
Data-Driven
Scene Under-
standing with
Adaptively
Retrieved
Exemplars

Xionghao Liu, Wei Yang, Liang Lin, and Qing Wang
Sun Yat-sen University

Zhaoquan Cai
Huizhou University

Jianhuang Lai
Sun Yat-sen University

This novel, data-

driven framework for

semantic scene

understanding works

without pixelwise

annotation or

classifier training

using a probabilistic

Expectation-

Maximization

formulation. It

performs better than

state-of-the-art

methods in both

semantic

segmentation and

image annotation.

1070-986X/15/$31.00�c 2015 IEEE Published by the IEEE Computer Society

Feature: Semantic Segmentation

S
ignificant progress has been made in

solving the task of semantic image

understanding.1,2 However, most meth-

ods usually build upon supervised learn-

ing with fully annotated data that is expensive and

sometimes limited in large-scale scenarios.3,4 To

reduce the overload of data annotating, researchers

have proposed several weakly supervised methods

that can be trained with only image-level labels

indicating the classes presented in the images.5

Recently, data-driven approaches, which tend to

leverage knowledge from auxiliary data in a weakly

supervised fashion, have received increasing atten-

tion and demonstrate promising applications.6,7

Following this trend, one interesting but challeng-

ing problem arises for scene understanding: how to

parse raw images using the strength of numerous

unsegmented but tagged images, because image-

level tags can be achieved more easily.

To investigate this problem, we developed a

unified framework: a novel probabilistic Expect-

ation- Maximization (EM) formulation in which

two mutually conditional steps perform itera-

tively, providing complementary information

to each other in a self-driven manner. In addi-

tion, we can apply the proposed framework

directly on new test images to perform multila-

bel image annotation. We evaluated our ap-

proach on several benchmarks and found it out-

performs other state-of-the-art methods.

Related Work
Traditional efforts for scene understanding,

such as Conditional Random Field (CRF),1,2

Texton-Forest,8 and Graph Grammar,9 mainly

focused on capturing scene appearances, struc-

tures, and spatial contexts by developing com-

binatorial models. These models were generally

founded on supervised learning techniques and

required manually prepared training data con-

taining labels at the pixel level.

Several weakly supervised methods have

been proposed to indicate the classes that are

presented in the images with only image-level

labels. For example, John M. Winn and Nebojsa

Jojic10 proposed learning object classes on the

basis of unsupervised image segmentation. Ke

Zhang and his colleagues5 learned classification

models for all scene labels by selecting represen-

tative training samples, and Alexander Vezhne-

vets and his colleagues11 used multiple instance

learning.

Some nonparametric approaches have also

been studied that solve these problems by

searching and matching with an auxiliary

image database. For example, Ce Liu and his

colleagues6 discussed an efficient structure-

aware matching algorithm to transfer labels

from a database to the target image, but pixel-

wise annotation was required for the auxiliary

images.

Overview of the Two-Step Framework
In Step 1 (see Figure 1), we search for exemplar

images (that is, reference images; see Figure 1a)

from the auxiliary database (Figure 1b) that

match the target image (Figure 1c). These refer-

ences must share similar semantic concepts

with the target. Moreover, we enforce the repre-

sentation to be semantically meaningful—that

is, the references that are selected must contain

consistent tags. During the iteration process,
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we can take into account the tags of the target

image, determined in the prior label assign-

ment step (Step 2). We solve Step 1 using the

proximal gradient method.

In Step 2, we assign labels to the pixels of the

target by propagating semantics from the se-

lected references. We create a graphical model

in which the vertices are the superpixels from

the target image and its references. Two types of

edges are defined over the graph (which in-

spired by earlier work12): the inner edges con-

necting the adjacent vertices within the target,

and the outer edges connecting the vertices of

the target to those of its references. By aggregat-

ing the two types of edge connections, we can

then derive the potentials into a Markov Ran-

dom Fields (MRF) form, which can be quickly

solved by the Graph Cuts algorithm.2

Problem Formulation
Here, we phrase the problem in a probabilistic

formulation and then discuss the Expectation-

Maximization (EM) inference framework for

optimization.

