
Learning to Segment Human by
Watching YouTube

Xiaodan Liang, Yunchao Wei, Liang Lin, Yunpeng Chen,
Xiaohui Shen, Jianchao Yang, and Shuicheng Yan

Abstract—An intuition on human segmentation is that when a human is moving in

a video, the video-context (e.g., appearance and motion clues) may potentially

infer reasonable mask information for the whole human body. Inspired by this,

based on popular deep convolutional neural networks (CNN), we explore a very-

weakly supervised learning framework for human segmentation task, where only

an imperfect human detector is available along with massive weakly-labeled

YouTube videos. In our solution, the video-context guided human mask inference

and CNN based segmentation network learning iterate to mutually enhance each

other until no further improvement gains. In the first step, each video is

decomposed into supervoxels by the unsupervised video segmentation. The

superpixels within the supervoxels are then classified as human or non-human by

graph optimization with unary energies from the imperfect human detection results

and the predicted confidence maps by the CNN trained in the previous iteration. In

the second step, the video-context derived human masks are used as direct labels

to train CNN. Extensive experiments on the challenging PASCAL VOC 2012

semantic segmentation benchmark demonstrate that the proposed framework has

already achieved superior results than all previous weakly-supervised methods

with object class or bounding box annotations. In addition, by augmenting with the

annotated masks from PASCAL VOC 2012, our method reaches a new state-of-

the-art performance on the human segmentation task.

Index Terms—Human segmentation, weakly-supervised learning, incremental

learning, convolutional neural network
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1 INTRODUCTION

RECENTLY, tremendous advances in semantic segmentation have
been made [1], [2], [3], [4]. These approaches often rely on deep
convolutional neural networks (CNN) [5] trained on a large-scale
classification dataset [6], which is then transfered to the segmenta-
tion task based on the mask annotations [1], [2], [3]. However, the
annotation for pixel-wise segmentation masks usually requires
considerable human effort. In addition, the construction of a
semantic segmentation dataset covering diverse appearances,
view-points or scales of objects is also costly and difficult. These
limitations hinder the development of semantic segmentation
which generally requires large-scale data for training.

While a large collection of fully annotated images are difficult to
obtain, weakly-labeled yet related videos are abundant on video
sharing websites, e.g., YouTube.com, especially for human segmen-
tation task. Intuitively, when a human instance is moving in the
video, the inherent motion cues with the aid of an imperfect human
detector may potentially help identify the human masks out of the
background [7], [8], [9]. Thus in this paper, we target at using the

video-context derived human masks from raw YouTube videos to
iteratively train and update a good segmentation neural network,
instead of using a limited number of single image mask annotations
like in traditional approaches. The video-context is used to infer the
human masks by exploiting spatial and temporal contextual infor-
mation over video frames. Note that our framework can be applied
to general object segmentation tasks, especially for moving objects.
This paper focuses on human segmentation, as human-centric vid-
eos are the most common on YouTube. Fig. 1 provides an overview
of our unified framework containing two integrated steps, i.e., the
video-context guided human mask inference and the CNN-based
human segmentation network learning.

In the first step, given a raw video, we extract the supervoxels,
which are the spatio-temporal analogs of superpixels, to provide a
bottom-up volumetric segmentation that tends to preserve object
boundaries and motion continuousness [10]. The spatio-temporal
graph is built on the superpixels within supervoxels. To remove
the ambiguity in determining the instances of interest in the video,
we resort to an imperfect human detector [11] and region proposal
method [12] to generate the candidate segmentation masks. These
masks are then combined with the confidence maps predicted by
the currently trained CNN to provide the unary energy of each
node. The graph-based optimization is then performed to find opti-
mal human label assignments of the nodes by maximizing both
appearance consistency within the neighboring nodes and the
long-term label consistency within each supervoxel.

In the second step, the video-context derived human masks
extracted from massive raw YouTube videos are then utilized to
train and update a deep convolutional neural network. One impor-
tant issue in training with those raw videos is the existence of noisy
labels within these extracted masks. To effectively reduce the influ-
ence of noisy data, we utilize the sample-weighted loss during the
network optimization. The trained network in turn makes better
segmentation predictions for the key frames in each video, which
can help refine the video-context derived human masks. This pro-
cess iterates to gradually update the video-context derived human
masks and the network parameters until the network is mature.

