IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 4, APRIL 2013 577

Video Stylization: Painterly Rendering and
Optimization With Content Extraction

Liang Lin, Kun Zeng, Yizhou Wang, Ying-Qing Xu, Senior Member, IEEE, and Song-Chun Zhu

Abstract—We present an interactive video stylization system
for transforming an input video into a painterly animation.
The system consists of two phases: a content extraction phase
to obtain semantic objects, i.e., recognized content, in a video
and establish dense feature correspondences, and a painterly
rendering phase to select, place, and propagate brush strokes
for stylized animations based on the semantic content and object
motions derived from the first phase. Compared with the previous
work, the proposed method has the following three advantages.
First, we propose a two-pass rendering strategy and brush strokes
with mixed colors in order to render expressive visual effects.
Second, the brush strokes are warped according to global object
deformations, so that the strokes appear to be naturally attached
to the object surfaces. Third, we propose a deferred rendering
and backward completion method to draw brush strokes on
emerging regions and simulate a damped system to reduce stroke
scintillation effect. Moreover, we discuss the graphics processing
unit-based implementation of our system, which is demonstrated
to greatly improve the efficiency of producing stylized videos. In
experiments, we verify this system by applying it to a number
of video clips to produce expressive oil-painting animations and
compare it with the state-of-the-art approaches.

Index Terms—Digital art, graphics processing unit (GPU)
processing, painterly animation, temporal coherency, video styl-
ization.

I. INTRODUCTION

HIS PAPER proposes an interactive system for produc-
ing painterly animation from video clips. Fig. 1 shows

Manuscript received January 11, 2012; revised May 2, 2012; accepted June
16, 2012. Date of publication July 30, 2012; date of current version April
1, 2013. This work was supported in part by the National Basic Research
Program of China, under Grant 2012CB725300; in part by the Hi-Tech
Research and Development Program of China, National 863 Program, under
Grant 2012AA011504; in part by the National Natural Science Foundation
of China, under Grant 60970156; in part by the Guangdong Natural Science
Foundation, under Grant S2011010001378; in part by the Guangdong Science
and Technology Program, under Grant 2011B040300029; and in part by the
SY SU-Sugon high performance computing typical application project. This
paper was recommended by Associate Editor J. Cai.

L. Lin and K. Zeng are with Sun Yat-Sen University, Guangzhou 510275,
China, and also with the Lotus Hill Research Institute for Computer Vision
and Information Science, Hubei 430074, China (e-mail: linliang@ieee.org;
zengkun@gmail.com).

Y. Wang is with the National Engineering Laboratory for Video Technology,
Key Laboratory of Machine Perception, School of Electrica Engineering
and Computer Science, Peking University, Beijing 100871, China (e-mail:
yizhou.wang@pku.edu.cn).

Y.-Q. Xu is with Tsinghua University, Beijing 100084, China (e-mail:
yaxu@tsinghua.edu.cn).

S.-C. Zhu is with the Department of Statistics, University of California at
Los Angeles, CA 951554 USA (e-mail: sczhu@stat.ucla.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2012.2210804

an example produced by our system. Although similar oil-
painting effects can be generated manualy by the paint-
on-glass technique, such animation production is not only
laborious but also requires considerable artistic skills. For
example, it took over two years for artists to manually produce
the 22-min Oscar-winning animation Old Man and the Sea. In
comparison, our interactive system allows an amateur player
to produce painterly animations from real-life video clips with
far less time and effort.

In the following, we review the related work for painterly
rendering and video stylization in the literature and provide
an overview of our method accordingly.

A. Painterly Rendering of a Single Image

In order to render expressive and vivid painterly styles, the
essential problem is to extract useful image content, which
will guide the selection and placement of brush strokes to
embody the artist’s intention and abstraction [18], [21]. For
example, Collomosse and Hall used image salience (contrast)
[9] and Santella and DeCarlo used eye-tracking data [34] to
determine the placement and order of brush strokes, while
Hertmann proposed curved strokes for rendering an impressive
oil-painting style by tracing strong edges or boundaries [13].
Particles and regions on 3-D surfaces were extracted to guide
stroke placement in [20] and [31], respectively.

The proposed rendering method is inspired by the painting
procedure of artists, in which different stroke styles and
placement patterns are applied to different object categories
in a scene. For example, the brush styles for wood, water, and
rock are distinct from each other in oil paintings. Inspired by
the semantic-driven rendering systems [16], [36], [39], in our
method, we first categorize objects according to their surface
materials and correspondingly construct a dictionary of diverse
brush examples by artists. These brushes exhibit rich texture,
shape, and thickness, in contrast to those used in the literature.
Then we select and place these brush strokes according to
image semantic contents. To simulate the painting procedure of
human artists, we propose a novel two-pass rendering strategy:
a base pass using generic brushes followed by a second pass
using category-specific brush strokes. Thefirst pass renders the
base color for a region. The strokes in the second pass add
object details, such as textures, structures, and tactile feglings.

The painterly rendering style we aim to achieve is the
popular oil-painting effect. In fact, it is not a sharp boundary
to define the oil-painting style in the research of image
and video rendering. Compared to daily pictures and other

1051-8215/$31.00 (© 2012 |IEEE

578 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 4, APRIL 2013

Fig. 1. Example of painterly animation in oil-painting style (the lower
frames) from the original movie (the upper frames).

rendering effects, we consider the desirable style to have the
following characteristics that are consistent with the previous
works [13], [23], [39]: 1) more rich and expressive colors;
2) sadlient structures and shapes that are emphasized while
some homogeneous textures are abstracted; and 3) identity of
image that is preserved after rendering. Fig. 2 compares our
rendering effects with other state-of-the-art painterly animation
algorithms in [11] and [37].

B. Video Stylization

There are two different categories of methods that have
achieved remarkable success. The first category extracts image
primitives (e.g., regions or edges) from input video clips,
and directly stylizes and animates them without using brush
strokes. The representative examples include [19], which ab-
stracted the videos as space-time volume data; the roto-curves,
contours, and silhouettes that were utilized in [1], [2], and [17],
respectively; Wang et al. and Bousseau et al. transformed the
object regions into cartoon style [37] and watercolor style [5],
respectively. Winnemoller et al. abstracted regions and bound-
aries by modifying the contrast of luminance and color oppo-
nency [38]. Collomosse et al. stylized spatiotemporal “video
objects’ by 3-D segmentation [10]. The other category is
stroke-based painterly animation, which artistically expresses
object appearance and structure using exquisite physics-based
or example-based brush strokes [14], [16], [24], [27], and [31].
The proposed system belongs to this category and it aims at
generating expressive animations with painterly brushes.

For stroke-based painterly animation, the essential problems
are to stick the brush strokes on object surfaces and to
maintain their temporal coherence in the video. This is a
nontrivial task for both human artists and the computer-aided
systems. Litwinowicz et al. first introduced the brush strokes
propagation with computed optical flow [27]; Hertzmann et al.
extended Litwinowcz' approach by making brush attributes
adjustable based on the properties of the input video [14].
Hays et al. further arranged brush strokes in motion layers

and the motion information was also obtained by computing
optica flow [11].

