c), the left shoe, right shoe and legs are
excellently corrected by our JPPNet approach. In general,
by effectively exploiting human body joint structure, our
approaches output more reasonable results for confusing
labels on the human parsing task.

Pose estimation: The qualitative comparisons of pose
results on the LIP validation set are presented in Fig. 8.
In Section 4.2.3, we summarize some challenging cases that
cause considerable trouble for the previous pose estimation
approaches. In contrast, by jointly modeling human parsing
and pose estimation, our model can effectively avoid the
cumbersome obstacles such sideways, occlusion or other
erratic postures, thus leading to more promising and rea-
sonably remarkable results.

Finally, we want to emphasize that our goal is to explore
the intrinsic correlation between human parsing and pose
estimation. For this purpose, we propose JPPNet, which
is a unified model built upon two distinct coarse-to-fine
schemes. Separating our framework into different compo-
nents leads to inferior results, as demonstrated in Table 12
and Table 11. Although we use more annotations than
methods for individual tasks, the promising results of our
framework verify that human parsing and pose estimation
are essentially complementary; thus, performing the two
tasks simultaneously will enhance the performance of each
task.

7 CONCLUSION

In this work, we presented “Look into Person (LIP)”, a large-
scale human parsing and pose estimation dataset and a
carefully designed benchmark to spark progress in human-
centric tasks. LIP contains 50,462 images, which are richly
labeled with 19 semantic part labels and 16 body joints.
It surpasses existing human parsing and pose estimation
datasets in terms of scale and richness of annotations.
Moreover, we proposed a joint human parsing and pose
estimation network to explore the intrinsic connection of
the two tasks. The extensive results clearly demonstrate the
effectiveness of the proposed approaches. The datasets, code
and models are available at http://www.sysu-hcp.net/lip/.
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