Probability Model

Let D ¼ fIk;LkgNk¼1 denote a set of images fIkg
with image-level labels fLkg. Each image Ik is

represented as a set of superpixels fxk
i g

nk

i¼1,

where nk is the number of superpixels in Ik.

Given the target image It , our task is to pre-

dict its image-level labels Lt , as well as to assign
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Figure 1. In our

framework, we

semantically segment

the target image in a

self-driven fashion.

The algorithm iterates

to retrieve (a) the

exemplars matching

the target from (b) the

auxiliary data, and

then (c) parses the

target image using the

strength of the selected

exemplars.
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each superpixel xt
i a label yt

i 2 Lt . Let Yt denote

the whole label assignment—that is, Yt ¼
fyt

i g
nt

i¼1; now we can define the joint probability

distribution of target image It and the label

assignment Yt .

We also define a binary-valued correspond-

ence variable a ¼ fakgNk¼1, such that ak ¼ 1 if

image Ik is selected as a reference for the target

image. a is treated as a hidden variable.

The complete probability model is defined

as

PðIt ;YtajDÞ ¼ PðIt ;Yt ja;DÞPðaÞ: ð1Þ

We further derive it by summing out a as

PðIt ;Yt jDÞ ¼
X

a

PðIt ;Yt ja;DÞPðaÞ: ð2Þ

Then we derive the optimal label assignment

Yt by maximizing the probability

Y�t ¼ arg max
Yt

PðIt ;Yt jDÞ; ð3Þ

and solve it iteratively under an EM framework.

The EM Iterations

Radford M. Neal and Geoffrey E. Hinton

showed that estimating Y�t from PðIt ;Yt jDÞ is

equivalent to minimizing the following energy

function:13

LðQ;YtÞ ¼ �
X

a

QðaÞ ln PðIt ;Yt ; ajDÞ

þ
X

a

QðaÞ ln QðaÞ; ð4Þ

where QðaÞ is the posterior of the latent variable a.

Because the second term in Equation 4 is a

constant, the optimization iterates in two steps:

First, the E step minimizes the energy LðQ;YtÞ
with respect to QðaÞ with Yt fixed; second, the

M step minimizes the energy LðQ;YtÞ with

respect to Yt with QðaÞ fixed.

Step 1. The E step: Approximating Q(a). The

posterior of the latent variable QðaÞ is defined

as

QðaÞ ¼ PðajIt ;Yt ;DÞ

¼ 1

Z
expf�Eaða; It ;Yt ;DÞg; ð5Þ

where Z is the normalization constant of the

probability. The energy Ea evaluates the appear-

ance and semantic consistency, which is speci-

fied as

Eaða; It ;Yt ;DÞ ¼ EScða; It ;DÞ þ cESaða;Yt ;DÞ:
ð6Þ

where c is the tradeoff parameter used to bal-

ance the appearance similarity and the seman-

tic consistency.

The first term ESc measures the appearance

similarity between It and images in D. It is

defined as

ESc ¼
1

2
FðItÞ � Bak k22þb ak k1; ð7Þ

where b is the tradeoff parameter used to bal-

ance the sparsity and the reconstruction error.

F(�) is an m-dimensional global feature of an

image, and B 2 Rm�N is a matrix consisting of

all the features of the image in D.

The second term ESa in Equation 6 measures

semantic consistency, defined as

ESa ¼
1

2

X
i;j2N

Sij
aiffiffiffiffiffiffi
Aii

p � ajffiffiffiffiffiffi
Ajj

p
�����

�����
2

2

þk aTDa

¼ aTLaþ k aTDa

; ð8Þ

where Sij measures the semantic similarity

between ðIi; IjÞ 2 D as

Sij ¼
jLi \ Ljj
jLi [ Ljj

ð9Þ

and A in Equation 8 is a diagonal matrix, where

Aii ¼
PN

j¼1 Sij and L ¼ A�1=2ðA� SÞA�1=2, in

which L is the normalized Laplacian matrix.