We evaluate our method on the PASCAL VOC 2012 segmenta-
tion benchmark [13]. Our very-weakly supervised learning frame-
work by using raw YouTube videos achieves significantly better
performance than the previous weakly supervised methods (i.e.,
using box annotations) [1], [2] as well as the fully supervised (i.e.,
using mask annotations) methods [3], [4], [14]. By combining with
limited annotated data, our weakly supervised variant (i.e., using
the box annotations on VOC) and the semi-supervised variant (i.e.,
using the mask annotations on VOC) yield superior accuracies
than the previous methods [1], [2] using extensive extra 123k anno-
tations on Microsoft COCO [15]. Note that the general image-level
supervision is also utilized in our approach as we pre-train our
neural network on ImageNet.

2 RELATED WORK

Semantic Segmentation. Deep convolutional neural networks have
achieved great success with the growing training data on object
classification [16], [17], [18], [19]. However, current available data-
sets for object detection and segmentation often contain a relatively
limited number of labeled samples. Most recent progress on object
segmentation [1], [2], [3] was achieved by fine-tuning the pre-
trained classification network with limited mask annotations.
These limited data hinder the advance of semantic segmentation to
more challenging scenarios. Existing segmentation meth-
ods [1], [2], [20] explored using bounding box annotations instead
of mask annotations. Differ from these previous methods, our
framework iteratively refines the video-context derived human
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masks using the updated segmentation network, and in turn
improves the network based on these masks. Differ from the semi-
supervised learning (using a portion of mask annotations) and
weakly supervised learning (using the object class or bounding
box annotations), the proposed very-weakly supervised learning
only relies on weakly labeled videos and an imperfect human
detector. It is true that training the human detector needs a certain
number of bounding box annotations. Instead of directly using
those annotated boxes to train the human segmentation network,
our model can be progressively improved by gradually mining
more variant instances from weakly labeled videos.

Video Segmentation. Unsupervised video segmentation focused
on extracting coherent groups of supervoxels by considering the
appearance and temporal consistency. These methods tend to
over-segment an object into multiple parts and provide a mid-level
space-time grouping, which cannot be directly used for object seg-
mentation. Recent approaches proposed to upgrade the supervox-
els to object-level segments [7], [8]. Their performance is often
limited by the incorrect segment masks.

Semi-Supervised Learning. To minimize human efforts, some
image-based attempts [21], [22], [23], [24], [25], [26] have been
devoted to learning reliable models with very few labeled data for
object detection. Among these methods, the semantic relation-
ships [21] were further used to provide more constraints on selecting
instances. In addition, the video-based approaches [27], [28], [29], [30]
utilized motion cues and appearance correlations within video
frames to augment themodel training.

3 OUR FRAMEWORK

Our framework is Fig. 1 illustrates our very-weakly supervised learn-
ing framework for video-context guided human segmentation.

3.1 The Iterative Learning Procedure

The proposed framework is applicable for training all fully super-
vised network structures based on CNN, such as FCN [3] and Deep-
Lab-CRF method [14]. In this paper, we adopt the original version
of DeepLab-CRF method [14] (i.e., without using multiscale and
Large-FOV) as the basic structure due to its leading accuracy and
competitive efficiency. Also, many weakly supervised competing
methods [1], [2] using object class annotations and bounding box
annotations only reported their results based on DeepLab-CRF [14].

Our learning process is iteratively performed to train and
update the network with the video-context derived human masks
and then refine these masks based on the improved network. Note
that the category-level human annotations on ImageNet are used
since our segmentation model is finetuned on the pre-trained VGG

model. The human masks generated from YouTube videos may be
labeled with incorrect categories. These noises may degrade the
performance of our framework, especially in the early iterations
where the learned network is more vulnerable to noises. To reduce
disturbance of noisy labels, the sample-weighted loss is utilized to
train the network. During the network training, more considera-
tions should be given to the video-context derived human masks
with higher labeling quality.1 Suppose in the tth iteration of the

learning process, we collect fIigNi¼1 training frames from the videos.