Despite the impressive results, the existing methods still
leave behind some challenging issues to solve: 1) strokes
sometimes drift away from objects during temporal propa-
gation (called the “shower door” effect) [31] and 2) strokes
scintillate (or flicker). The two problems become even more
serious when using a large number of strokes (e.g., more than
2000) to render a dynamic scene, such as the scene shown
in Fig. 1. In our system, we present several techniques to
reduce these artifacts. First, we tightly stick the brush strokes
to the object by transforming and warping the brush strokes
consistently with the object motion and deformation, i.e.,
the local stroke transformation conforms to the object global
transformation. We use two types of robust and distinctive
features inside each object to establish dense temporal feature
correspondence for both textural and textureless regions be-
tween frames of an input video. We adopt a thin-plate-spline
(TPS) transformation to describe object deformation. Then the
strokes are propagated temporally according to the feature cor-
respondences and warped smoothly by the TPS transformation.
Second, we strategically reduce the scintillation effects by the
following methods.

1) We confine the brush strokes inside each segmented
region to prevent flickering along region boundaries.

2) Since the scintillation is often caused by adding strokes
suddenly during brush stroke propagation, we propose
a deferred rendering and backward completion strategy
for adding new strokes. When a new area emerges, the
system defers its rendering and leaves the area unpainted
until it grows to certain size. Then, new strokes are
added and propagated back to fill the gaps in the
previous frames.

3) A damped system is built to stabilize all the strokes in
space and time. We simulate the system by attaching
springs between brush strokes and minimize the energy
of the system by adjusting the rendered strokes so as to
enforce coherent motion.

In summary, our system consists of two phases, as shown
in Fig. 3: Phase |—video content extraction and Phase I1—
painterly rendering. The contributions of our method are as
follows. First, we propose a novel two-pass rendering strategy
and brush strokes with mixed colors, to simulate the paint-
ing procedure of human artists for expressive visual effects.
Second, for sticking the brush strokes naturally to the object
surface during object motion, we present an effective algorithm
of matching robust and distinctive features over frames. Last,
we reduce the scintillation effects by several techniques: 1)
confinement of the strokes inside each object; 2) the deferred
rendering and backward completion of new strokes; and 3) a
damped system to stabilize strokes in space and time. The user
interface is shown in Fig. 4. Note that a preliminary version
of this paper was introduced in [23].

In the remainder of this paper, we introduce the video
content extraction step in Section |1 and the painterly rendering
procedure in Section Ill. The GPU-based implementation
for our system is discussed in Section IV. We show the

LIN et al.: VIDEO STYLIZATION: PAINTERLY RENDERING AND OPTIMIZATION

579

Fig. 2. Comparison of different painterly animation effects. (a) Rendering results of Hays et al. [11] (left), Wang et al. [37] (middle), and Winnemoller et
al. [38] (right). (b) Our rendering results with clean boundaries, richer colors, and diverse brush shapes and height fields.

(NContent Extraction
Interactive
Image Labeling

(IlPainterly Rendering
Brush Selection and
Placement

Space-time Temporal Brush
Video Cutout Propafation
v

Dense Feature
Correspondence

Damped System for
Brush Deflickering

Fig. 3. Key steps in our two-phased painterly animation system.

experimental results in Section V and conclude this paper in
Section VI.

II. INTERACTIVE VIDEO CONTENT EXTRACTION
A. Interactive Image Labeling

The objective of image labeling isto segment each keyframe
into a set of regions with semantic (categorical) labels, called
semantic regions. These labels will guide the selection of brush
style and stroke placement.

Let I be a keyframe from an input video. Our god is
to segment | into K digoint “semantic regions’ R; for
i=1,..., K. These semantic regions correspond to different
types of recognized objects, such as sky, faces, and trees.
Fig. 5 shows a set of segmented typical semantic regionsin a
keyframe. The semantic regions are the basic operating units
in our system, since the strokes and feature correspondences
are all confined to the regions. The selection of brush style is
also guided by the semantic labels.

To segment a keyframe 1, a user smply draws a few
scribbles in each region R; using different colors, as shown
in Fig. 5. Then we adopt the a-expansion agorithm [6] to
segment the image simultaneously into K regions.

The segmentation energy is defined with a pixel-based
graphical representation that incorporates the color model D,
and pairwise spatial model V, , as

EL:ZDU(ZU)+ Z Vu,v(luvlv)

{u,v}eN

@

where NV is the set of interacting (adjacent) pairs of pixels and
apixel v can be assigned a multiple possible label, I, € £. The

TABLE |
TWELVE MATERIAL CLASSES OF SEMANTIC REGIONS

Mountain Water Rock/building Leaf/bush/grass
Face/skin Hair/fur Flower/fruit Sky/cloud
Cloth Trunk/twig ~ Abstract background Wood/plastic

color model D, is defined as a multi-Gaussian function in the
Luv-space and the spatial moddl V, , is a Euclidean distance
over the image domain. Please refer to [6] for details.

We perform a sequence of binary two-way cuts to approx-
imately solve this multilabeling problem and the procedure is
described as follows.

1) Manually place scribbles of multiple labels, £, in the
image, implying different motion and material proper-
ties.

2) Assign an initial label for each pixel based on placed
scribbles and obtain an initial labeling energy.

3) Loop for each label « € L:

a) find an optima «a-expansion move, which leads
cuts to partition « label from all other labels;
b) decline the move if there is no energy decreases.

4) Segment the image with the final labeling.
5) Allow users to refine the segmentation by adding new
scribbles.

After the segmentation, each region R; is assigned a seman-
tic label ¢; corresponding to 12 material categories. A recently
proposed method, namely, “texton boost” [35], is employed
for image classification. In fact, as the regions are aready
well segmented, the classification becomes easier and we can
achieve more accurate results than [35].

We annotate 474 images for the 12 categories shown in
Table |. Then we learn a strong classifier with various dis-
criminative features, including texton filters, the hue, saturation
and value color histogram, and the histogram of gradient using
the boosting framework [35]. For a segmented frame of size
720 x 480, it takes about 3-55s for region classification. We
provide a friendly user interface to correct classification errors,
if any, which can be found in the attached video.

For each input video in our experiments, we segment and
label the first frame and then propagate the segments through
the video until a new keyframe is specified by the user.

580

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 4, APRIL 2013

() [B B I
L)
= Parsing Video Cutout Correspondence Painterly rendering MainMenu ™ = & X
=] +d+ 100 gl T s
J [Open) Undo 1003 /’ \5 Stroke @ W Color L SendBackward <, Bring to Front
_ Close (™ Redo =, Zoom out
New cut Auto | Manual Wi g
Hsave - o A 47 Eraser Ly Bring Forward 4 Send to Back
File View Image Decomposition || Category Classification Layer Order
= Sketch Graph 2 x| B X Pparse Graph ax
o
£ O T T T U S) OO & PO Sci Res Son
1 C T
- v
Layer “ 5 10 15 20 25 ‘ XC WU
2 harr vl [Jscene
3 blouse v ||« [» || &[] human
[face: skin

Orientation Field % X

Ready

[human hair:hair
[et hand:skin

[right hand: skin
[skirt.cioth
[[Jboots:leather

IV view | B§'G Ob.. Gro.

| UM, =]

Fig. 4. User interface for the video content extraction and stylization. The right panel shows the semantic labeling for the scene, objects, and parts. The left
panel shows the segmentation, sketch, and computed orientation field. These mentioned components will be introduced later.

building

Fig. 5. Segmentation of a keyframe into several regions simultaneously with
user scribbles; these regions are consequently classified into 12 categories.
Face and hands can be further decomposed according to their different
motions.

