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Abstract

Generative Adversarial Networks (GANs) have recently achieved significant im-
provement on paired/unpaired image-to-image translation, such as photo→ sketch
and artist painting style transfer. However, existing models can only be capable of
transferring the low-level information (e.g. color or texture changes), but fail to
edit high-level semantic meanings (e.g., geometric structure or content) of objects.
On the other hand, while some researches can synthesize compelling real-world
images given a class label or caption, they cannot condition on arbitrary shapes
or structures, which largely limits their application scenarios and interpretive ca-
pability of model results. In this work, we focus on a more challenging seman-
tic manipulation task, which aims to modify the semantic meaning of an object
while preserving its own characteristics (e.g. viewpoints and shapes), such as
cow→sheep, motor→ bicycle, cat→dog. To tackle such large semantic changes,
we introduce a contrasting GAN (contrast-GAN) with a novel adversarial con-
trasting objective. Instead of directly making the synthesized samples close to
target data as previous GANs did, our adversarial contrasting objective optimizes
over the distance comparisons between samples, that is, enforcing the manipu-
lated data be semantically closer to the real data with target category than the in-
put data. Equipped with the new contrasting objective, a novel mask-conditional
contrast-GAN architecture is proposed to enable disentangle image background
with object semantic changes. Experiments on several semantic manipulation
tasks on ImageNet and MSCOCO dataset show considerable performance gain
by our contrast-GAN over other conditional GANs. Quantitative results further
demonstrate the superiority of our model on generating manipulated results with
high visual fidelity and reasonable object semantics.

1 Introduction

Arbitrarily manipulating image content given either a target image, class or caption has recently
attracted a lot of research interests and would advance a wide range of applications, e.g. image
editing and unsupervised representation learning. Recent generative models [9, 26, 33, 11, 31, 13, 3]
have achieved great progresses on modifying low-level content, such as transferring color and texture
from a holistic view. However, these models often fail to perform large semantic changes (e.g. cat
→ dog, motor → bicycle) which are essential to bridge the gap between high-level concepts and
pixel-wise details.

On the other hand, compelling conditional image synthesis given a specific object category (e.g.
“bird”) [19, 30], a textural description (“a yellow bird with a black head”) [23], or locations [24]
has already been demonstrated using variants of Generative Adversarial Networks (GANs) [6, 22]
and Variational Autoencoders [7]. However, existing approaches have so far only used fixed and
simple conditioning variables such as a class or location that can be conveniently formatted as inputs,
but failed to control more complex variables (e.g. shapes and viewpoints). It largely limits the
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Dog -> Cat Cat -> dog Bicycle -> Motorcycle 

Motorcycle -> Bicycle Giraffe -> Horse Horse -> Giraffe

Sheep -> Cow Cow -> Sheep Horse -> Zebra

Figure 1: Some example semantic manipulation results by our model, which takes one image and a
desired object category (e.g. cat, dog) as inputs and then learns to automatically change the object
semantics by modifying their appearance or geometric structure. We show the original image (left)
and manipulated result (right) in each pair.

application potential of image generation tasks and interpretive capability of unsupervised generative
modeling.

In this paper we take a further step towards image semantic manipulation in the absence of any paired
training examples. It not only generalizes image-to-image translation research by enabling manip-
ulate high-level object semantics, but also pushes the boundary of controllable image synthesize
research by retaining intrinsic characteristics conveyed in the original image as much as possible.
Figure 1 shows some example semantic manipulation results by our model. It can be observed that
our model tends to perform very few shape, geometric or texture changes over the input image, and
yet successfully changes the semantic meaning of the objects into desired ones, such as cat→dog.

To tackle such large semantic changes, we propose a novel contrasting GAN (contrast-GAN) in
the spirit of learning by comparisons [27, 8]. Different from the objectives used in previous GANs
that often directly compare the target values with the network outputs, the proposed contrast-GAN
introduces an adversarial distance comparison objective for optimizing one conditional generator
and several semantic-aware discriminators. This contrasting objective enforces that the features of
the synthesized samples are much closer to those of real data with target semantic than the input
data. Furthermore, in order to disentangle image background from semantic parts, we propose a
novel mask-conditional contrast-GAN architecture for realizing the attentive semantic manipulation
on the whole image by conditioning on masks of object instances.