For each training frame Ii selected from the video set v, the video-

context derived human mask lt�1
i is inferred by conditioning on the

network parameter ut�1 in the ðt� 1Þth iteration and the video

information, i.e., lt�1
i ¼ ’ðIi; ut�1;vÞ. The corresponding labeling

quality for lt�1
i is denoted as vt�1

i . The network optimization in

every iteration is thus formulated as a pixel-level regression prob-
lem from the training images to the generated masks. Specifically,
the objective function to be minimized can be written as

LðutÞ ¼ 1

N

XN
i¼1

vt�1
i � 1

Mi

XMi

j

eðPi;jðutÞ; lt�1
i;j Þ

¼ 1

N

XN
i¼1

vt�1
i � 1

Mi

XMi

j

eðPi;jðutÞ;’jðIi; ut�1;vÞÞ;
(1)

where lt�1
i;j is the target label at the jth pixel of the image Ii,Mi indi-

cates the pixel number of each image Ii and Pi;jðutÞ is the predicted
pixel-level label produced by the network with the parameter ut.

eðPi;jðutÞ; lt�1
i;j Þ is the pixel-wise softmax loss function. The targets to

be optimized in our task are the network parameters and the
video-context derived human masks of all training frames.

An iterative learning procedure is proposed to find the solution.
With the video-context derived human mask lt�1

i and labeling qual-

ity vt�1
i for each training frame fixed, we can update the network

parameter ut. The problem thus becomes a segmentation network

learning problem with the sample-weighted loss. The parameter ut

can be updated by back-propagation and stochastic gradient

descent (SGD), as in [14]. In turn, after the network parameter ut in
the tth iteration is updated, we can refine the video-context derived

human masks lti by the video-context guided inference, i.e., infer-

ring the ’ðIi; ut;vÞ. We will give more details about the computa-

tion of ’ð�Þ and vt�1
i in Section 3.2. The segmentation network is

initialized by the model pre-trained on the ImageNet classification
dataset. In this way, the general image-level supervision provided

Fig. 1. An overview of our framework. Given raw YouTube videos, the proposed framework learns a good segmentation network by iteratively inferring video-context
derived human masks and updating the network. For each video, we first extract mid-level supervoxels (unique colors represent unique supervoxels, and same colors
across frames denote the same supervoxels) in the key frames. For each key frame, we use a pre-trained imperfect human detector to initialize the location of each
instance of interest. The spatio-temporal graph optimization is then performed to extract video-context derived human masks, which are then utilized to update the seg-
mentation network. As a feedback, the updated network will provide refined confidence maps to help generate better human masks.

1. The higher labeling quality means that a derived human mask contains
fewer incorrectly labeled pixels, as defined in Section 3.2.
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by the ImageNet is naturally embedded in our models. This net-
work is then trained in every iteration based on the refined video-
context derived human masks. This process is iteratively per-
formed until no further improvement is observed. The fully-con-
nected conditional random field (CRF) [14] is adopted to further
refine the results.

3.2 Video-Context Guided Human Mask Inference

In this section, we introduce the details of generating the video-con-
text derived human masks from raw videos along with an imperfect
human detector. Given the network parameter ut, the video-context

derived human masks are obtained by solving lti ¼ ’ðIi; ut; vÞ, and
the labeling quality vt

i for each frame Ii is accordingly predicted. The

index i is omitted for simplicity in the following. We crawl about
5,000 videos which may contain humans from YouTube.com. Follow-
ing [11], we use the keywords from the PASCAL VOC collection to
prune the videos that are unrelated to the person category. In the
crawled videos, the collected video set includes approximate 30 per-
cent noisy videos that contain none of person instances. The spatio-
temporal graph optimization is performed to extract video-context
derived humanmasks.

Video Pre-Processing. For each video, the supervoxels are first
extracted, which are space-time regions computed with the mid-
level unsupervised video segmentation method [31]. We empiri-
cally extract all the supervoxels at the 10th level of the tree, which
is a good tradeoff between semantic meaning and fine detail pre-
serving properties. Though the supervoxels for each instance are
unlikely to remain stable through the whole video due to pose
changing and background cluttering, the supervoxels often persist
for a series of frames due to the temporal continuity. Each video
can be split into many video shots which are divided when over
half of the supervoxels across two adjacent frames change (e.g., the
supervoxels of some objects are lost or a new object appears).