Images with similar semantics should be

encoded with similar activations. In other words,

if two images have common labels, then the acti-

vations corresponding to this image pair should

also be close to each other. The distance between

their activation codes should be small.

D is a diagonal matrix where Dkk measures

the semantic dissimilarity between Ik 2 D and

the target image It . Thus the second term aTDa
(note that aDa is convex, and convenient for

optimization) penalizing the target It is recon-

structed by images that are semantically dissim-

ilar to It . We define the diagonal matrixD as

Dkk ¼ 1� jLt \ Lkj
jLt [ Lkj

; ð10Þ

where Lt are the latent labels of the target

image, which are unknown at the beginning

(we initialize Lt as the whole label set of the

database), and can be determined from Yt dur-

ing later iterations.IE
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Step 2. The M step: Estimating Yt. The M step

minimizes the following energy function with

respect to Yt:

EMðYtÞ ¼ �
X

a

QðaÞ ln PðIt ;Yt ; ajDÞ; ð11Þ

However, summing out a for all possibilities

demands very expensive computational costs,

particularly to process a large number N of data.

Instead, we seek a lower bound EMðYtÞ. Assume

that we can infer a� with the maximized proba-

bility Qða�Þ by the E step. Then we can define

the joint distribution of ðIt ;YtÞ conditioned on

Qða�Þ, and we have

X
a

PðIt ;Yt jD; a�Þ >
X

a

PðIt ;Yt ; ajDÞ: ð12Þ

It is straightforward in the context of our

task, because the cumulative density of assign-

ing labels from good references (that is, given

a�Þ is higher than that with general cases. Thus,

we set the lower bound as

EMðYtÞ > �
X

a

QðaÞ ln PðIt ;Yt ; jD; a�Þ; ð13Þ

where QðaÞ is fixed by the last E step. The

energy to be minimized can be further simpli-

fied as

ÊMðYtÞ ¼ � ln PðIt ;Yt jD; a�Þ: ð14Þ

Later, we will specify � ln PðIt ;Yt jD; a�Þ with

a combinatorial graphical model.

Inference and Implementation
With the EM formulation, the inference algo-

rithm iterates in two steps: first computing a� in

the E step for reference retrieval, then solving

the optimal labeling Y�t with the selected refer-

ences in the M step.

Adaptive Reference Retrieval

Maximizing QðaÞ is equivalent to minimizing

the energy defined in Equation 6 with regard to

a� ¼ arg minaEaða; It ;Yt ;DÞ. Notice that Eaða; It ;

Yt ;DÞ can be regarded as a semantic-aware

sparse representation, where we jointly model

the appearance reconstruction with semantic

consistency. Figure 2 intuitively illustrates this

model, and it can be rewritten as

Ea ¼
1

2
FðItÞ � Bak k2þb ak k1þ

1

2
c aTKa; ð15Þ

where K ¼ 2ðL þ kDÞ. The semantic associated

terms in Equation 15 can be phrased in convex

forms, so we can use the proximal gradient

method to solve this problem efficiently. The

optimization process is shown in Algorithm 1

(see Figure 3).

Given the optimal a�, we can simply select

the references according to coding coeffi-

cients—for example, by a threshold. And we set

ak ¼ 0 if image Ik is not selected.

Aggregated Label Assignment

Given the references determined by a�, we prop-

agate their semantic labels to It by constructing

a combinatorial graph. We extract superpixels

from both It and the references as graph verti-

ces, and we connect them with probabilistic

edges incorporating their affinities, as Figure 4

illustrates.

Two types of edges are considered over the

graph: the inner edges x connecting the spatial

neighboring superpixels within the target (red

wavy lines in Figure 4), and the outer edges n
connecting the superpixels of the target to

those of its references (straight green lines in

Figure 4). Each superpixel of the target connects

with the q most similar superpixels of each

reference.

