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Abstract— In this paper, an autonomous vision-based track-
ing system is presented to track a maneuvering target for a
rotorcraft unmanned aerial vehicle (UAV) with an onboard
gimbal camera. To handle target occlusions or loss for real-time
tracking, a robust and computationally efficient visual tracking
scheme is considered using the Kernelized Correlation Filter
(KCF) tracker and the redetection algorithm. The states of the
target are estimated from the visual information. Moreover,
feedback control laws of the gimbal and the UAV using
the estimated states are proposed for the UAV to track the
moving target autonomously. The algorithms are implemented
on an onboard TK1 computer, and extensive outdoor flight
experiments have been performed. Experimental results show
that the proposed computationally efficient visual tracking
scenario can stably track a maneuvering target and is robust
to target occlusions and loss.

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have attracted
increasing attention from both industrial and academic com-
munities [1]. Vertical takeoff and landing (VTOL) unmanned
rotorcrafts equipped with visual sensors have broad applica-
tions including environmental monitoring, rescue and search,
surveillance, traffic control, etc [2][3][4].

UAVs that can autonomously track maneuvering targets
are demanding in a wide range of applications. Many re-
search efforts have been devoted to autonomous tracking
for UAVs. However, most of current research work focuses
either on visual tracking schemes or on control laws of
UAVs [5][6]. Although various visual tracking algorithms
with high performance have been developed [5], most of
the algorithms are computationally complicated and not
suitable for real-time tracking of UAVs with limited onboard
computation capacities. The KCF tracker [7] is applied in
our autonomous vision-based tracking system for its com-
putational efficiency and impressive performance. In [8][9],
visual tracking scenarios of autonomous helicopters have
been studied via simulations. Several visual algorithms to
track the predefined targets have been implemented on UAVs
[10], where simple trackers such as the color and shape
filtering are used for specific target tracking [11][12][13].
In [14][15], the OpenTLD [14] and the clustering of static
adaptive correspondences (CMT) trackers robust to tracking
deformable targets are used for AR Drones to track ground
targets autonomously, where the output of the trackers is
used for the PD controller and the state estimation of the
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Fig. 1. An instant of our flight experiments. The upper left corner is an
image of the onboard camera, where the green rectangle is the bounding
box indicating the current state of the target.

moving target is not considered. To track a maneuvering
target precisely and stably, an efficient state estimator is
desirable to estimate the real-time states of the moving target.
The gimbal camera is beneficial to alleviate video jiggle and
hence improves the stability of the trackers [10]. A visual
tracking system using a gimbal camera was proposed in [16],
which provides a robust implementation on a helicopter to
track predefined targets.

There are some challenging problems for maneuvering
target tracking of UAVs: 1) A visual tracker robust to target
occlusions and loss is necessary. 2) Accurate state estimation
of the target and closed-loop control laws of the gimbal and
the UAV should be developed to stably track the maneuvering
target. 3) Due to the limited computational capacities, highly
computational efficiency of visual tracking, state estimation
as well as control algorithms are desirable for onboard
implementation to perform real-time tracking.

These challenging problems motivate us to systematically
investigate vision-based tracking of UAVs considering both
visual trackers and the control laws. Fig. 1 illustrates our
tracking system, where a quadcopter is tracking a person
autonomously using an onboard gimbal camera. The con-
tributions of the paper are summarized as follow: 1) In the
case of target occlusions or loss, the status of the target, i.e.
loss or not, is firstly detected based on the KCF tracker, and
a computationally efficient redetection method is presented.
With this scheme, the UAV can track the target again
when it re-appears. 2) An Interacting Multi-Model Extended
Kalman Filtering (IMM-EKF) based target state estimator is
presented to estimate states of the maneuvering target, and
a nonlinear feedback control law is presented to stably track
moving targets. 3) A computationally efficient framework
implemented on onboard TK1 computer is presented for



ground target tracking in unstructured environments.
The rest of the paper is organized as follows: In Section

II, we introduce the architecture of the vision-based tracking
system. In Section III, we present the KCF tracker, target loss
detection and redetection schemes. Section IV addresses the
target state estimation algorithms. The control of the gimbal
and the UAV is presented in Section V. Experimental results
are presented in Section VI. Concluding remarks and future
work are discussed in Section VII.

II. SYSTEM CONFIGURATION
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Fig. 2. Architecture of the vision-based tracking system.