Spatio-Temporal Graph Optimization. We project each supervoxel
into each of its children frames to obtain the corresponding spatial
superpixel as a nodeof the graph.Notably, the object boundarywithin
each supervoxel can be better preserved in the key frame where large
appearance and motion changes occur. We thus select the key frames
as the initial candidate set by the criterion thatmore than 10 supervox-
els change compared with their previous frame. The graph optimiza-
tion is performed on these selected key frames in each shot.

Formally, the spatio-temporal graph structure G consists of the

nodes B and the edges E, as shown in Fig. 2. Let B ¼ fBkgKk¼1 be the

set of spatial superpixel nodes over the entire video, where K

refers to the number of key frames. Bk contains nodes belonging to

the kth frame, which is a collection of nodes fbckgCk
c¼1, where Ck is

the number of nodes in the kth frame. We assign the variable

yck 2 fþ1;�1g to each node, which is either human (+1) or other

content (�1). The target is to obtain a labeling Y ¼ fYkgKk¼1, where

Yk ¼ fyckgCk
c¼1 denotes the labels of nodes belonging to the kth frame.

The edge set E is defined as the set of spatial edges. A spatial edge

exists between the neighboring pair of nodes ðbck; bc
0
k Þ in a given key

frame. Finally, we use S to denote the set of supervoxels. Each ele-
ment s 2 S represents each supervoxel. We denote ys as the set of
labels assigned to the nodes within the supervoxel s. For each node
bck, we compute its visual feature, i.e., the concatenation of bag-of-

words (75 dim) from RGB, Lab and HOG descriptors. The visual

dissimilarity between two nodes Dðbck; bc
0
k Þ is computed by the

euclidean distance.
To enforce the local label smoothness and long-range temporal

coherence over the supervoxels, the energy function over G ¼
ðB; EÞ is defined as

EðYÞ ¼
X
ðk;cÞ

Fc
kðyckÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Unary

þ
X

½ðk;cÞ;ðk;c0Þ�2E
Fc;c0

k ðyck; yc
0
k Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pairwise

þ
X
s2S

FsðysÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Higher order

:
(2)

The optimal human masks are obtained by minimizing Eqn. (2):
Y� ¼ argminYEðYÞ. The unary potential Fc

kðyckÞ accounts for the

cost of assigning each node as the human or others. The pairwise

potential Fc;c0
k ðyck; yc

0
k Þ promotes smooth segmentation by penalizing

neighboring nodes with different labels. The higher order potential
FsðysÞ ensures long term label consistency along each supervoxel.

Unary Potential: The unary potential of each node is computed
based on the imperfect human detection results and the predicted
confidence maps by the updated CNN in the previous iteration.
First, to roughly locate the instance of interest, human detection is
performed on each key frame Ik.We use the object detectionmethod
in [11] to detect human instances and only those boxes with scores
higher than �1 are selected. For each detected box, an optimal
region proposal is selected. The state-of-the-art region proposal
method, i.e., Multiscale Combinatorial Grouping (MCG) [12], is
adopted to generate about 2,000 region proposals per image. Denote
r and h as the candidate proposal and the detected box, respectively.
For each box h, we expect to pick out a candidate proposal r̂ that has
a large overlap with the box and also a high estimated confidence

from the CNNprediction ĝtk. The r̂ is computed by

r̂ ¼ argmaxrðIoUðr;hÞ þ 1

jrj
X

ĝtkðrÞÞ; (3)

where IoUðr;hÞ 2 ½0; 1� is the intersection-over-union ratio com-
puted from the box h and the tight bounding box of the region pro-

posal r. The term 1
jrj
P

ĝtkðrÞ denotes the mean of the predicted

confidences within region proposal r. The proposals with the same
tight bounding box can be distinguished by their predicted confi-
dences. The optimal region proposal r̂ for each detected box can be

gradually refined along with the prediction ĝtk by the improved

CNN. We use Rk to denote the generated proposal mask for each
frame Ik by combining all selected proposals r̂. The probability of
each node bck to be the human is computed as

P ðyck ¼ 1Þ ¼ �rhðyck; RkÞ þ �e
1

jyckj
X

ĝtkðyckÞ; (4)

where �r and �e are set as 0.5 empirically. hðyck; RkÞ represents the
percentage of the spatial super-pixel node bck contained within the

mask Rk. jyckj is the pixel count within the node bck, and
P

ĝtkðyckÞ is
the sum of the predicted probabilities. The unary potential of each

Fig. 2. Illustration of the spatio-temporal graph. Nodes are spatial superpixels in
every key frame. For legibility, only a small subset of nodes and connections are
depicted. Best viewed in color.
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node is computed by