We define � ln PðIt ;Yt jD; a�Þ in Equation 14

on the graphical model as

(a)

(b)

Figure 2. Illustration of semantic-aware sparse

coding. (a) A star denotes the target image, and

triangles denote each auxiliary image. The dark

triangles represent the images selected as the

references. (b) The grey squares represent various

semantic labels that are introduced as constraints

during the optimization. By the end of the process,

the algorithm has selected a subset of auxiliary

images as references for the target image.
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� ln PðIt ;Yt jD; a�Þ ¼
Xnt

i¼1

wðyt
i ja�;DÞ

þ
X

ðxt
i
;xt

j
Þ2x

/ðyt
i ; y

t
j ; x

t
i ; x

t
j Þ
; ð16Þ

where x is the inner edges. The optimization of

Equation 14 becomes a tractable graphical

model optimization problem.

To derive the potentials of assigning labels to

one vertex of the target wðyt
i ja�;DÞ in Equation

16, we propose the semantic- based superpixel

density prior, which is defined as

wðyt
i ja�;DÞ ¼

XN
k¼1

a�kqðxt
i ; IkÞdðyt

i 2 LkÞ; ð17Þ

where qðxt
i ; IkÞ denotes the density of superpixel

xt
i in image Ik, which is defined as

qðxt
i ; IkÞ ¼

1

Nn

X
ðxt

i
;xk

j
Þ2n

ð
xt

i

� �
�
ð

xk
j

����
����

2

; ð18Þ

where n denotes outer edges, Nn is the number

of outer edges, and f ð�Þ is the feature vector of a

superpixel. This density measures the similarity

between the superpixel xt
i in the target and its

neighboring superpixels connected by outer

edges in the reference image Ik, so it implicitly

exhibits the probability of xt
i sharing the same

labels with its reference Ik.

The pairwise potentials—that is, /ðyt
i ; y

t
j ; x

t
i ; x

t
j Þ

in Equation 16—encourages smoothness between

neighboring superpixels within the target:

/ðyt
i ; y

t
j ; x

t
i ; x

t
j Þ ¼ f ðxt

i Þ � f ðxt
j Þ

���
���

2

dðyt
i 6¼ yt

j Þ; ð19Þ

where d(�) is the indicator function.

outer edgeinner edge

Figure 3. Algorithm 1: Adaptive reference retrieval. To solve the similarity term with semantic consistency, the term was fixed using

the proximal gradient method.

Figure 4. Illustration

of the combinatorial

graphical model. The

dark circles represent

the superpixels; the

four dark circles over

the square region are

extracted from the

target image while the

others are extracted

from references that

are denoted by

dashed regions.
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Thus the approximate solutions of Equation

16 can be found using alpha-beta swap algo-

rithms of graph cuts. The sketch of our frame-

work is shown in Algorithm 2 (see Figure 5).

Image Annotation

We propose a simple method to transfer n labels

to a test image It from the query’s K nearest

neighbors in the training set. For a given test

image It , we determine the sparse reconstruction

coefficient vector a by solving the problem in

Equation 15, where we set k ¼ 0, and set the

other parameters ðq; p;b; and cÞ as the same as

described later under “Implementation Details.”

We denote the optimal sparse coefficient solution

as a
_

and its top K largest value as p̂ 2 RK�1 corre-

sponding to image label indicator li 2 RC;

i ¼ 1;2; :::;K. We can then obtain the label vector

probability of the test image as

zt ¼
XK

i¼1

p̂ili; ð20Þ

where p̂i is the ith component of vector p̂. The

labels corresponding to the top few largest val-

ues in zt are considered as the final annotations

of the test image.

We compared two annotation methods:

� weighted: weighting the annotation with the

sparse reconstruction coefficient p̂i, and

� unweighted: setting p̂i ¼ 1; i ¼ 1; � � � ;K in

manually,

and found that the sparse coefficient a is

extremely useful for image annotation.

We also compared our proposed method

with classical image annotation approaches

and found that our propagation process is

robust and less sensitive to image noise owing

to the semantic constraints in the image

retrieval step. We also found that we can

retrieve images by jointly matching appearan-

ces as well as semantics. Finally, the proposed

algorithm is scalable to a large scale.