We demonstrate the promising semantic manipulation ability of the proposed contrast-GAN
qualtitatively and quantitatively on labels↔photos on Cityscape dataset [2] , apple↔orange and
horse↔zebra on Imagenet [4] and ten challenging semantic manipulation tasks (e.g. cat↔dog,
bicycle↔motorcycle) on MSCOCO dataset [15], as illustrated in Figure 1. We further quantita-
tively show its superiority compared to existing GAN models [17, 5, 28, 11, 33] on unpaired image-
to-image translation task and more challenging semantic manipulation tasks.

2 Related Work

Generative Adversarial Networks (GANs). There has been a large GAN-family methods since
the seminal work by Goodfellow et al. [6]. Impressive progresses have been achieved on a wide
variety of image generation [19, 24, 25], image editing [32], text generation [14] and conditional
image generation such as text2image [23], image inpainting [20], and image translation [9] tasks.
The key to GANs’ success is the variants of adversarial loss that forces the synthesized images to be
indistinguishable from real data distribution. To handle the well-known mode collapse issue of GAN
and make its training more stable, diverse training objectives have been developed, such as Earth
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Figure 2: An overview of the proposed contrast-GAN. cy and cx indicate the object categories (se-
mantics) of domain X and Y , respectively. Gcy translates samples into domain Y and Dcy distin-
guishes between the manipulated result y′ and real ones y, and vice verse forGcx andDcx . (a) shows
the original CycleGAN in [33] where separate generators and discriminators for each mapping are
optimized using the cycle-consistency loss. (b) presents the workflow of our contrast-GAN that
optimizes one conditional generator G and several semantic-aware discriminators D1, D2, . . . , DC ,
where C is the total number of object categories. We introduce an adversarial contrasting loss into
GAN that encourages the features fy′ of generated sample y′ are much closer to the feature center
f̄y of target domain Y than those of input x.

Mover Distance in WGAN [1], feature matching loss [25], loss-sensitive GAN [21]. However, unlike
existing GAN objectives that seek an appropriate criterion between synthesized samples and target
outputs, we propose a tailored adversarial contrasting objective for image semantic manipulation.
Our contrast-GAN is inspired by the strategy of learning by comparison, that is, aiming to learn the
mapping function such that the semantic features of manipulated images are much closer to feature
distributions of target domain than those of the original domain.

Generative Image-conditional Models. GANs have shown great success on a variety of image-
conditional models such as style transfer [11, 29] and general-purpose image-to-image transla-
tion [9]. More recent approaches [33, 31, 16, 17] have tackled the unpaired setting for cross-domain
image translation and also conducted experiments on simple semantic translation (e.g. horse→zebra
and apple→orange), where only color and texture changes are required. Compared to prior ap-
proaches that only transfer low-level information, we focus on high-level semantic manipulation on
images given a desired category. The unified mask-controllable contrast-GAN is introduced to dis-
entangle image background with object parts, comprised by one shared conditional generator and
several semantic-aware discriminators within an adversarial optimization. Our model can be posed
as a general-purpose solution for high-level semantic manipulation, which can facilitate many image
understanding task, such as unsupervised/semi-supervised activity recognition and object recogni-
tion.

3 Semantic Manipulation with Contrasting GAN

The goal of semantic manipulation is to learn mapping functions for manipulating input images
into target domains specified by various object semantics {ck}Ck=1, where C is the total number of
target categories. For each semantic ck, we have a set of images {Ick}. For notation simplicity, we
denote the input domain as X with semantic cx and output domain as Y with semantic cy in each
training/testing step. As illustarted in Figure 2, our contrast-GAN learns a conditional generator G,
which takes a desired semantic cy and an input image x as inputs, and then manipulates x into y′.
The semantic-aware adversarial discriminators Dcy aims to distinguish between images y ∈ Y and
manipulated results y′ = G(x, cy). Our new adversarial contrasting loss forces the representations
of generated result y′ be closer to those of images {y} in target domain Y than those of input image
x.

In the following sections, we first describe our contrast-GAN architecture and then present the mask-
conditional contrast-GAN for disentangling image background and object semantic.
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Figure 3: The proposed mask-conditional contrast-GAN for semantic manipulation by taking an
input image, an object mask and a target category as input. Please refer more details in Section 3.2.