Fc
kðyckÞ ¼

�log ðP ðyck ¼ 1ÞÞ if yck ¼ þ1;

�log ð1� P ðyck ¼ 1ÞÞ if yck ¼ �1:

�
(5)

After the network is updated, the unary potential can be accord-
ingly updated to generate better video-context derived human
masks. Note that in the beginning of our learning process, theP

ĝtkðyckÞ part will be eliminated in Eqns. (3) and (5) to infer the

human masks, since the segmentation network is not yet trained.
Based on the initialized bounding box generated by the imperfect
object detector, our method can gradually segment all human
masks in the video.

Pairwise Potential: We use the standard pairwise terms for edges
to ensure the local label smoothness

Fc;c0
k ðyck; yc

0
k Þ ¼ dðyck 6¼ yc

0
k Þexpð�bpDðbck; bc

0
k ÞÞ; (6)

where bp is set as the inverse of the mean of all individual distan-
ces, following [7].

Higher Order Potential: The supervoxel label consistency poten-
tial is defined to ensure the long-term coherence within each super-
voxel. We adopt the Robust Pn model [32] to define this potential

FsðysÞ ¼
NðysÞ 1

Q�maxðsÞ if NðysÞ � Q;

�maxðsÞ otherwise;

(
(7)

where ys denotes the labels of all nodes within the supervoxel
s 2 S, and NðysÞ is the number of nodes within the supervoxel s
that is not assigned with the dominant label, i.e., NðysÞ ¼
minðjys ¼ �1j; jys ¼ þ1jÞ. Q is a truncation parameter to control
how rigidly we enforce the consistency within each supervoxel. A
higher Q should be set for the supervoxel with more confidence.
The penalty �maxðsÞ indicates that the less uniform supervoxel
should have less penalty for label inconsistencies. Following [7],
we set it as �maxðsÞ ¼ jysjexpð�bsssÞ, where ss is the RGB variance
in the supervoxel s and bs is set as the inverse of the mean of the
variances of all supervoxels.

The energy function defined in Eqn. (2) can be efficiently mini-
mized using the expansion algorithm [32]. We set the parameter
Q ¼ 0:1jysj for all the videos. The optimal label assignments corre-
sponding to the minimum energy yield our desired video-context
derived human masks. The mask of each key image Ik is denoted

as ltk. The video-context derived human masks can be utilized to

update the CNN. The labeling quality vt
k of each human mask is

estimated as the mean of the predicted probabilities on the spatial
superpixels which are assigned to be human. To ensure the data
diversity and reduce the effect of noisy labels during training, only
up to five key frames with the highest labeling qualities are
selected upon the initial candidates. Different key frames may be
selected during the different iterations of the learning process. We
also select some negative images (i.e., no human appears) ran-
domly from the frames in which no human instance is detected.
The proposed framework can then iteratively refine the human
masks by re-estimating the unary potentials based on the improved
CNN. Although only the spatial superpixel nodes with high confi-
dent detection results are assigned with high possibilities, the
strong spatial and motion coherence constraints, which are incor-
porated by the pair-wise and higher-order potentials, can effec-
tively facilitate mining more diverse instances with variant poses,
views and background clutters.

4 EXPERIMENTS

Dataset. The proposed framework is evaluated on the PASCAL
VOC 2012 segmentation benchmark [13]. The performance is mea-
sured in terms of pixel intersection-over-union (IoU) on the person

class. The segmentation part of the original VOC 2012 dataset con-
tains 1,464 train, 1,449 val, and 1,456 test images, respectively. Our
framework can be boosted by only using the weakly labeled You-
Tube videos and an imperfect human detector. In total, 160,000
video-context derived human masks are produced from about
20,000 video shots, in which about 1=3 of the images contain no
human instances. We also report the results of our variants using
the extra 10,582 bounding box annotations and mask annotations,
provided by [33]. Extensive evaluation of the proposed method is
primarily conducted on the PASCAL VOC 2012 val set and we also
report the performance on the testing set to compare with the
state-of-the-arts by submitting the results to the official PASCAL
VOC 2012 server.