Experiments
We conducted extensive experiments to vali-

date the performance of our method. We also

conducted an empirical study on the effective-

ness of the proposed EM iterations.

Implementation Details

Five parameters are required to be set in our

framework. We set q ¼ 20 to construct the

Figure 5. Algorithm 2 presents the overall procedure of our framework. Our framework is an iterative solution that uses adaptive

reference retrieval and aggregated label assignments.
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q-nearest graph, and set p ¼ 10 to retrieve 10

images as reference for each test image. In

the experiment, we also set k ¼ 1 empirically.

The other parameters b and c are introduced

later.

Dataset

To verify the effectiveness of our method, we

compared it with state-of-the-art methods by

conducting experiments on two challenging

datasets, MSRC1 and VOC 2007.14 We used the

standard average per-class measure (average

accuracy) to evaluate performance. For each test

image, we used the training set as the auxiliary

data for our framework.

Experiment Series 1: Image Semantic

Segmentation

Here, we discuss our analysis of the parameters

and the tests we performed on the MSRC and

VOC 2007 datasets.

Parameter analysis. Specifically, we focused on

the effects of b and c, which control the influ-

ence of the appearance term (also called the

sparse term) and the semantic constraint term,

respectively, in Equation 15. These two parame-

ters are crucial to our results. The range of b and

c were both set to {0, 0.05, 0.10, 0.15, 0.20, 0.25,

0.30}. We used the semantic segmentation

results (see Figure 6) to tune parameters.

(a)

(b)

Figure 6. Semantic segmentation experiments using the MSRC dataset: (a) some final results and (b) some intermediate results. The

original image and its ground truth are shown on the left, and the semantic segmentation result using our method is on the right.
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We used the MSRC dataset to fine-tune the

parameters. The results of changing the param-

eter values are presented in Figure 7, from

which we can observe the following

conclusions:

� When b and c increase from small values to

large values, performance apparently

varies. This shows that the sparse term and

semantic constraint term greatly impact

performance.

� The mean average precision reached the

peak points (0.71) when b ¼ 0:1 and

c ¼ 0:2 on MSRC. These values lie in the

middle range, showing that precision does

not increase monotonically when b and c
increase. In the following experiments, we

adopt the best parameter settings on all

datasets.

Experiments on the MSRC dataset. Given

this insight, we compared the proposed

method with two state-of-the-art algorithms,

MIM11 and the method developed by Ke Zhang

and his colleagues.5

Table 1 shows that, on average, our algo-

rithm outperformed the others. Benefitting

from the semantic constraints incorporated in

our approach, we achieved significant improve-

ments for certain difficult classes—for example,

Chair and Cat. Figure 6a presents several visual-

ized results with the corresponding ground-

truths, and, because of space limitations here,

more semantic segmentation results are avail-

able in supplementary material (see http://

vision.sysu.edu.cn/projects/scene parsing).

Experiments on the VOC 2007 dataset. Few

performance results using the VOC 2007 data-

set have been reported, due to the 20 extremely

challenging categories it contains. We com-

pared our method with the Weakly Supervised

STF8 (Semantic Texton Forests) by running the

code provided by the author. We also compared

our method with that of Ke Zhang and his col-

leagues.5 Results are reported in Table 2, with

our method outperforming the others by 3

percent.5

It takes about 8 seconds per image with an

unoptimized Matlab implementation for

semantic segmentation on a 64-bit system with

a Core-4 3.6 GHz CPU and 4 GBytes of memory

(1 second to extract features, 5 seconds to do

sparse coding with semantic constraints, and 2

seconds for optimization by GraphCuts).

Moreover, we validated the effectiveness of

the proposed EM iterations from two aspects.

First, we plotted the energy Ea in each iteration,

which is the energy of semantic-aware sparse

coding defined in Equation 15 (see Figure 8).

Figure 6b shows some intermediate results with

the EM iterations, empirically supporting the

effectiveness of the iterations. (Generally, the

iteration is complete after two or three steps

because the average number of labels for each

image is 3 in both the MSRC and the VOC 2007

datasets.)