B. Space-Time Video Cutout

In the video-processing literature, the video cutout al-
gorithms are extensively studied for classifying pixels into
foreground and background in space-time volumes [12], [37].
In our system, we adopt an interactive video-segmentation
algorithm using localized classifiers [3].

Given a labeled keyframe, a group of local classifiers are
constructed around the boundaries of semantic regions, which
are then propagated onto successive frames to segment the
objects in space-time volumes. Each classifier adaptively inte-
grates multiple local features, such as color, edge, and online
learned shape prior. In the proposed system, we iteratively
segment each semantic object by treating all surrounding
regions as the background. In practice, the salient objects (e.g.,
people) in videos need to be elaborately segmented, while the
segmentation for other scene objects (e.g., trees, buildings) can
be obtained quickly by subtracting the objects that have been
segmented.

Our interface allows a user to supervise the cutout process
and specify the keyframes according to the segmentation
results. The algorithm usually achieves good results even for
difficult examples with enough user assistance. However, in
some cases, which we consider “failures” too much user
correction is needed. For example, the scene includes highly
dynamic textured objects (e.g., fountains, fire, and heavy rain)
or drastic object interactions. Please refer to [3] for more
details and analysis.

In our experiments, the cutout is propagated automatically
for every t =10-20 frames depending on the complexity of
motion. Then a new keyframe is specified and the user draws
new scribbles to continue the cutout process.

The video cutout component will confine the brush strokes
inside each segmented region to effectively reduce flickering
along region boundaries.

C. Key Feature Extraction and Correspondences

One may view the video cutout as a coarse correspondence
between regions in adjacent frames. Our next task is to
establish finer correspondence at the feature level within each
segmented region. Then the feature correspondence is used to
propagate the brush strokes over frames.

A vast variety of image features (keypoints, patches) have
been developed in recent years and the consensus is that
we should track different features in different types of re-
gions [22], [25], [28]. For each segmented region R;, we
compute two types of features. They are complementary to
each other and provide dense matches for correspondence.

1) The SIFT-like feature [29] is suitable for textured areas;

it is illustrated by the red dots in Fig. 6(a) and (b)
and described by a histogram of image gradients in the
neighborhood of a keypoint denoted as /,. The features
are quantized into 72 bins [see Fig. 6(c)].

2) The maximally stable extremal region (MSER) feature
[30] is a good descriptor for textureless aress. It is
symbolized as ellipse-like shapes [see Fig. 6(a) and (b)]
and is described by color histograms in the Luv space

LIN et al.: VIDEO STYLIZATION: PAINTERLY RENDERING AND OPTIMIZATION

581

(b

(d)

©

V2

Vi1

> 4
e
X

Vit

(©

Fig. 6. Discriminative features extracted from (a) textured regions and (b) textureless regions. (c) Gradient histogram of a SIFT feature. (d) Color histogram

for a MSER feature. (e) Trajectory of a tracked feature.

[see Fig. 6(d)] as collected from the pixels within the
ellipse denoted as h.. The three axes are quantized in
17, 45, and 40 bins for the L, u, and v dimensions,
respectively.

These two types of features are discriminant against viewing
angles, scales, and illumination transformations. Their invari-
ant properties make the tracker robust and thus drive the brush
strokes to propagate stably in our system.

Suppose a semantic region R; has M; feature points at frame
t denoted by

/Yi:{Xm:(Amahm)’mzlw-',Mi}

where A,, represents its geometric attributes (location and
scale) and h,, is the appearance histogram (4. for MSER
features and hg for SIFT features). In the next frame, ¢ + 1,
suppose we detect N; features in the corresponding region and
we denote them by

yi = {Yn :(Anyhn)’n = 17‘-"Ni}-

We define a similarity measure of two matched features as

where d(A,,, A,) is a quadratic distance between their ge-
ometric attributes and KL(A,,||h,) is the Kullback—Leibler
(KL) divergence to measure appearance variations. We assign
a constant penalty g for the remaining unmatched points.
Note that the distance between different types of features is
set to co. « is a tuning parameter to account for matching

deformation and g is correlated with occlusions in the video.
In our experiments, « and g are set empirically according
to our previous work on graph matching [22]: « = 0.35 for
nonrigid motion and « = 0.85 for affine motion, and 8 = 0.05.

The tracking problem now becomes finding an optimal
bijective mapping ®,; : X; —), by minimizing the global

matching cost
®;; = agmin >
XmeXi Y€l
This can be interpreted as the optimal assignment problem on
a bipartite graph. We adopt the Hungarian marriage agorithm
(also referred to as the Kuhn—Munkres algorithm) [15] to solve
this optimization problem.

We argue that the proposed feature correspondence with
a video cutout method is more effective in propagating the
strokes than utilizing the optical flows introduced in [5], [11],
and [14] for three reasons. 1) the number of features in each
frame is much smaller than the number of pixels, and they are
more reliable for computing their correspondences than using
optical flows; 2) our features are extracted from both texture
and textureless areas, while the optical flow estimation is often
difficult in flat regions; and 3) the region boundaries eliminate
many cross-region feature mismatches. A comparison of our
approach to a method using optical flows is shown in Fig. 7.

D(Xm, Yy). ©)

III. PAINTERLY RENDERING

Based on the video content extraction in Phase |, the next
step stylizes a video into a painterly animation with three

582 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 4, APRIL 2013

Fig. 7. Comparison of correspondence establishing. In three sequential cartoon frames, we exhibit (a) the correspondence with SIFT features (indicated by
spots) and MSER features (indicated by ellipses) and (b) the correspondence with optical flows. The yellow spots and the incorrect correspondence are marked

by the red crosses.

Generic

Rock&building

@&

Cloth

Leaf

Water

wi

" W
& &

Sky&cloud

i

(a)

Fig. 8. Shown are (a) examples of brush strokes; the generic brushes (in the
top-left cell) and the class-specific brushes; (b) two alpha maps of brushes,
where the darker pixels have higher opacity values; and (c) two height maps
of brushes, where the darker color indicates higher thickness.

modules, allowing user interactions:

1) keyframe brush stroke placement according to the region
semantic label and an orientation field within each
region;

2) temporal brush stroke propagation guided by dense
feature correspondence;

3) brush stroke stabilization by a damped system.