Training Strategies.We use the weakly-supervised object detector
proposed in [11] for detecting human individuals, leading to the
imperfect detection results. [11] proposed a weakly-supervised
learning framework for training object detectors with weakly
labeled YouTube videos, where only two annotated bounding boxes
for the person label are used to initialize the object detectors, and
then massive YouTube videos are used to enhance the object detec-
tors. We borrow their trained object detectors in this work. Since
their pre-trained detectors can output the bounding boxes and con-
fidences of all object classes, we only the detection results for the
person category and ignore other results. The segmentation net-
work is initialized by the publicly releasedVGG-16model [5], which
is pre-trained on the ImageNet classification dataset [6]. This model
is also used by all competitors [1], [2], [3], [4], [14], [34], [35], [36]. We
run 10 iterations for training the DCNN and refining the video-con-
text derived human masks. For each iteration, we use a mini-batch
size of 20 for the SGD training. The initial learning rate is set as 0.001
and divided by 10 after every 20 epochs. The network training is
performed for about 60 epochs. In each iteration of our learning pro-
cess, fine-tuning the networkwith the refined video-context derived
humanmasks takes about two days on a NVIDIA Tesla K40 GPU. It
takes about 2 seconds for testing an image.

4.1 Evaluation of Our Learning Framework

Table 1 reports the comparison results of the video-context guided
inference and the image-based segmentation in different iterations.
The version using image-based segmentation, i.e., “Ours (image-
based segmentation)”, is achieved by only minimizing the unary
potential of each node based on the extracted supervoxels in
Eqn. (2). In this case, the appearance consistency and temporal con-
tinuity for the assignments of nodes would not be utilized to gener-
ate the human masks. In terms of our full version (“Ours”), only
28.1 percent of IoU is obtained by only using the YouTube videos
in the beginning. After 10 iterations, we achieve a substantial
increase, i.e., obtaining 81.8 percent of IoU. The proposed

TABLE 1
Comparison of Our Models with Video-Context Guided Inference
(“Ours”), Image-Based Segmentation (“Ours (Image-Based)”), the

Version without Using Pairwise Potentials (“Ours (w/o Pair)”) and the
Version without Using Higher-Order Potentials (“Ours (w/o Higher)”)

in Terms of IoU (%) on PASCAL VOC 2012 Validation Set

Iteration Ours (image-based) Ours (w/o pair) Ours (w/o higher) Ours

1 23.4 26.2 25.9 28.1
2 30.6 40.4 42.7 48.7
3 47.8 51.5 53.4 57.2
4 58.5 62.8 63.1 65.0
5 62.3 68.3 69.7 73.6
6 68.0 74.9 73.6 77.2
7 69.6 76.8 77.7 79.4
8 70.1 79.6 79.1 80.7
9 72.3 80.2 80.6 81.6

10 72.9 80.5 80.9 81.8
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framework is performed for 10 iterations because only slight
increase (i.e., 0.2 percent) is observed after 10 iterations. The
increases in IoU are very large in the early iterations (e.g., over 20.6
percent of IoU after the second iteration), since most of the easy
human instances can be recognized and segmented out by the
updated network. After the network is gradually improved and
the video-context derived human masks are refined, more diverse
instances can be collected, which leads to better network capability.
Large performance gap in IoU can be observed by comparing
“Ours (image-based segmentation)” with “Ours”, e.g., 8.9 percent
drop in IoU after 10 iterations. This significant inferiority demon-
strates the effectiveness of using the video-context derived infer-
ence. The effectiveness of using pairwise and higher-order
potentials can be demonstrated by comparing “Ours (w/o pair)”
and “Ours (‘w/o higher)” with “Ours”, respectively.