3.1 Adversarial Contrasting objective

The adversarial loss introduced in Generative Adversarial Networks (GANs) [6] consists of a gener-
ator G and a discriminator D that compete in a two-player min-max game. The objective of vanilla
GAN is to make the discriminator correctly classify its inputs as either real or synthetic and the
generator synthesize images that the discriminator will classify as real. In practice we can replace
the negative log likelihood objective by a least square loss [18], which performs more stably during
training and generates higher quality results. Thus, the GAN objective becomes:

LLSGAN(G,Dcy , cy) = Ey∼pdata(y)[(Dcy (y)− 1)2] + Ex∼pdata(x)[Dcy (G(x, cy))2]. (1)

In this work, in order to tackle large semantic changes, we propose a new adversarial contrasting
objective in the spirit of learning by comparison. Using a comparative measure with neural network
to learn embedding space was introduced in the “Siamese network” [27, 8] with triple samples. The
main idea is to optimize over distance comparisons between generated samples with those from the
source domainX and target domain Y . We consider the feature representation of manipulated result
y′ should be closer to those of real data {y} in target domain Y than that of x in input domain X
under the background of object semantic cy . Formally, we can produce semantic-aware features by
feeding the samples into Dcy , resulting in fy′ for y′ served as an anchor sample, fx for the input x
as a contrasting sample and {fy}N for samples {y}N in the target domain as positive samples. Note
that, we compare the anchor fy′ with the approximate feature center f̄y computed as the average of
all features {fy}N rather than that of one randomly sampled y in each step, in order to reduce model
oscillation. The generator aims to minimize the contrasting distance Q(·):

Q(fy′ , fx, f̄y) = − log
e−||fy′−f̄y||2

e−||fy′−f̄y||2 + e−||fy′−fx||2
. (2)

Similar to the target of Dcy(y) in Eq.(1) that tries to correctly classify its inputs as either real or
fake, our discriminator aims to maximize the contrasting distance Q(fy′ , fx, f̄y). The adversarial
contrasting objective for GAN can be defined as:

Lcontrast(G,Dcy , cy) = Ey∼pdata(y),x∼pdata(x)
[Q(Dcy (G(x, cy)), Dcy (x), Dcy ({y}))]. (3)

To further reduce the space of possible mapping functions by the conditional generator, we also
use the cycle-consistency loss in [33] which constrains the mappings (induced by the generator G)
between two object semantics should be inverses of each other. Notably, different from [33] which
used independent generators for each domain, we use a single shared conditional generator for all
domains. The cycle objective can be defined as:

Lcycle(G, cy, cx) = Ex∼pdata(x)
[||G(G(x, cy), cx)− x||1]. (4)

Therefore, our full objective is computed by combining Eq.(1), Eq.(3) and Eq.(4):

Lcontrast-GAN(G,Dcy , cy) = Lcontrast(G,Dcy , cy) + λLLSGAN(G,Dcy , cy) + βLcycle(G, cy, cx),
(5)
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Figure 4: Result comparisons between our mask contrast-GAN with CycleGAN [33] for translating
horse→zebra and zebra→horse on the MSCOCO dataset with provided object masks. It shows the
effectiveness of incorporating object masks to disentangle image background and object semantics.

where λ and β control the relative importance of the objectives. G tries to minimize this ob-
jective against a set of adversarial discriminators {Dcy} that tries to maximize them, i.e. G∗ =

arg minG( 1
C

∑
cy

maxDcy
Lcontrast-GAN(G,Dcy , cy)). Our extensive experiments show that each of

objectives plays a critical role in arriving at high-quality manipulation results.

3.2 Mask-conditional Contrast-GAN
Figure 3 shows a sketch of our model, which starts from an input image x, an object mask M and
target category cy and outputs the manipulated image. Note that the whole architecture is fully
differential for back-propagation. For clarity, the full cycle architecture (i.e. the mapping y′ → x̂
via G(y, cx)) is omitted in Figure 3. Below we walk through each step.

First, a masking operation and subsequent spatial cropping operation are performed to obtain the
object region with size of 128×128. The background image is calculated by functioning the inverse
mask map on input image. The object region is then fed into several convolutional layers to get
16×16 feature maps with 512 dimension. Second, we represent the target category cy using an one-
hot vector which is then passed into a linear layer to get a feature embedding with 64 dimension.
This feature is replicated spatially to form a 16× 16× 64 feature maps, and then concatenated with
image feature maps via the depth concatenation. Third, several deconvolution layers are employed
to obtain target region with 128× 128. We then warp the manipulated region back into the original
image resolution, which is then combined with the background image via an additive operation to
get the final manipulated image. We implement the spatial masking and cropping modules using
spatial transformers [10].

