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Abstract

This paper proposes a simple yet effective method to
learn the hierarchical object shape model consisting of
local contour fragments, which represents a category of
shapes in the form of an And-Or tree. This model ex-
tends the traditional hierarchical tree structures by intro-
ducing the “switch” variables (i.e. the or-nodes) that ex-
plicitly specify production rules to capture shape variations.
We thus define the model with three layers: the leaf-nodes
for detecting local contour fragments, the or-nodes specify-
ing selection of leaf-nodes, and the root-node encoding the
holistic distortion. In the training stage, for optimization
of the And-Or tree learning, we extend the concave-convex
procedure (CCCP) by embedding the structural clustering
during the iterative learning steps. The inference of shape
detection is consistent with the model optimization, which
integrates the local testings via the leaf-nodes and or-nodes
with the global verification via the root-node. The advan-
tages of our approach are validated on the challenging
shape databases (i.e., ETHZ and INRIA Horse) and sum-
marized as follows. (1) The proposed method is able to
accurately localize shape contours against unreliable edge
detection and edge tracing. (2) The And-Or tree model en-
ables us to well capture the intraclass variance.

1. Introduction
Detecting and localizing object shapes from images are

areas of active research. This paper studies a novel shape
detection method by learning the contour-fragment-based
shape model. We represent a category of shapes in the form
of a hierarchical And-Or tree, which can be automatically
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Figure 1. An example of shape model in the form of an And-Or
tree. It comprises three layers: the leaf-nodes for detecting local
contour fragments, the or-nodes specifying selection of leaf-nodes,
and the root-node encoding the holistic variance. The bold red
vertical lines represent the selection of leaf-nodes in the inference.

learned in a semi-supervised manner. Fig. 1 shows an ex-
ample of learned shape model for horses, consisting of three
layers. The bottom layer of the tree includes a batch of
leaf-nodes, i.e., the local classifiers used for localizing con-
tour fragments. The middle layer contains a set of or-nodes,
each of which explicitly represents a part of the shape and
specifies a few leaf-nodes for selection; intuitively, one or-
node can be viewed as a “switch” variable to activate only
one leaf-node at a time during inference. The top root-node
(i.e. the and-node) is a global classifier encoding the holistic
variance and distortion.
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Literature review. We review the related work in two as-
pects: shape (or contour) matching and shape model learn-
ing.

(i) Many methods pose the shape detection as a task
of matching contours in images, and they basically uti-
lize hand-drawn shapes as reference templates [3, 6, 26,
10, 13, 19, 15]. To overcome the difficulties of occlu-
sions (i.e. missing of true contours of objects) and incom-
plete (broken) contours, a number of robust shape descrip-
tors are extensively discussed such as Shape Context and
its extensions [3, 15, 26], Contour Flexiblity [22], Local-
angle [19, 13], as well as effective matching schemes, e.g.,
particle filtering [13], dynamic programming [6], stochas-
tic sampling [10]. For example, Zhu et al. [26] proposed to
achieve many-to-many matching of contours by using vot-
ing scheme. Riemenschneider et al. [19] addressed partial
shape matching by identifying matches from fragments of
arbitrary length to the reference contour.

(ii) An alternative to shape detection is achieved by
learning shape models for a given category of shape in-
stances. These methods represent shapes as a loose col-
lection of local contour fragments or an ensemble of pair-
wise constraints [20, 2, 12, 21]. They usually construct
a codebook of fragments (e.g., PAS [8] and salient con-
tours [20, 11]) and train the model by using the boost-
ing algorithm [20], SVM [21, 8], generative learning [14]
or Hough-style voting [17]. However, some of them are
limited to learning with clutter-free shape instances [4],
and some assume the shape configurations recurring consis-
tently which often suffer from large intraclass variance (e.g.
articulation) or highly inaccurate edge detection. Recently,
a state-of-the-art for object detection is achieved by [5],
where a tree-structure latent SVMs model is trained using
multi-scale HoG feature. It inspires us to define the tree
structure shape model; in addition, we extend the structure
by introducing the “switch” variables (i.e. the or-nodes) that
explicitly specify production rules to capture large shape
variations.