A DJI Matrice100 is used as the UAV platform, which is
equipped with an onboard TK1 computer and a monocular
RGB gimbal camera. An overview of the system configu-
ration is shown in Fig. 2. The gimbal camera mounted on
the UAV platform provides the video stream and internal
angles for the onboard computer. The visual tracking al-
gorithm obtains position of the target on the image plane,
which is feedback to the gimbal controller. In addition,
the states of the target are estimated by fusing the inertia
measurement unit (IMU) data of the UAV platform and the
gimbal. A switching tracking strategy is performed based on
the estimated states. The high-level controller computes the
desired velocities of the UAV, and the low-level controller
controls the attitude correspondingly. The frequencies of the
video stream and the control signal are 30Hz and 10Hz,
respectively.

III. A VISUAL TRACKING SCHEME

In this section, a computationally efficient visual tracking
scheme robust to target occlusions and loss is presented,
which consists of the KCF tracker, the target loss detection
and the redetection methods. Fig. 3 shows the configuration
of the visual tracking scheme. Firstly, the KCF tracker
estimates the state of the target. The status of the target, i.e.
loss or not, is then detected based on the regression function
of the KCF tracker. Finally, a redetection method is presented
to track the target when it come out off ccullsions.
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Fig. 3. Architecture of the vision system.

A. KCF Tracker

KCF develops from Circulant Structure of Tracking-by-
detection with Kernels (CSK) [17], applying online learning
methods to solve tracking problems. More precisely, it is a
machine learning method without any prior knowledge. At
the first frame, the object of interested (OOI) region is chosen
manually and the KCF tracker transforms the region into a
multi-channel HOG feature descriptor. A regression function
f (z) of OOI region z is initialized by Ridge Regression with
HOG descriptor. For the new frame, f (z) is evaluated on
several regions around the last region of OOI. Finally, the
region which has max response of evaluation is considered
as the output and applied to update f (z).

To accelerate the matrix computation of Ridge Regression,
KCF transforms each channel of HOG feature descriptor
into a circulant matrix by cyclic shifting. It is known that
circulant matrix can be made diagonal by Discrete Fourier
Transform(DFT) [18]. Thus matrix computation, especially
matrix inversion, can be efficiently processed in fourier
domain. Furthermore, a kernel function, which maps the
regression function f (z) into non-linear space, is applied in
the KCF tracker to promote the performance of tracking.
These solutions are introduced by CSK, and optimized in
KCF. In this way, the process speed and mean precision of
KCF have reached 172FPS and 73.2% respectively. More
details of the KCF tracking algorithm may refer to [7].

B. Target Loss Detection and Redetection

Various visual trackers have been proposed to tackle il-
lumination variation, scale variation and occlusion problems
[19]. However, most of current algorithms can not detect
the target in the presence of full occlusions, which are often
encountered in tracking mission of UAVs. In this paper, a
simple and efficient redetection method is proposed so that
the target can be estimated when it appears again.

The status of the target, i.e. loss or not, is estimated by
the target loss detection based on the KCF tracker. The
max response of regression function fmax(z), denotes the
relevance between the OOI region and the target. When the
value of fmax(z) is less than a threshold, it implies that the
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Fig. 4. A moving object detector based on the Frame-Difference method.
(a) the original frame; (b) the difference frame with noise; (c) the noise
is removed and the foreground is retained using the Gaussian blur; (d) the
bounding boxes constructed by the moving object detector.

target may be lost. The redetection works when fmax(z) is
less than a threshold. According to flight experiments, the
values of fmax(z) vary in the range of (0, 0.5) in outdoor
environments. The threshold is experimentally set as 0.17.

The UAV hovers and starts to search the target when
the target loss is detected. Some classical algorithms [14]
scan all pixels in the new frame to search the target, and
the computational complexity is high. In general, the target
is moving when it re-appears in the view of the camera.
Hence, the target can be estimated by detecting the moving
foreground, instead of searching all pixels in the new frame.

In the paper, a moving object detector based on the Frame-
Difference (FD) method [20] is applied, as shown in Fig.
4. In specific, the detector subtracts the last frame from
the current frame to obtain the difference image. Although
the FD method is computationally efficient, it is sensitive
to noise, as shown in Fig. 4(b). The Gaussian blur is
hence applied to remove the noise in the difference image.
Consequently, the detector constructs the bounding boxes
based on the center of the foreground, as shown in Fig. 4(d).
It is noted that the size of these boxes is the same as the initial
OOI region. Finally, the regions contained by these bounding
boxes are evaluated by the regression function. The region,
which has the maximum value of fmax(z) and is greater than
the threshold, is selected as the position of the target in the
new frame.