To enforce the semantic manipulation results be semantically consistent with both the target seman-
tic and the background appearance of input image, we adopt both local discriminators {Dcy} defined
in our contrast-GAN and a global image discriminator DI . Each local discriminator Dcy is respon-
sible for verifying whether the high-level semantic of outputs is semantically coherent with the input
target while the global one DI evaluates the visual fidelity of the whole manipulated image.

3.3 Implementation Details
Network Architecture. To make a fair comparison, We adopt similar architectures from [33] which
have shown impressive results for unpaired image translation. This generator contains three stride-2
convolutions, six residual blocks, and three fractionally strided convolutions. For the architecture of
mask-conditional contrast-GAN in Figure 3, the residual blocks are employed after concatenating
convolutional feature maps with maps of the target category. In terms of the target category input
for generator G, we specify different number of categories C for each dataset, such as C = 10 for
ten semantic manipulation tasks on MSCOCO dataset. We use the same patch-level discriminator
used in [33] for local discriminators {Dcy} and the global discriminator DI .

Training Details. To compute the approximate feature center f̄y in Eq.(2) for the contrasting objec-
tive, we keep an image buffer with randomly selected N = 50 samples in target domain Y . For all
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Table 1: Comparison of FCN-scores on
Cityscapes labels→photos dataset.

Method Per-pixel acc. Per-class acc. Class IOU

CoGAN [17] 0.40 0.10 0.06
BiGAN [5] 0.19 0.06 0.02

Pixel loss+ GAN [28] 0.20 0.10 0.0
Feature loss+GAN [11] 0.07 0.04 0.01

CycleGAN [33] 0.52 0.17 0.11
Contrast alone 0.53 0.13 0.12

Contrast + classify 0.55 0.15 0.11
Contrast + Cycle 0.57 0.22 0.13

Contrast-GAN (separate G) 0.57 0.22 0.17
Contrast-GAN (ours) 0.58 0.21 0.16

Table 2: Comparison of classification per-
formance on Cityscapes photos→ labels
dataset.

Method Per-pixel acc. Per-class acc. Class IOU

CoGAN [17] 0.45 0.11 0.08
BiGAN [5] 0.41 0.13 0.07

Pixel loss+ GAN [28] 0.47 0.11 0.07
Feature loss+GAN [11] 0.50 0.10 0.06

CycleGAN [33] 0.58 0.22 0.16
Contrast alone 0.54 0.12 0.10

Contrast + classify 0.55 0.13 0.11
Contrast + Cycle 0.60 0.19 0.15

Contrast-GAN (separate G) 0.60 0.23 0.17
Contrast-GAN (ours) 0.61 0.23 0.18

Input CycleGAN Contrast-GAN (ours) Input CycleGAN Contrast-GAN (ours)

Figure 5: Result comparison by our contrast-GAN with CycleGAN [33] for translating
orange→apple (first row) and apple→orange (second row) on ImageNet.

the experiments, we set λ = 10 and β = 10 in Eq.(5) to balance each objective. We use the Adam
solver [12] with a batch size of 1. All networks were trained from scratch, and trained with learning
rate of 0.0002 for the first 100 epochs and a linearly decaying rate that goes to zero over the next 100
epochs. Our algorithm only optimizes over one conditional generator and several semantic-aware
discriminators for all kinds of object semantics. All models are implemented on Torch framework.

4 Experiments

Datasets. First, we quantitatively compare the proposed contrast-GAN against recent state-of-the-
arts on the task of labels↔photos on the Cityscape dataset [2]. The labels↔Photos dataset uses
images from Cityscape training set for training and val set for testing. Following [33], we use the
unpaired setting during training and the ground truth input-output pairs for evaluation. Second, we
compare our contrast-GAN with CycleGAN [33] on unpaired translation, evaluating on the task of
horse↔zebra and apple↔orange from ImageNet. The images for each class are downloaded from
ImageNet [4] and scaled to 128×128, consisting of 939 images for horse, 1177 for zebra, 996 for
apple and 1020 for orange. Finally, we apply contrast-GAN into ten more challenging semantic
manipulation tasks, i.e. dog↔cat, cow↔sheep, bicycle↔motorcycle, horse↔giraffe, horse↔zebra.
To disentangle image background with the object semantic information, we test the performance of
mask-conditional architecture. The mask annotations for each image are obtained from MSCOCO
dataset [15]. For each object category, the images in MSCOCO train set are used for training and
those in MSCOCO val set for testing. The output realism of manipulated results by different methods
is quantitatively compared by AMT perception studies described below.