A. Brush-Based Rendering

There are two important components for rendering
keyframes. a semantic-driven brush selection and a brush
placement guided by a region orientation field. For enhanc-
ing rendering efficiency, the system allows a user to spec-
ify keyframes, eg., every 10-20 frames. The selection of
keyframes relies on the object motions. In practice, we can set
the keyframes for rendering by roughly estimating the motions
of objects beforehand.

Inspired by the previous work [14], [39], we use over 800
exemplar strokes to enrich the painterly rendering styles. These
strokes were manually produced by severa artists, who were

asked to draw strokes for 12 material classes, as shown in
Table I. Each class forms a brush dictionary A, five of which
are illustrated in Fig. 8(a).

Each brush B = (¢, A, C, o, H, {¢;}) is characterized by a
label ¢ for its materia class, the image lattice A, its color
map C, apha map «, height map H, and a number of control
points {c;}. In Fig. 8(a), the original colors of the strokes are
set to green and in the rendering process the brush color is
substituted by the color of the pixel where the brush is placed.
The height map and alpha map are created by the artists with
the drawing software Corel Painter. As shown in Fig. 8(b) and
(c), the height map is used to indicate the texture thickness
and the alpha map models the opacity of a brush stroke. The
control points are the keypoints on the backbone of the brushes
and around their boundaries (see Fig. 12).

The proposed brush-based rendering method differs from
our previous work [39] in two aspects: 1) we adopt a two-
pass rendering strategy to enhance the painterly effect and
2) we enrich brush strokes with mixed colors to improve color
contrast of individual strokes and simulate a real brush stroke
appearance.

1) Two-Pass Rendering: We paint each semantic region
R; with two passes. The first pass applies some generic brush
strokes [the top-left cell in Fig. 8(a)], which are often flat
and semitransparent. The generic brushes are from a shared
dictionary A, to paint &l categories of materials. This pass is
inspired by human artists who first use large brush strokes to
put on base colors for a region. In our algorithm, we abstract
unimportant details in textural areas and introduce new colors
to enhance contrast in flat areas. On top of the first-pass
rendering, the second pass is a semantic-driven rendering
process. It places category-specific brush strokes to render
different types of object surfaces of diverse textures, opacities,
and height fields. According to the semantic label ¢;, the
system sel ects strokes from the corresponding brush dictionary
Ay,. Some results of the two-pass rendering can be found in
Fig. 11.

Given aregion to be painted, in both the passes, the system
places brush strokes according to an orientation field of the
region. To compute the orientation field ®;(x, y) at pixe (x, y)
in region R; a a keyframe, we first detect the “sketches’

LIN et al.: VIDEO STYLIZATION: PAINTERLY RENDERING AND OPTIMIZATION

(a)

583

(c

Fig. 9. Brush stroke placement guided by the orientation field. Given (&) a source image, we first (b) compute the strong edges and boundaries, where the
user is alowed to place some oriented scribbles (blue curves) to manipulate the field. The computed orientation fields (c) without using user scribbles and
(d) with scribbles are comparably shown. With the orientation, the system performs two-pass rendering. (e) Placing generic brush strokes at the first-pass
rendering. (f) Result of the first-pass rendering. (g) Final result after the second-pass rendering.

(b)

©

(d

Fig. 10. Painting with colorful brush strokes. (a) Brushes (left) have rich color distributions plotted in the RGB space (right). A brush in the dictionary can
change its color distribution (from top to bottom) in order to fit the corresponding color in the input image. (b) A source image with a highlighted region (in
the red box) is shown. (c) A result with normal brushes and the corresponding hue distribution (d) and result with colorful brushes and the hue distribution

are shown.

inside R;. These “sketches’ are strong edges and bars, as
shown in Fig. 9(b). For the pixels on the interior sketches
or on the boundary owned by the region, ©;(x, y) is set to
be the orientation of the edge or boundary. Note that the
boundaries owned by other regions that occlude R; should
not affect the orientation field of R;. Then we run a diffusion
process [8] to fill the orientation of the rest of the pixels and
obtain a smooth flow field [see Fig. 9(c) and (d)]. Note that the
diffusion process can be interfered with by user interactions,
i.e.,, auser may draw additional scribblesin the region so asto
change the orientation flow [as Fig. 9(b) shows]. The manually
placed scribbles are treated as the strong edges in the diffusion
process. In Fig. 9, we compare the orientation fields without
using user scribbles and using scribbles in Fig. 9(c) and (d).
It can be seen that the user scribbles are able to regulate the
orientation field more smoothly in the existence of cluttered
edges. It is the same procedure to calculate the orientation
field ®g, for a brush B;.

To place a brush stroke onto a small region r, the system
finds the most suitable brush stroke by matching the orienta-
tion fields ®g, and O,

B* = argmin M(®g, ©,) (4)

where the similarity measure M(-, -) for orientation fields is
defined as the KL divergence of the two orientation histogram
over al pixels.

To enhance the rendering efficiency and diversity, for each
unpainted area the system randomly selects a small subset (5—
8) of candidate brushes from the dictionary A, and then finds
the best match and paintsit. The number of selected brushesis
set empirically according to the painting effect we designed.
In Fig. 9(e) and (f), we show some intermediate results of
placing brush strokes; the final result is shown in Fig. 9(g).
Our interface allows a user to refine some of the brush strokes
after the rendering. The operations include adding, removing,
and editing brush strokes (i.e., rotating and translating). More
results of two-pass rendering can be found in Fig. 11.

2) Brush Strokes With Mixed Colors: We mix warm colors
(e.g., yellow, orange) with cold colors (e.g., blue, purple) in
order to simulate the real appearance of brush strokes and
enhance their color contrast. Fig. 10 illustrates a colorful brush
with color-map transformation. Intuitively, when a brush is
placed in the image from which it picks the image color, its
color map must be transformed coherently so that the local
neighborhood in the color map is preserved, and so is the
relative brightness between pixels.

In Fig. 10, we present an example of painting with colorful
brush strokes. In Fig. 10(c) and (d), we show the hue dis-
tributions of the painted images. We compare the rendering
result to that using strokes without color enhancement. It can
be observed that the rendering effect is more vivid and artistic
using strokes with color enhancement.

584 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 4, APRIL 2013

Og' al images

Rendering pass |
TR

Rendering pass Il

Fig. 11. Examples of two-pass brush-based rendering. (a) Original images.
(b) Results of the first-pass rendering. (c) Results of the second-pass rendering.

Unlike the original brushes with a single color, e.g., green,
each mixed-color brush from our dictionary B includes an
additional color map on all pixels, C = Q,. These colors
are clustered by using Gaussian mixture models (GMMs)
of k components. We empirically set k =2-5 based on the
observation that artists usually mix afew dominant colors into
a stroke for vivid effects.!