4.2 Comparisons of Supervision Strategies

Table 3 shows the comparison results of using different strategies of
supervision. Training with 160k video-context derived human
masks, our method can yield a score of 81.5 percent. We also report
two results by using the extra 10,582 training images with bounding
box annotations and mask annotations, respectively, provided
by [33], which provides the pixel-wise annotations for all 10,582
training images on the 20 object classes. The bounding box annota-
tions and mask annotations are only used as the extra data to train
the network in the last iteration. In terms of using bounding box
annotations, we select the region proposals which have largest over-
laps with the ground-truth boxes, and then use them as the human
masks for training. To combine with the video-context derived
human masks for training, we set the labeling quality of the pro-
posal mask from bounding box annotation or mask annotation as 1,

and then fine-tune the network based on the combined set. By using
the extra annotated bounding boxes, only a slight 0.4 percent
increase in IoU is obtained. This insignificant change may be
because the number (10k) of bounding boxes is small compared to
our large number (160k) of video-context derived human masks.
When replacing the box annotations with mask annotations, signifi-
cant increase can be observed, i.e., 83.0 versus 81.5 percent. This
means that carefully annotated masks contain more local detail
information or difficult training samples (e.g., extremely small
instances or heavily occluded instances) that may be lost within the
generated video-context derived humanmasks.

4.3 Comparisons of Network Training Strategies

In Table 2, we evaluate different network training strategies by using
the video-context derived human masks with possibly noisy labels.
For the version without using the sample-weighted loss, all video-
context derived human masks are treated as contributing equally to
training the whole network. In this case, we observe that about 4.4
percent drop takes place in IoU, compared with our full training
strategy. We also validate the effectiveness of using more negative
frames collected from rawvideos to train the network. About 6.9 per-
cent decrease in IoU can be observed when comparing the version
without usingmore negative frameswith our full version.

4.4 Comparisons of Ways of Using videos

Here we have adopted three simple strategies to evaluate the usage
of the video information for boosting the segmentation network.
First, we test the performance of directly using the frames of all
videos with the image-level “person” label as training data. The
segmentation networks are thus trained by using the image-level
supervision, similar to [2], resulting in 34.2 percent in terms of IoU
on the person label, which is better than 28.2 percent of [2]. This
verifies the large-scale frames in videos can help train better seg-
mentation networks than using the limited number of images. Sec-
ond, since many frames may not contain any person instances, we
further evaluate whether the EM procedure can facilitate improv-
ing the capability of the segmentation network. Specifically, ten
iterations are performed to progressively reduce the effect of noisy
frames. After each iteration, we use the currently trained segmenta-
tion network to test all frames, and the frames predicted as

TABLE 3
Results on the PASCAL VOC 2012 Test Set

method supervision prediction type mask box auto mask auto box training data IoU on person IoU on car

Hyper-SDS [34] multi-class 72.9 71.9
CFM [35] multi-class 67.5 69.2
FCN [3] multi-class 73.9 74.7
TTI [36] mask multi-class 10k - - - VOC 68.8 74.0
DeepLab-CRF [14] multi-class 77.6 75.5
DeepLab-CRF-person [14] 2-class 76.7 74.3

weakly (object class) multi-class - 10k - - VOC 28.2 44.9
weakly (box) multi-class - 10k - - VOC 58.2 66.5

WSSL [2] semi multi-class 1.4k 9k - - VOC 76.0 76.2
semi multi-class 2.9k 8.5k - - VOC 76.9 76.9
mask multi-class 133k - - - VOC+COCO 81.6 81.0

weakly (box) multi-class - - - - VOC 75.1 75.0
BoxSup [1] semi multi-class 1.4k 9k - - VOC 76.9 74.6

semi multi-class 10k 123k - - VOC+COCO 81.3 78.5

CRF-RNN [4] mask multi-class 133k - - - VOC+COCO 81.1 76.3

very-weakly (detector) 2-class - 2 21k 20k YouTube 81.5 77.5
Ours weakly (box) 2-class - 10k 21k 20k VOC+YouTube 81.9 77.7

semi 2-class 10k 2 21k 20k VOC+YouTube 83.0 78.3

In the “supervision” column, “mask” means all training samples are with segmentation mask annotations, “very-weakly” means only the weakly labeled videos
and an imperfect human detector are used, “weakly” means only object class or bounding box annotations are used, and “semi” means mixture of annotations
(e.g., some mask annotations are used).

TABLE 2
Comparison of Different Network Training Strategies in Terms

of IoU (%) on PASCAL VOC 2012 Validation Set

method sample-weighted loss negative images IoU

No No 70.3
Yes No 74.9

Ours No Yes 76.8
Yes Yes 81.8
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containing less than 10 percent foreground pixels are eliminated
during the training in next iteration. We find that employing such
EM procedure can obtain 52.8 percent IoU on person label. Third,
we also test the result of using the image co-localization
method [37] to discover the bounding boxes of human instances.
The segmentation network can thus be trained with bounding box
supervisions of these mined instances. Its final result in terms of
IoU on person category is 40.6 percent, which is worse than the sec-
ond strategy. These results of using different strategies further jus-
tify the effectiveness of the proposed procedure.