Evaluation Metrics. We adopt the “FCN score” from [9] to evaluate Cityscapes labels→photo
task, which evaluates how interpretable the generated photos are according to an off-the-shelf se-
mantic segmentation algorithm. To evaluate the performance of photo→labels, we use the standard
“semantic segmentation metrics” from Cityscapes benchmark, including per-pixel accuracy, per-
class accuracy, and mean class Intersection-Over-Union [2]. For semantic manipulation tasks on
ImageNet and MSCOCO datasets (e.g. cat→dog), we run real vs.fake AMT perceptual studies to
compare the realism of outputs from different methods under the background of a specific object
semantic (e.g. dog), similar to [33]. For each semantic manipulation task, we collect 10 annotations
for randomly selected 100 manipulated images by each method.
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Figure 6: Result comparison between our mask contrast-GAN with mask CycleGAN [33] for trans-
lating dog→cat and cat→dog on the MSCOCO dataset with provided object masks.
Table 3: Result comparison of AMT perception test on eight mask-conditional semantic-
manipulation tasks on the MSCOCO dataset. The numbers indicate % images that Turkers labeled
real.

Method cat→dog dog→cat bicycle→motor motor→bicycle horse→ giraffe giraffe→ horse cow→sheep sheep→cow
Mask CycleGAN 2.5% 4.1% 10.9% 15.6% 1.5% 2.3% 16.3% 18.9%

Mask Contrast alone 3.7% 5.0% 9.3% 13.1% 1.6% 1.8% 17.1% 15.5%
Mask Contrast-GAN w/o DI 4.3% 6.0% 12.8% 15.7% 1.9% 4.5% 18.3% 19.1%
Mask Contrast-GAN (ours) 4.8% 6.2% 13.0% 16.7% 1.9% 5.4% 18.7% 20.5%

4.1 Result Comparisons

Labels↔photos on Cityscape. Table 1 and Table 2 report the performance comparison on the
labels→photos task and photos→labels task on Cityscape, respectively. In both cases, the proposed
contrast-GAN with a new adversarial contrasting objective outperforms the state-of-the-arts [17, 5,
28, 11, 33] on unpaired image-to-image translation. Note that we adopt the same baselines [17, 5,
28, 11] for fair comparison in [33].

Apple↔orange and horse↔zebra on ImageNet. Figure 5 shows some example results by the
baseline CycleGAN [33] and our contrast-GAN on the apple↔orange semantic manipulation. It
can be seen that our method successfully transforms the semantic of objects while CycleGAN only
tends to modify low-level characteristics (e.g. color and texture). We also perform real vs. fake
AMT perceptual studies on both apple↔orange and horse↔zebra tasks. Our contrast-GAN can
fool participants much better than CycleGAN [33] by comparing the number of manipulated images
that Turkers labeled real, that is 14.3% vs 12.8% on average for apple↔orange and 10.9% vs 9.6%
on average for horse↔zebra.

Semantic manipulation tasks on MSCOCO. We further demonstrate the effectiveness of our
method on ten challenging semantic manipulation applications with large semantic changes. Fig-
ure 9 compares the results by our mask-conditional contrast-GAN against CycleGAN [33] on
horse↔zebra task. It can be seen that CycleGAN often renders the whole image with the target
texture and ignores the particular image content at different locations. For instance, CycleGAN
wrongly translates the unrelated objects (e.g. person, building) and background as the stripe texture
in the horse→zebra case. On the contrary, our mask contrast-GAN shows appealing results by selec-
tively manipulating objects of interest (e.g. horse) into the desired semantic (e.g. zebra), benefiting
from our mask-conditional architecture and adversarial contrasting objective.