The dominant colors (component) {g1, g2, ..., g} of the
brush [e.g., green and orange in Fig. 10(a)] are the mean
colors of the GMMs. Let z; be the image color at the
position where the brush B being placed; we can randomly
select colors {z2, z3, ..., zx} aound z; in RGB space. Then
the transformed color map Z, of the brush can be obtained
by the transformation from Q = Q; U {q1, g2, ..., g} into
Z =7,U{z1,22,...,2¢}. This transform can be analytically
solved by a loca linear embedding algorithm [33] in the
following steps.

a) Compute the nearest neighbors ; for each color ¢; € Q

in RGB color space.

b) Compute the reconstruction weights w;; of the neighbors

that minimize the error of reconstructing g;

W*:argminz|qi_ Z wijql ©)
i q;€N;
subject to the constraints, 3, _\; wi; = 1.

¢) Compute the embedded col ors Z that best preserve the
local manifold structure represented by the reconstruc-

tion weights
= argminle,- - Z Wizl (6)

z;€N;
subject to the constraint of initial color mapping,
{91, g2, ..., g} = {z1, 22, . .., z). Fig. 10(a) illustrates
a colorful brush with a color-map transformation.

We briefly summarize the brush-based rendering method for
keyframes in Algorithm 1.

1Available at http://en.wikipedia.org/wiki/Oil _ painting.

Algorithm 1 Two-pass rendering procedure

Input: An unpainted semantic region R;; generic brush
dictionary A, and specific brush dictionary Ag,.
Output: A stylized region covered by brush strokes.
1) Compute orientation field ®;(x, y) for each pixel in R;
2) Pass 1: Repeat loop: paint R; with A,.
a) Randomly select a cluster of unpainted pixels r.
b) Obtain the orientation field ©,.
¢) Find the most suitable generic brush by matching
orientation fields.
d) Render the selected brush on r.
e) Mark all pixels covered by this brush as painted.
3) Pass 2: Repeat loop: paint R; with A,,.
a) Randomly select a small number of brush strokes
as candidates from A,,.
b) Randomly select a cluster of unpainted pixels r.
¢) Obtain the orientation field @, .
d) Find the most suitable brush from candidates by
matching orientation fields.
€) Render the selected brush on r.
f) Mark al pixels covered by this brush as painted.

4) Remind user to check and refine the painting result.

Fig. 12. Propagating a brush stroke between frames. The lattice for the
semantic region undergoes a plastic deformation following the tracked feature
points with a TPS transform, while the stroke is rigid and follows an affine
transform. The red dots are control points of the stroke.

B. Temporal Brush Propagation

After rendering a keyframe, the system propagates the brush
strokes to the following frames. It also removes some strokes
that cover disappearing regions and introduces new ones
for emerging regions. We propose a deferred rendering and
backward completion strategy for adding new brush strokes
in the propagation process in order to reduce the stroke
scintillation artifact. Note that new brush strokes are added
only at keyframes and propagated backward to fill unpainted
regions in the previous frames.

1) Brush Stroke Propagation: For a semantic region R;
a frame ¢, we have a number of feature points &; = {X;;}
for j=1,2,..., M;. We have computed the matching matrix
(¢, i) that maps these feature points to a set of points Y, =
{Yi;} in the next frame. To propagate the brush strokes, the
image lattice under the strokes may be distorted according to
the corresponding features, as shown in Fig. 12. The warping
of the image domain is accounted by the TPS model [4]. That
is, pixels at image features {X;;} are directly mapped to their
correspondence positions {Y;;}, and the nonfeature pixels are
warped to minimize the TPS smoothness constraint energy.

LIN et al.: VIDEO STYLIZATION: PAINTERLY RENDERING AND OPTIMIZATION

o

1 <«

Deferred Rendering

Backward Compl etion

585

Fig. 13. Deferred rendering and backward completion. When a new area appears (see the top row), the system defers the rendering and lets the area unpainted
until to a keyframe (highlighted by the red box), where four new brush strokes are placed and then propagated back to fill the gaps in the previous frames.

Although the underlying lattice is elastic, our brush strokes
are treated as rigid to preserve the brush textures. If deforming
strokes, it may cause an undesirable artifact on its texture and
height field. As Fig. 12 shows, each brush has a number of
control points, {c;}. We fit an affine transformation between
the two sets of correspondence features and then transform
the associated brush stroke. This idea is inspired by the work
in augmented reality [26].

Some brush strokes become smaller during the propagation
in the video because of occlusion. We eliminate a stroke if its
size is under a threshold. In addition, strokes propagated out
of the region boundary are also eliminated.

2) Deferred Rendering and Backward Completion: When
a new semantic region emerges, or an existing region grows
larger, new brush strokes are introduced to cover the new area.
To fill small seams between brush strokes, we simply perturb
the size and location of the neighboring strokes. If the un-
covered areais larger than a certain threshold, the system will
not paint it immediately until a new keyframe is specified. For
such large unpainted regions, new brush strokes are automati-
cally rendered at the new keyframe by the keyframe-rendering
algorithm. Then these strokes are transformed backward frame
by frame so as to fill all the corresponding gaps up until the
previous keyframe. In addition, the newly added strokes are
put underneath the existing ones. This process is illustrated
in Fig. 13. This deferred rendering and backward completion
process can reduce scintillation effects and other unwanted
visual artifacts by avoiding frequent brush stroke changes.

C. Damped System for Deflickering

Once the brush strokes are rendered for al the frames in
a video, we attach springs in between the strokes adjacent in
space and time to simulate a damped system, as shown in
Fig. 14. By minimizing the energy of this system, the strokes
are adjusted by an iterative algorithm to remove flickering
effects.

Fig. 14. Damped brush stroke system for deflickering, where the springs are
attached between strokes adjacent in space and time.

For the ith stroke at frame ¢, we denote A; , as its geometric
attributes, including its central point and size. A;, isavariable
and it isinitialized to A7, which is its original state obtained

from the rendering step. The energy function of the damped
system has three terms weighted by two parameters A, and A,

)

The first term urges that the strokes should stick to their
initial positions

Egamp = Edata + A1 Esmooth1 + A2 Esmooth 2-

Egaa= Y (Ais — A7) G)
it

Intuitively, this is like attaching a spring between a brush
stroke and its initial location so that it does not deviate too
far.

The second term enforces a smoothness constraint in time,
i.e., the strokes should move smoothly

Esmooth1 = Z(Ai,ﬁl —2A;, + Ai,t—1)2~

it

©)

586 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 4, APRIL 2013

The third term imposes a smoothness constraint between ad-
jacent strokes in space and time. Let A;, denote the neighbors
of stroke i at frame ¢. For an adjacent stroke j € N, their
difference 6A; ;; = A;; — A, of relative distance and sizes
should remain stable in time

Esmoothzzz Z (5Ai,j,t - 5Ai,j,t—1)2-

it jeNi

(10)

The energy Egamp iS in a quadratic form, even though the
neighbors of each brush stroke may change over time. It
can be solved using the Levenbergy—Marquardt algorithm
[32] iteratively. The effectiveness of the damped system is
demonstrated in the experiments.

In experiments, we set A3 = 2.8 and A, = 1.1 according to
the object motions and interactions in the video. For some
videos including extremely drastic motions and intrackable
regions, we can increase the weights of the two smooth terms
to further enhance the deflickering.