Experiment Series 2: Image Annotation on a

Test Image

Here, we analyze our method and compare it

with others.

Benchmarks and metrics. We implemented

three popular algorithms, MAHR (Multi-Label

Hypothesis Reuse),15 MLkNN (Multi-Label k

Nearest Neighbors),16 and ML-LOC (Multi-

Label Label Correlations Locally),17 as bench-

mark baselines for the image annotation task.

We evaluated and compared these algorithms

over two datasets, MSRC and VOC 2007, each

of which was randomly and evenly split into

training and testing subsets. We measured

image annotation performance by mean aver-

age precision, which is widely used for evaluat-

ing the performances of ranking related tasks.
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Figure 7. Parameter tuning results of parameters b and c for the MSRC

dataset.
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MLkNN and ML-LOC are state-of-the-art

multilabel annotation algorithms in the litera-

ture. They have been reported to outperform

most other multilabel annotating algorithms,

such as RankSVM.18

Results. The weighted method outperformed

the unweighted one, as Table 3 shows. We

found that the sparse coefficient a is useful for

improving image annotation performance and

for image semantic segmentation, as we did the

image retrieval by jointly matching their

appearance as well as their semantics. The

larger ai is, the greater semantic similarity there

is between the test image and image Ii (that is,

sharing the more common labels).

Table 1. Accuracy (%) of our method for each category on the MSRC dataset, in comparison with other algorithms. The most

accurate result in each category appears in bold.

Method B
u

il
d

in
g

G
ra

ss

T
re

e

C
o

w

S
h

e
e
p

S
k
y

A
ir

p
la

n
e

W
a
te

r

Fa
ce

C
a
r

B
ic

y
cl

e

Fl
o

w
e
r

S
ig

n

B
ir

d

B
o

o
k

C
h

a
ir

R
o

a
d

C
a
t

D
o

g

B
o

d
y

B
o

a
t

A
v
e
ra

g
e
�

Multi-Image

Model (MIM)11

12 83 70 81 93 84 91 55 97 87 92 82 69 51 61 59 66 53 44 9 58 67

The method

developed by

Ke Zhang and

his colleagues 5

63 93 92 62 75 78 79 64 95 79 93 62 76 32 95 48 83 63 38 68 15 69

Our method 45 73 65 79 81 66 71 87 75 84 73 73 94 51 89 85 42 83 81 66 32 71

*Average accuracy over all categories.

Table 2. Accuracy (%) of our method for each category on the VOC 2007 dataset, in comparison with other algorithms. The most

accurate result in each category appears in bold.

Method A
ir
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e
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t
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le

B
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s

C
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C
h

a
ir

C
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w

D
in
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le

D
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e
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S
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T
ra
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T
V
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n
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A
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e
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g
e
�

Weakly

Supervised STF8

14 8 11 0 17 46 5 13 4 0 30 29 12 18 40 6 17 17 14 9 16

The method

developed by

Ke Zhang and

his colleagues 5

48 20 26 25 3 7 23 13 38 19 15 39 17 18 25 47 9 41 17 33 24

Our method 68 14 12 16 4 27 18 12 28 16 7 46 36 11 78 18 29 11 47 41 27

*Average accuracy over all categories.

0.68

0.66

0.64

0.62

0.60
1 32

Figure 8. Illustration of the decreasing energy Ea with regard to time. The x-

axis indicates the number of iterations, and the y-axis shows the energy Ea of

Equation 15. The results were randomly selected from the test set.
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The weighted method we have proposed

outperforms the three classical methods listed

in Table 3. Some example image annotation

results from the MSRC and VOC 2007 dataset

are shown in Figure 9. In the figure, we display

only the top two or three labels for VOC 2007

and MSRC, since the average number of labels

for each image in VOC 2007 and MSRC is two

and three, respectively.

C ompared with traditional supervised

learning methods, our framework is more

flexible for real applications such as online

image retrieval. In future work, we plan to

improve our algorithm’s efficiency by utilizing

parallel implementation and validate our

approach on larger-scale datasets. MM
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