Figure 8 visualizes the comparisons of our mask-conditional architecture using cycle-consistency
loss in [33] and our contrasting objective, that is, mask CycleGAN vs mask contrast-GAN. The
baseline method often tries to translate very low-level information (e.g. color changes) and fail to
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Figure 7: Example results by our mask contrast-GAN for manipulating a variety of object semantics
on MSCOCO dataset. For each image pair, we show the original image (left) and manipulated image
(right) by specifying a desirable object semantic.

edit the shapes and key characteristic (e.g. structure) that truly convey a specific high-level object
semantic. However, our contrast-GAN tends to perform trivial yet critical changes on objects to
satisfy the target semantic while preserving the original object characteristics. In table 3, we report
quantitative results on the AMT perceptual realism measure for eight semantic manipulation tasks.
It can be observed that our method substantially outperforms the baseline on all tasks, especially on
those requiring large semantic changes (e.g. cat↔dog and bicycle↔motorcycle). In Figure 11, we
show more qualitative results. Our model shows the promising capability of manipulating object
semantics while retaining original shapes, viewpoints and interactions with background.

4.2 Model Analysis
In Table 1 and Table 2, we report the results by different variants of our full model on Cityscape
labels↔photos task. “Contrast alone” indicates the model only uses Lcontrast as the final objective
in Eq.(5) while “Contrast + classifiy” represents the usage of combining of Lcontrast and LLSGAN as
the final objective. “Contrast + cycle” is the variant that removes LLSGAN. CycleGAN [33] can also
be regarded as one simplified version of our model that removes the contrasting objective. Table 3
shows the ablation studies on mask-conditional semantic manipulation tasks on MSCOCO dataset.
It can be seen that “Contrast alone” and “Mask Contrast alone” achieve comparable results with
the state-of-the-arts. Removing the original classification-like objective LLSGAN degrades results
compared to our full model, as does removing the cycle-consistency objective LCycle. Therefore, we
can conclude that all three objectives are critical for performing the semantic manipulation. LLSGAN
can be complementary with our contrasting objective Lcontrast on validating the visual fidelity of
manipulated results. We also validate the advantage of using an auxiliary global discriminator DI

by comparing “Mask Contrast-GAN w/o DI” and our full model in Table 3.

Note that instead of using separate generators for each semantic as in previous works [17, 5, 28,
11, 33], we propose to employ a conditional generator shared for all object semantics. Using one
conditional generator has two advantages: first, it can lead to more powerful and robust feature
representation by learning over more diverse samples of different semantics; second, the model size
can be effectively reduced by only feeding different target categories as inputs to achieve different
semantic manipulations. Table 1 and Table 2 also report the results of using separate generators
for each semantic task in our model, that is, “Contrast-GAN (separate G)”. We can see that our
full model using only one conditional generator shows slightly better results than “Contrast-GAN
(separate G)”.

8



5 Discussion and Future Work
Although our method can achieve compelling results in many semantic manipulation tasks, it shows
little success for some cases which require very large geometric changes, such as car↔truck and
car↔bus. Integrating spatial transformation layers for explicitly learning pixel-wise offsets may
help resolve very large geometric changes. To be more general, our model can be extended to
replace the mask annotations with the predicted object masks or automatically learned attentive
regions via attention modeling. This paper pushes forward the research of unsupervised setting
by demonstrating the possibility of manipulating high-level object semantics rather than the low-
level color and texture changes as previous works did. In addition, it would be more interesting to
develop techniques that are able to manipulate object interactions and activities in images/videos for
the future work.
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Figure 8: Result comparison between our mask contrast-GAN with mask CycleGAN [33] for trans-
lating dog→cat and cat→dog on the MSCOCO dataset with provided object masks. It shows the
superiority of adversarial contrasting objectiveness over the objectiveness used in CycleGAN [33].
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Horse -> Zebra Zebra -> Horse
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Figure 9: Result comparisons between our mask contrast-GAN with CycleGAN [33] for translating
horse→zebra and zebra→horse on the MSCOCO dataset with provided object masks. It shows the
effectiveness of incorporating object masks to disentangle image background and object semantics.
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Bicycle

Motorcycle

Motorcycle

Bicycle

Figure 10: Example results by our mask contrast-GAN for manipulating between
bicycle↔motorcycle on MSCOCO dataset. For each image pair, we show the original image
(left) and manipulated image (right) by specifying a desirable object semantic.

Giraffe

Horse
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Figure 11: Example results by our mask contrast-GAN for manipulating between giraffe↔horse on
MSCOCO dataset. For each image pair, we show the original image (left) and manipulated image
(right) by specifying a desirable object semantic.
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