IV. PARALLEL IMPLEMENTATION WITH GPU

The key limitation of many video-stylization systems is the
low processing efficiency, basically caused by painting a large
number of brush strokes in the video. We propose a parallel
implementation using GPU programming to solve this problem
and make the system applicable. The benefit of using the
parallel implementation is demonstrated in the experiments.

Our implementation uses the NVIDIA CUDA framework in
which C functions can be executed multiple times by multiple
threads, on multiple processors. We use a NVIDIA GeForce
GTX 265 video card, which has 32 multiprocessors, each with
four cores. It is thus able to run 32 x 4 = 128 threads at once.

In the following, we will discuss the architectures and
working flows for stylizing videos with two steps, based on
the rendering strategy introduced above: 1) painting brushes
in the keyframes and 2) propagating brushes over frames.

A. GPU-Based Rendering on Keyframes

Given a keyframe to be painted, the segmented regions are
processed in parallel by a number (i.e., 32) of GPU processors.
In practice, the number of processors for one region is decided
by the pixel number in the region, namely, the number of brush
strokes to be painted.

Based on the two-pass rendering strategy for keyframes
(summarized in Algorithm 1), we propose the parallel version
of this algorithm that can be split into two parts: host and
GPU processing, as shown in Fig. 15. In the host, the image
data of the keyframe is created and partitioned into a number
of semantic regions according to the content-extraction phase
(refer to Section 11) and the orientation fields for all regions are
calculated as well. Then we transfer the data from the host into
the GPU for parallel implementation. It is worth mentioning
that the original image and the orientation fields are stored in
the shared memory of the GPU, which all the processors can
access. The two-pass rendering is then performed. There are
two steps for the first-pass rendering.

Step 1) Generate a queue of brushes to be painted. For each
pixel in the region, the most suitable brush is decided

Host

Partition input image
into regions

GPU

Calculate orientation
fields for regions

Transfer data to
GPU Memory

Generate queue of
generic brushes

» First pass rendering

Select brushes
from dictionary

Generate queue of
class-specific brushes

Second pass rendering

Transfer results
to host

Format results

Terminate processing

Fig. 15. Host and GPU processing for parallel rendering on a keyframe.

- 10999199900

GPU(0) GPU(1)

Image

Region 0

Thread
0,0

Thread
0.1

Thread
(1.0

Thread
1.1

(b)

Thread
0,2)

Thread
(0,3)

Thread
(1,2)

Thread
(1,3)

Fig. 16. |Illustration of painting brushes by multiple threads, on multiple
processors. (a) Queue of brushes (i.e., the ellipses) to be painted is assigned
to multiple GPU processors. (b) In region 0 of the image, one GPU processor
control a number of threads of painting (i.e., the dark rectangles).

by matching the orientation fields of the image and
the brush (4). Then we collect a queue of brushes
to be painted for the region, where the brushes are
ranked by the matching score. Since the generation
of the queue is processed serialy, we execute it in
the host part. In practice, it is not necessary to place
brushes for al the pixels, while we only constrain
each pixel covered by at least one brush.

Utilize GPU processors for brush-based rendering
in the GPU part, based on the generated queue of
brushesin Step 1. We first dispatch the brushesin the
gueue into a number of GPU processors, asillustrated
in Fig. 16, and then each processor is able to control
four threads of brush painting. The associations of the
GPU processors with the brushes should be recorded
for the temporal brush propagating.

Step 2)

LIN et al.: VIDEO STYLIZATION: PAINTERLY RENDERING AND OPTIMIZATION

i o ot) e o s e oo e . e e o e s e e, ke e o v e s e, .ot . e e, o

587

o e i e o T i 0 5 i
X " 0 .

Fig. 17. Sample frames from the animations generated by our system; the original frame and stylized results are shown in each cell.

The rendering for the second pass is very similar with the
first pass; the only difference is to select brushes to generate
the queue according to region semantics.

B. GPU-Based Rendering With Brush Propagation

Our system propagates the brush strokes from one painted
keyframe to the following sequential frames. We consider
the sequential frames between two keyframes as a period of
rendering. There are two steps, as discussed in Section 111-B:
1) painting the brushes according to the object deformations
and 2) deferred rendering and backward completion for new
emerging aress.

Step 1) For each region to be painted, we first update the
attributes of brushes in the queue that are generated
in the keyframe rendering. Each brush is transformed
based on the TPS model computed by feature corre-
spondences, as illustrated in Fig. 12 and its attribute
(image lattice, color map, alphamap, etc.) is updated
accordingly. In addition, the brushes are eliminated,
namely, marked for no further rendering, which are
transformed out of the region or smaler than a
threshold. Then we adopt the GPU to paint the
brushes according to the associations between the

brushes and the GPU processors, which is also kept
in the rendering.

For new birth areas, we perform the strategy of
deferred rendering, as illustrated in Fig. 13, i.e,
we stop rendering them until a new keyframe is
specified. Thus, we use the agorithm for keyframe
rendering (described in the previous section) to paint
brush strokes on these areas of the new keyframe
and then propagated back to paint the brushes in
the previous frames. The processing of backward
propagation is exactly the same as Step 1.

Step 2)

V. EXPERIMENTAL RESULTS

We apply our system to several video clips and compare
the visual effects with the other state-of-the-art stylization
methods. These video sequences include nonrigid human
motion, camera motion, and large scene rotation, and shifting.
Fig. 17 shows a few frames of painterly animations produced
by our system. The results are presented in our supplementary
material (please contact the authors to acquire it), in which we
also show the contributions of each module of the system by
comparing the rendered results with and without the modules:
two pass brush rendering, deferred rendering and backward

588 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 4, APRIL 2013

TABLE 1l
TIME EXPENSE OF EACH STAGE OF THE ALGORITHM

Seq. Name Quantity Parsing Render Render Refining
(Frames) (min) (CPU) (h) (GPU) (min) (h)
Cartoon 147 10 10 85 0.5
The Ring 450 20 19 126 1.0
Lady Walk 360 20 15 90 10
Girl Lena 239 15 13 98 0.5

completion, video cutout, and damped system for deflickering.

1) A Lady Walk seguence shot with a hand-held camera.
This video includes nonrigid human motion and camera
motion (i.e., shifting and scaling). In the animation,
some flat areas (e.g., the sky) are enriched with new
colors by the base-pass rendering. The impressive result
by the mixed color brushes can be found on the styl-
ized trees and leaves. The different materias (e.g., the
clothes, face, and building) are well expressed by the di-
verse brushes. Due to the robust feature correspondence,
we find the brush strokes are basically stuck with the
lady as well as the background.

2) Two sequences from the movie The Lord of the Rings.
Oneclip includes multilayer motion and large-scale view
changes. The strokes are confined in the segmented
objects (e.g., the rocks, wall, and water) in the video,
and thus the boundary scintillation is removed. The
advantage of the damped system can be found for the
water animation, where the brush strokes move smoothly
and consistently. For the other clip, it includes large
scene rotation that leads to drastic emergence and the
disappearance of regions. The benefit of the deferred
rendering and backward completion is demonstrated.
The flickering of the newly adding strokes are effectively
removed and we find visual satisfaction on the appearing
regions. The results based on these two sequences by
Hays et al. [11] are proposed for comparison.