IV. GROUND MANEUVERING TARGET STATE
ESTIMATION

The states of the ground maneuvering target are estimated
based on the extended Kalman Filtering.

A. Distance Estimation Method

As shown in Fig. 5, the relative distance between the UAV
and the target is estimated.

The distance between the camera and the UAV center is
assumed to be neglectable. Let FB denote the body frame of
UAV with axes Xb, Yb and Zb, and FC denotes the camera’s
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Fig. 5. The relationships between the UAV, the camera and the target.

reference frame with axis Xc, Yc and Zc. The relationships
between the ground target T and the UAV can be shown in
Fig. 5. Thus, the transformation of a vector from FC to FB
can be represented by a rotation matrix RBC. The target is
considered as a point T on the ground and is represented
by a position vector pB = (xt ,yt ,zt)

T in body frame FB of
UAV. According to standard pinhole imaging model, pB can
be written as:

pB ∼ RBCK−1(u,v,1)T (1)

where the homogenous coordinate (u,v,1)T indicates the
position of the target on the image plane, and K is the
intrinsic matrix of the camera. Hence, the relative distance
between the target and UAV can be calculated by

d =
h
zt

√
x2

t + y2
t (2)

where h is the altitude of the UAV.

B. Extended Kalman Filtering

The estimated relative position between UAV and target
given by Eq. 2 is generally inaccurate due to observation
noise. To track the maneuvering target stably and precisely,
the velocity and acceleration of the target need to be es-
timated using appropriate motion models. A single motion
model is difficult to accurately describe random movements
of the maneuvering target, the IMM-EKF [21] algorithm is
presented to estimate its states by fusing the constant velocity
model and the current statistical model. In particular, the
constant velocity model can be written in a discrete form:

X(k+1) =
[

1 t
0 1

]
X(k)+

[
t2
/

2
t

]
w(k) , (3)

where t is the sampling interval, X is state vector, and w is
a discrete white process noise.

The current statistical model in discrete form is given as:

X(k+1) =Φ(k)X(k)+U(k) ā(k)+w(k) , (4)

where Φ(k) is the state matrix, U(k) is the control matrix,
ā(k) is the mean of current maneuvering acceleration, and
w(k) is a discrete white process noise. It is noted that the
employed model is a Singer model with an adaptive mean
[22], which does not require any prior model and can handle
targets with rapidly changing speeds.



V. CONTROLLER

In this section, feedback control laws are presented for
both the gimbal and the UAV with the visual feedback
information obtained in Section III and IV. The gimbal and
the UAV are controlled simultaneously to perform stable
tracking.

A. Gimbal Controller

A closed-loop controller is developed for controlling the
pitch angle and yaw angle of gimbal to keep the target in
the view of the camera. As the video stream is captured in a
frequency of 30Hz, we assume that the targets acceleration
would not change too much within the time interval. The
Constant Accelerate(CA) model [22] is applied to forecast
the target’s state in the 2D image coordinate. Let u(k) denote
the targets position along the x axis on the image coordinates.
The position u(k+1) at the time steps k+1 can be estimated
by the CA model as: u(k+1)

u̇(k+1)
ü(k+1)

=

 1 ∆t 1
2 ∆t2

0 1 ∆t
0 0 1

 u(k)
u̇(k)
ü(k)

 (5)

where ∆t is the time increment between time step k and k+1.
u̇(k) and ü(k) are obtained through computing the difference
of 4 recent frames:{

u̇(k) = 1
4∆t (u(k−1)−u(k−3)+u(k−2)−u(k−4))

ü(k) = 1
4∆t2 (u(k−1)−u(k−3)−u(k−2)+u(k−4))

(6)
Similarly, the target’s position v(k) along y axis on the

image coordinates can be estimated. A PD controller is used
for the gimbal system to compute its angular velocities in
the 2D image plane, i.e, eα(k) = u(k+1)−u0 and eβ (k) =
v(k+1)−v0, where (uo,vo) is the center point of the image.