4.5 Comparisons with State-of-the-Art Methods

In Table 3, we compare our method with the state-of-the-art meth-
ods, including Hyper-SDS [34], CFM [35], FCN [3], TTI [36], Deep-
Lab-CRF [14], CRF-RNN [4],WSSL [2] and BoxSup [1], on the Pascal
VOC 2012 testing set. All these methods use the pre-trained VGG
model [5] to initialize the network parameters. Among all of these
competitors, WSSL [2] and BoxSup [1] use different supervision
strategies (e.g., object class, bounding box or mask annotations) to
train the network. We use the same network setting as in [2] and [1]
for fair comparison. We also test the DeepLab-CRF [14] method on
the two-class segmentation task (“DeepLab-CRF-person”), i.e., only
person and background classes predicted for each pixel, which is the
same setting as used in this paper. The 0.9 percent decrease in IoU
compared with DeepLab-CRF [14] may be because the contextual
information from the other object classes is not utilized during train-
ing the two-class network. Our method that only uses the weakly
labeled videos and an imperfect human detector achieves 81.5 per-
cent in IoU, which is better than the previous fully supervisedmeth-
ods by a considerable margin, e.g., 77.6 percent of DeepLab-
CRF [14] and 73.9 percent of FCN [3] on VOC 2012. Remarkably, all
of them use all the 10k annotatedmasks on VOC 2012.

Moreover, we compare our results with other semi-supervised
methods [1], [2]. The proposed method is significantly superior
over the previous method [2] which is supervised with object class

annotations, i.e., 81.5 versus 30.3 percent. The proposed method
achieves 6.4 and 9.1 percent gain, compared with the methods
using bounding box annotations on the VOC dataset, i.e.,
BoxSup [1] and WSSL [2], respectively. The superiority over
WSSL [2] and BoxSup [1] can also be observed when comparing
with their semi-supervised variants, i.e., replacing about 86 percent
bounding box annotations with mask annotations on the VOC 2012
dataset. In addition, these previous methods reported the results
after augmenting the training data by the large-scale Microsoft
COCO dataset [15]. The 123,287 images with available mask anno-
tations are provided on COCO. Our results by only using weakly
labeled videos and an imperfect human detector are comparable
with the fully supervised baselines [2], [4] using extensive extra
123k COCO images, e.g., 81.5 percent of our method versus 81.1
percent of the CRF-RNN [4]. It is slightly better than 81.3 percent of
the BoxSup [1] using 123k annotated bounding boxes.

Our semi-supervised variant using the 10k mask annotations on
VOC dataset achieves the IoU score of 83.0 percent, which is higher
than the performance of all the previous human segmentation
methods. Most recently, unpublished results in [38] reached 82.7
percent in IoU by using all 10k pixel-wise annotations. This
method [38] utilized the piecewise training of CRFs instead of the
simple fully-connected CRF used by our solution and other state-
of-the-arts [1], [2], [14].

5 RESULT VISUALIZATION

We show the video-context derived human masks in the videos
obtained by our method in Fig. 3. All masks are generated in
the last iteration of the learning process. Although the YouTube
videos are often with low resolution, diverse view points and
heavy background clutters, our method can successfully seg-
ment out the human instances with different scales or occlu-
sions. In Fig. 4, we show the results of our method and its
variant using image-based segmentation on the VOC 2012 vali-
dation dataset.

Fig. 3. Exemplars of the generated video-context derived human masks. We display four videos with various background, views and appearances.

Fig. 4. Example human segmentation results on PASCAL VOC 2012 validation using our method. For each image, we show the results of our version and its variant using
image-based segmentation.
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6 CONCLUSION AND FUTURE WORK

In this paper, we present a very-weakly supervised learning frame-
work that learns to segment human by watching YouTube videos
along with an imperfect human detector. In turn, the updated net-
work can help generate more precise video-context derived human
masks. This process iterates to gradually improve the network. In
future work, we plan to extend our framework to generic semantic
segmentation.
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