3) A Cartoon sequence with a climbing boy, in which
most of the areas are textureless. This animation ex-
hibits impressive and artistic effect by the depth of
field, different object materials, and the enhancement
of color diversity. Compared with the method using
optical flow for propagating brush strokes [11], we show
that the space-time segmentation and the feature-based
correspondence stick the brush strokes more stably and
tightly.

4) The Girl Lena sequence from [37]. Compared with
other clips, this video is more challenging due to drastic
motion and lower resolution. Since the girl is very small
in the video, we treat her as awhole object in the content
extraction phase, which causes a few jittering effects of
the brush strokes. That could be improved by further
segmenting the girl according to the different motions.

In order to produce these animations, a user can specify
a keyframe out of every 10-20 frames, and there are about
35004800 brush strokes in each keyframe. We carry out
the experiments on a personal computer with 3.6 GHz Duo-
CPU, 8GB memory, and a NVIDIA GeForce GTX 265 video

70000

—&— with CPU »
60000
—@— with GPU /
50000 2
7
/
40000 7
30000 A
7/
/
20000 #
v
10000 -
- ’:_____.____——-l—/.
0 i ‘ ‘ :

320X180 640X360 720X405 1280X720 1920X 1280

Fig. 18. Time expense for brush-based image rendering. The vertical axis
and horizontal axis represent the time consumption (s) and the image sizes,
respectively. The dashed curve and the real curve indicate the results with

CPU and GPU, respectively.

150

Fig. 19. Evaluation of the deflickering algorithm. (a) Trajectories of five
brush strokes in the cloth of the Lady sequence before (red) and after (blue)
the deflickering process. (b) Displacements of the five brush strokes with the
color curves; the results before and after the deflickering process are shown
in the left and the right, respectively, where the horizontal axis is time and
the vertical axis is distance in pixels.

card. In the painterly rendering phase, our video sequences are
resized into the size of 1280 x 720 for processing.

To demonstrate the efficiency improvement of the GPU-
based parallel implementation well, we design an experiment
to render with a series of parsed images of different sizes
and compare with the traditional CPU performing. As Fig. 18
shows, the efficiency is increased by 10 times on average with
the GPU-based implementation. Note that the improvement
becomes more significant with images of larger size. Table Il
summarizes the overall system performance including three
key phases, namely, content extracting (parsing), rendering,

LIN et al.: VIDEO STYLIZATION: PAINTERLY RENDERING AND OPTIMIZATION

and user refining, as well as the comparisons of using CPU
or GPU for rendering.

In addition, we present a quantitative evaluation for the
damped system discussed in Section I11-C. In the Lady Walk
sequence, we randomly select five brush strokes, and visualize
their trajectories and relative displacements before and after
the deflickering process, as shown in Fig. 19.

VI. CONCLUSION

In this paper, we proposed an interactive system for
painterly animation. The system consisted of two phases: a
content extraction phase to obtain semantic objects in a video
and establish dense feature correspondences, and a painterly
rendering phase to select, place, and propagate brush strokes
for stylized animations based on the semantic content and
object motions derived from the first phase. We applied our
system to severa video clips and achieved very vivid and
expressive stylized results.

The limitation of our method is as follows. The TPS trans-
form for the stroke propagation and the smoothness energy
between the stokes assumed that the underlying motion was
continuous and smooth. This is not always true for stochastic
and drastic motions, such as dancing fires and breaking waves.
These drastic events need other models after the segmentation
process. The current representation also had problems in rep-
resenting transparent objects, such as steam and wedding veils.

ACKNOWLEDGMENT

The authors would like to thank H. Lv for her assistance in
the experiments.

REFERENCES
[1] A. Agarwala, “SnakeToonz: A semi-automatic approach to creating cel
animation from video,” in Proc. Int. Symp. Non-Photorealistic Animat.
Render., 2002, pp. 139-146.
A. Agarwalg, A. Hertzmann, D. H. Salesin, and S. M. Seitz, “Keyframe-
based tracking for rotoscoping and animation,” ACM Trans. Graphics,
vol. 23, no. 3, pp. 584-591, 2004.
X. Bai, J. Wang, D. Simons, and G. Sapiro, “Video SnapCut: Robust
video object cutout using localized classifiers” ACM Trans. Graphics,
vol. 28, no. 3, pp. 70:1-70:11, 2009.
L. Bookstein, “Principal warps: Thin-plate splines and the decomposi-
tion of deformations,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 11, no.
6, pp. 567-585, Jun. 1989.
A. Bousseau, F. Neyret, J. Thollot, and D. Salesin, “Video watercol-
orization using bidirectional texture advection,” ACM Trans. Graphics,
vol. 26, no. 3, pp. 104:1-104:7, 2007.
Y. Boykov and P. Jolly, “Fast approximate energy minimization viagraph
cuts,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 23, no. 11, pp. 1222—
1238, Nov. 2001.
S. Bredlav, K. Szerszen, L. Markosian, P. Barla, and J. Thollot, “ Dynamic
2D patterns for shading 3D scenes” ACM Trans. Graphics, vol. 26, no.
3, pp. 20:1-20:5, 2007.
H. Chen and S. C. Zhu, “A generative sketch model for human hair
analysis and synthesis” IEEE Trans. Patt. Anal. Mach. Intell., vol. 28,
no. 7, pp. 1025-1040, Jul. 2006.
P. Collomosse and M. Hall, “Painterly rendering using image salience,”
in Proc. Eurographics, 2002, pp. 122-128.
J. Collomosse, D. Rowntree, and P. Hall, “Stroke surfaces: Temporally
coherent artistic animations from video,” IEEE Trans. Visualiz. Comput.
Graphics, vol. 11, no. 5, pp. 540-549, May 2005.
J. Hays and |. Essa, “Image and video based painterly animation,” in
Proc. Int. Symp. Non-Photorealistic Animat. Render., 2004, pp. 113-120.

(2

(3]

(4

(9]

6]

(8]

(9
(10

(11

(12

(13

(14

(19]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(29]

(26]

[27]

(28]

[29]

(30]

(31
(32
(33]

(34

(39]

(36]

(37
(38]

(39]

589

S. S. Huang, L. C. Fu, and P. Y. Hsiao, “Region-level motion-based fore-
ground segmentation under a Bayesian network,” IEEE Trans. Circuits
Syst. Video Technol., vol. 19, no. 4, pp. 522-532, Apr. 2009.

A. Hertzmann, “Painterly rendering with curved brush strokes of mul-
tiple sizes” in Proc. ACM Siggraph, 1998, pp. 453-460.

A. Hertzmann and K. Perlin, “Painterly rendering for video and inter-
action,” in Proc. Int. Symp. Non-Photorealistic Animat. Render., 2000,
pp. 7-12.

R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for
dense and sparse linear assignment problems,” Computing, vol. 38, no.
4, pp. 325-340, 1987.