B. Switchable Tracking Strategy

To perform smooth and stable tracking of a maneu-
vering target, a switchable tracking strategy consisting of
the observing mode and the following mode is presented
considering the relative distance d. Switching between the
two modes is determined by the thresholds dmin and dmax.
The thresholds are calculated by a certain range of the pitch
angle [θ1,θ2] and the real-time altitude of the UAV:{

dmax = h · tanθ2
dmin = h · tanθ1

(7)

We use θ1 = 20◦ and θ2 = 70◦ for the thresholds, because
witnin this range our relative distance estimator has better
results which will be analyzied in Section VI-C.

1) Observing Mode: In the observing mode, the UAV
only adjusts its yaw angle to the target and there is no hori-
zontal displacement. When the relative distance d satisfies
dmin ≤ d ≤ dmax, the observing mode works. In addition,
when the targets acceleration a estimated from the IMM-
EKF, the UAVs maximum acceleration amax and the current
velocity vp of the UAV satisfy the following conditions: |a|>
|amax| and a ·vp < 0, which implies that the target’s relative
distance tends to decrease to the condition of d ≤ dmax. The

UAV rotates to track the ground target while maintaining a
certain height and position. A PID controller is utilized to
control the UAVs yaw angle.

2) Following Mode: In the following mode, the moving
of UAV and the rotation of the gimbal are controlled simul-
taneously to maintain the yaw angle of the gimbal in the
UAVs body frame close to zero. When the relative distance
d ≤ dmin and d ≥ dmax, the following mode works.

In the following mode, the nonlinear velocity controller of
the UAV is proposed based on the Lyapunov theory. Without
loss of generality, we assume that the UAV maintains a
constant altitude during the tracking process. The target
tracking flight control is hence simplified to a planar control
problem. The relationship between the UAV and the target
in the XY plane will be considered as shown in Fig. 6.
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Fig. 6. Relationship between the aircraft and the target in the UAV’s body
frame XbOYb.

Let d and σd be the target’s relative position and relative
yaw angle estimated from the IMM-EKF. In the following
mode, we expect that the UAV would maintains a certain
distance to the target. Therefore, we define the distance error
and angular error as follows:{

εd = d−E(d)
εσ = σd,

(8)

where
E(d) =

{
dmin d ≤ dmin
dmax d > dmax

. (9)

It is noted that the relative position and d and relative
yaw angle σd can also be formulated as d =

√
xd

2 + yd
2 and

σd = arctan(yd/xd), then the dynamic error of distance ε̇d
and dynamic error of yaw angle ε̇σ can be written as:{

ε̇d = ḋ =−vx cosεσ − vy sinεσ + vd cos(σt−σd)

ε̇σ = σ̇d =
sinεσ

d vx− cosεσ

d vy +
sin(σt−σd)

d vd
(10)

where vx and vy are velocities of the UAV in the body frame,
vt and σt are velocity and its yaw angle of the target estimated
from the IMM-EKF with respect to the body frame of the
UAV.

We seek to control the velocity vx, vy and angular velocity
ω of the UAV to ensure the distance error εd and angular
error εσ converge to zero. The control law of the UAV is



designed as: vx = k1εd cosεσ + vd cos(σt−σd)cosεσ

vy = k1εd sinεσ + vd cos(σ t−σd)sinεσ

ω = k2εσ + vd
d sin(σt−σd)

(11)

The stability of the feedback control system can be proved
using Lyapunovs second theory. The Lyapunov function
candidate can be formulated as:

V1 =
1
2
(
εd

2 + εσ
2) (12)

Note that, V1 ≥ 0 and V1 = 0 if and only if [ εd εσ ]T =
[ 0 0 ]T. The time derivative of V1 can be written as:

V̇1 = εd ε̇d + εσ ε̇σ

= vpx

(
−εd cosεσ + εσ

sinεσ

d

)
+vpy

(
−εd sinεσ − εσ

cosεσ

d

)
+vdεd cos(σv−σd)+ vdεσ

sin(σv−σd)
d

(13)

By substituting vx,vy and ω into (13), we simplify the time
derivative of V1 as:

V̇1 =−k1εd
2− k2εσ

2. (14)

Equation (14) ensures that V̇1 ≤ 0, while k1,k2 ≥ 0. And
V̇1 = 0, if and only if [ εd εσ ]T = [ 0 0 ]T. Thus, the
control system is asymptotically stable with the designed
control law.

VI. EXPERIMENTAL VALIDATION

To verify the vision-based ground target tracking system,
extensive flight experiments were performed in outdoor en-
vironments. The performance of the visual tracking scheme
with the redetection method is firstly evaluated on several
videos collected using the UAV platform. The IMM-EKF
based state estimation of the maneuvering person is then
experimentally verified and analyzed. Finally, experimental
results of the visual tracking system in real-world are pre-
sented. The computation is fully implemented on the onboard
TK1 computer in the experiments.

A. Experimental Setup
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Fig. 7. The experimental test-bed: DJI Matrice 100 UAV with onboard
computer and monocular RGB gimbal camera system.

A DJI Matrice 100 UAV is used as an experimental test-
bed, as shown in Fig. 7. Onboard equipments include a
DJI Manifold embedded Linux computer (NVIDIA Tegra

TK1 processor consisting of a Kepler GPU with 192 CUDA
cores, a NVIDIA 4-Plus-1 quad-core A15 CPU of 1.5 GHz,
2 GB RAM and a WiFi interface), a monocular Zenmuse
X3 gimbal camera, a GPS receiver, an Inertial Measurement
Unit (IMU), a barometer, and one downward-pointing sensor
module of a DJI Guidance visual sensing system.

B. Visual Tracking Test

The performance of the visual tracking scheme is eval-
uated on several videos collected using the UAV. Three
cases are considered, i.e., no occlusion, partial occlusion and
full occlusion. Full occlusion for a long term occurs in all
videos, and the target losses for at least 3s (about 90 frames).
The traditional KCF fails to track the targets correctly
in the case of full occlusion. The visual tracking scheme
consisting of the KCF tracker and the redetection method is
evaluated. For videos of resolution, the KCF tracker and the
redetection method achieve 30FPS and 10FPS, respectively.
The accuracy of the visual tracking scheme is measured by
Paccuracy =

Ntd
Nt

. The experimental results of the visual tracking
scheme are summarized in Table I. Table I indicates that
the proposed visual tracking scheme can effectively track
and redetect the target. The accuracy decreases when the
background is complex or more variations are introduced.

Test No. Ns Nt Ntd Situation Accuracy

1 660 332 312 SB 94.87%
2 930 872 838 SB 96.10%
3 1169 1019 964 SB 94.60%
4 1349 1222 1033 CB 84.53%
5 2212 1881 1609 CB 86.07%
6 840 601 459 IV,CB 76.37%
7 1049 863 712 IV,CB 82.50%

TABLE I: Visual tracking results while the target with occlusion in different
scenarios. Ns is the total number of frames in each test, Nt is the number of
frames containing the target, Ntd is the number of frames where the target
is correctly tracked and redetected. SB: Simple Background; CB: Complex
Background; IV: Illumination Variation.

C. Evaluation of the Target State Estimation Test

Experiments were conducted to evaluate the accuracy of
the target state estimation, where the measured values are
used as the ground truth. The relative error is calculated
by δd = ∆d

dtrue
= dest−dtrue

dtrue
, where dest is the relative position

estimated by the IMM-EKF based on estimator, and dtrue is
the measured relative position. To examine the effects of the
pitch and the yaw angles of the gimbal on the state estimation
precision, the relative position between the target and the
UAV is fixed. Fig. 8 shows the relative distance estimation
errors δd with respect to the pitch and the yaw angles of
the gimbal, where the greatest/smallest errors occur in the
red/blue area.

Fig. 8 indicates that the accuracy of the target state
estimation decreases along with the increasing of the pitch
angles. The following reasons may lead to the decreasing
estimation accuracy: 1) lens distortion; 2) deviation of cal-
culating actual distance in image edge; 3) inherent noise
of the gimbal camera. In general, the results show that the



Fig. 8. The pseudocolor plot of relative distance estimation errors (%).
The test is under a certain range of the gimbal’s angle: −60◦ to −60◦ of
yaw angle and 20◦ to 70◦ of pitch angle. The distribution of the error can
be seen from the legend on the right side of the figure

target state estimation achieves acceptable performance in a
certain range between 3% and 8% of the gimbals attitude
angles. In addition, the yaw angle between −20◦ and 20◦

and pitch angle between 30◦ and 55◦ achieves smallest
estimated errors. In summary, the yaw and the pitch angle of
gimbal should be controlled within a certain range to provide
acceptable localization accuracy.