M. Kagaya, W. Brendel, Q. Deng, T. Kesterson, S. Todorovic, P. J.
Neill, and E. Zhang, “Video painting with space-time-varying style
parameters” IEEE Trans. Visualiz. Comput. Graphics, vol. 17, no. 1,
pp. 74-87, Jan. 2010.

R. Kanins, P. Davidson, L. Markosian, and A. Finkelstein, “Coherent
stylized silhouettes” ACM Trans. Graphics, vol. 22, no. 3, pp. 856861,
2003.

S. B. Kang, M. Wu, Y. Li, and H. Y. Shum, “Large environment
rendering using plenoptic primitives” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, no. 11, pp. 1064-1073, Nov. 2003.

W. Klein, J. Sloan, A. Finkerlstein, and F. Cohen, “ Stylized video cubes,”
in Proc. ACM Siggraph Symp. Comput. Animat., 2002, pp. 15—22.

A. Kolliopoulos, J. M. Wang, and A. Hertzmann, “ Segmentation-based
3D artistic rendering,” in Proc. Eurographics Symp. Render., 2006, pp.
361-370.

M. Lhuillier and L. Quan, “Image-based rendering by joint view
triangulation,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no.
11, pp. 1051-1063, Nov. 2003.

L. Lin, X. Liu, and S. C. Zhu, “Layered graph matching with composite
cluster sampling,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 32, no. 8,
pp. 1426-1442, Aug. 2010.

L. Lin, K. Zeng, H. Lv, Y. Wang, Y. Xu, and S. C. Zhu, “Painterly
animation using video semantics and feature correspondence,” in Proc.
Int. Symp. Non-Photorealistic Animat. Render., 2010, pp. 73-80.

T. Lin, L. Lin, and Q. Wang, “Robust stroke-based video animation via
layered motion and correspondence,” in Proc. ACM Conf. MM, 2012.
L. Lin, P Luo, X. Chen, and K. Zeng, “Representing and recognizing
objects with massive local image patches,” Patt. Recog., vol. 45, no. 1,
pp. 231-240, 2012.

L. Lin, Y. Liu, Y. Wang, and W. Zheng, “Registration algorithm based on
image matching for outdoor AR system with fixed viewing position,”
IEE Proc. Vision, Image Signal Process., vol. 153, no. 1, pp. 57-62,
2006.

P. Litwinowicz, “Processing image and video for an impressionist
effect,” in Proc. ACM Siggraph, 1997, pp. 407-414.

X. Liu, L. Lin, S. Yan, H. Jin, and W. Jiang, “Adaptive object tracking
by learning hybrid template on-line,” IEEE Trans. Circuits Syst. Video
Technol., vol. 21, no. 11, pp. 1588-1599, Nov. 2011.

D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91-110, 2004.

J. Matas, O. Chum, M. Urban, and T. Pgjdla, “Robust wide baseline
stereo from maximally stable extremal regions,” in Proc. Brit. Mach.
Vision Conf., 2002, pp. 384—-393.

B. Meier, “Painterly rendering for animation,” in Proc. ACM Siggraph,
1996, pp. 477-484.

J. Nocedal and S. J. Wright, Numerical Optimization. New York:
Springer, 1999.

S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science, vol. 290, no. 5500, pp. 2323-2326, 2000.
A. Santella and D. Decarlo, “Abstracted painterly renderings using eye-
tracking data” in Proc. Int. Symp. Non-Photorealistic Animat. Render.,
2002, pp. 769-776.

J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost for
image understanding: Multi-class object recognition and segmentation
by jointly modeling texture, layout, and context,” Int. J. Comput. Vision,
vol. 81, no. 1, pp. 2-23, 20009.

J. Suo, L. Lin, S. Shan, X. Chen, and W. Gao, “High resolution face
fusion for gender conversion,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 41, no. 2, pp. 226-237, Feb. 2011.

J. Wang, Y. Xu, H. Y. Shum, and F. Cohen, “Video tooning,” ACM
Trans. Graphics, vol. 23, no. 3, pp. 574-583, 2004.

H. Winnemoller, S. C. Olsen, and B. Gooch, “Real-time video abstrac-
tion,” ACM Trans. Graphics, vol. 25, no. 3, pp. 1221-1226, 2006.

K. Zeng, M. Zhao, S. C. Zhu, and C. Xiong, “From image parsing to
painterly rendering,” ACM Trans. Graphics, vol. 29, no. 1, pp. 1-11,
20009.

590 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 4, APRIL 2013

Liang Lin received the B.S. and Ph.D. degrees from
the Beijing Institute of Technology, Beijing, China,
in 1999 and 2008, respectively. From 2006 to 2007,
he was a Ph.D. student with the Department of
Statistics, University of California at Los Angeles
(UCLA), Los Angeles.

He was a Post-Doctoral Research Fellow with the
Center for Image and Vision Science, UCLA. From
2007 to 2009, he was a Senior Research Scientist
with the Lotus Hill Research Institute, Hubei, China.
He is currently an Associate Professor with the
Software School, Sun Yat-Sen University, Guangzhou, China. He has authored
or co-authored over 40 academic papers over a wide range of research topics.
His current research interests include, but are not limited to, computer vision,
pattern recognition, machine learning, and multimedia technology.

Dr. Lin was arecipient of a number of honors, including several scholarships
while pursuing the Ph.D. degree, the Beijing Excellent Students Award in
2007, the China National Excellent Ph.D. Dissertation Award Honorable
Mention in 2010, and the Best Paper Runner-Up Award in ACM NPAR 2010.

Kun Zeng received the Ph.D. degree from the Na-
tional Laboratory of Pattern Recognition Institute of
Automation, Chinese Academy of Sciences, Beijing,
China, in 2008.

He is currently an Assistant Professor with Sun
Yat-Sen University, Guangzhou, China. His current
research interests include computer vision, multime-
dia, and nonphotorealistic rendering.

Yizhou Wang received the B.E. degree from the De-
partment of Electrical Engineering, Tsinghua Uni-
versity, Beijing, China, in 1996, and the Ph.D. degree
from the University of California a Los Angeles,
Los Angeles, in 2005.

From 2005 to 2007, he was a Research Scientist
with the Palo Alto Research Center, Palo Alto,
CA. Currently, he is a Bairen Professor with the
Department of Computer Science, School of Elec-
trical Engineering and Computer Science, Peking
University, Beijing. His current research interests
include computer vision and visual arts.

Ying-Qing Xu (SM’08) received the Ph.D. degreein
computer graphics from the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
China, in 1997.

He is currently a Professor and the Chair with
the Department of Information Art and Design,
Tsinghua University, Beijing. From 1999 to 2011,
he was a Lead Researcher with Microsoft Research
Asia, Beljing. From 2006 to 2011, he was the Co-
Director of the Microsoft Digital Cartoon and Ani-
mation Laboratory, Beijing Film Academy, Beijing.
He has published over 70 papers in computer graphics, computer vision,
multimedia, and interaction design. He holds over 20 granted U.S. patents.
His current research interests include human—computer interaction, natural
user interfaces, computer graphics, and e-heritage.

Dr. Xu is a member of the Association for Computing Machinery.