D. Target Following Control Simulations

In this subsection, the simulation is presented to compare
the performance between the proposed nonlinear control law
and the PID controller.

In the simulations, the UAV is represented by a rigid body-
mass point and the parameters of the UAV were set as the
following: the angular velocity of the yaw angle is 90 deg/s,
and the max velocity of the UAV is 6m/s. The trajectory
of target is generated by a set of random way-points with
varying velocities and accelerations. The switchable tracking
strategy is considered both in proposed nonlinear controller
and the PID control law. The simulation results of the target
tracking control are shown in Fig.9.
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Fig. 9. The UAV tracks a maneuvering target with random movements.
(a)trajectories; (b)velocities.

Fig.9(a) shows that the switchable tracking strategy can
steadily track the target while moves smoothly. It is noted
that the proposed nonlinear controller achieves similar per-
formance compared to the PID controller under the same
switchable tracking strategy. Fig. 9(b) illustrates that the
computed velocity of the nonlinear controller is smoother

than the PID controller, that implies unnecessary movements
of the UAV can be reduced.

One of critical concerns of the control system is the adjust-
ment of the controller’s parameters. There are nine parame-
ters in the PID algorithm, and it is quite difficult to adjust the
parameters to achieve satisfactory control performance. In
contrast, there are only two parameters to be adjusted in the
proposed nonlinear controller, the two parameters can be set
in a relatively wide range. The nonlinear controller is hence
more conveniently implemented than the PID controller in
real-world applications.

E. Target Tracking Flight Test

To systematically investigate the performance of the pro-
posed vision-based tracking scenario, extensive flight ex-
periments were performed for autonomous target tracking
using fully onboard computation. An un-predefined person
is selected manually as the target. The UAV tracks the
maneuvering person in unstructured outdoor environments.
The flying altitude of the UAV is set to a height of 5 meters.
The trajectory of the target person is not pre-set.
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Fig. 10. (a) Trajectories of the UAV(red) and the target(blue). Their position
information is derived from the GNSS; (b)UAV’s of the x direction and y
direction velocities in the body coordinates

The flight results are shown in Fig. 10, where the total
distance of the tracking process is 330 meters with about 3
minutes. The trajectories of the target person and the UAV
are obtained from the mobile phone’s GPS data and the
UAV’s onboard GPS data, respectively. Fig. 10(a) shows that
the UAV can maintain a certain distance to the target around
5 meters, and can successfully track the maneuvering target
person.

It is noted from Fig. 11(a) that the trajectory of the
UAV is more stable than that of the ground target. It takes
the advantages of the proposed switchable target tracking
strategy, where the observation mode works when the target
person frequently changes its direction. In this case, the
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Fig. 11. (a) Partial enlarged views of box A in Fig. 10(a), showing the
experimental results of the switchable tracking strategy of UAVs when the
target frequently changes its direction. (b)Partial enlarged views of box A
in Fig. 10(b)

UAV rotates to track the target person without horizontal
displacement, which can be shown from the Fig. 11(b). The
experimental results illustrate the UAV can stably track the
maneuvering target person using the proposed vision-based
tracking scenario.

A demo video of our target tracking UAV system in
outdoor environments can be seen in https://youtu.
be/7dc4etU0IHs, working entirely onboard without prior
knowledge of the target.

VII. CONCLUSIONS

In this paper, the design and implementation of an au-
tonomous vision-based ground target tracking system for
rotorcraft UAV are presented. A visual tracking scheme
integrating the KCF tracker and the redetection method was
designed, which is robust to target occlusion and loss. The
IMM-EKF based estimator is presented to estimate the states
of the maneuvering target. The gimbal and the UAV are
controlled simultaneously to perform stable tracking. The
gimbal camera is controlled to keep the target in the center of
the frame. Moreover, a switchable tracking strategy including
the following mode and the observing mode is proposed for
UAVs, and a Lyapunov theory-based nonlinear controller was
designed. Extensive real-time flight experiments have been
executed in outdoor environments, where the computation is
fully implemented on the onboard computer. Experimental
results illustrate that the proposed real-time vision-based
tracking system achieves stable and robust tracking perfor-
mance. Future research will consider autonomous vision-
based obstacle avoidance and object grasping of UAVs.
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