The key contributions of this work are as follows. First,
we propose the shape model in the form of an And-Or tree
that enables us to achieve superior performance compared
to the state-of-the-art approaches. Second, a novel opti-
mization algorithm is proposed to learn the model structure
and parameters simultaneously in a semi-supervised way.
There are four key components in our method.

The leaf-nodes in the And-Or tree model represent a set
of local classifiers of contour fragments. According to the
analysis in [15], one of the key challenges in shape detection
is that true contours of objects often connect to background
clutters due to unreliable edge detection and contour trac-
ing. Therefore, addressing this problem, we design a partial
matching scheme that can localize the correct part of the
contour with the local classifiers.

The or-nodes in the middle of the model (see Fig. 1)
are “switch” variables specifying the production rules for
leaf-node selection. Once a number of contour fragments
are detected and localized via the local classifiers, each or-
node is used to select one optimal contour fragment as a
part of the shape. The benefits of introducing the or-nodes
are obvious [11, 12]: they provide alternate ways of compo-
sition being significant to address the large intraclass vari-
ance. Moreover, we allow the or-nodes to slightly perturb
their locations during detection, which accounts for defor-
mation and distortion. In our implementation, we fix the
or-nodes in a layout of 2×3 blocks. As Fig. 1 illustrates,
in which each block of or-node is denoted by the red box,
our model can capture not only the local variant (e.g. part 2)
but also the inconsistency caused by edge missing or broken
(e.g. part 3).

The training of our shape model is posed as an opti-
mization problem of the And-Or tree learning that integrates
structure learning and parameter learning. We present a
framework based on the CCCP (concave-convex proce-
dure) [25] by embedding a clustering step during the iter-
ation, namely the dynamic CCCP (dCCCP).

The inference of shape detection is consistent with the
optimization of training, including two steps. We first per-
form the bottom-up testings using the leaf-nodes and or-
nodes. A number of candidate contour fragments are thus
obtained and some of them are activated via the or-nodes.
All the selected contour fragments are then combined to-
gether via the root-node for global verification.

The rest of this paper is organized as follows. We first
present the shape model with the And-Or tree representa-
tion in Section 2, and follow with a description of shape
model learning in Section 3. The experimental results and
comparisons are exhibited in Section 4. A conclusion is
presented in Section 5.

2. Shape Model with And-Or Tree
We introduce the shape model with three aspects: (i) a

descriptor of shape contour, (ii) the And-Or tree representa-
tion, and (iii) the inference with the learnt model.

2.1. Contour descriptor
We start by designing an effective contour descriptor that

combines the triangle-based feature proposed in [13] and
Shape Context [3]. As Fig. 2 illustrates, this descriptor is
suitable for a local contour fragment as well as a group of
contour fragments representing an object shape.

To describe a local contour fragment, we first extract a
sequence of sample points Ω from the contour fragment.
For each point in Ω, we compute its triangle-based descrip-
tor as well as the Shape Context descriptor. By combining
these two types of descriptors for each point in Ω, we obtain
a discriminative and deformation-tolerant descriptor for this
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Figure 2. Illustration of the contour descriptor. The shape context
feature ( in (a) ) and the triangle-based feature ( in (b) ) are com-
puted for a local contour fragment. (c) These two types of features
are also suitable for a group of contour fragments representing the
shape instance.

contour fragment. As for describing an object shape rep-
resented by several contour fragments, the points in Ω are
selected from the whole object shape.

Given a point T∈Ω, the triangle-based descriptor is a
histogram of all triangles constructed by T and any other
two different points A,B∈Ω (Fig. 2(b)). More precisely, it
is a 3D histogram of the angles BTA, and two distances
TA and TB. Note that triangle BTA is oriented clockwise
and distances TB and TA are normalized by the average
distance between points in Ω. As for the Shape Context
descriptor, it considers the lengths and orientations of the
vectors from T to all other points in Ω.

In our implementation, the number of sample points in
Ω is fixed to 20, and the distances between adjacent points
in Ω are equal. We represent the 3D histogram with 2 bins
for distance TA, 2 bins for distance TB, and 6 bins for an-
gle BTA ranging from 0 to π. We then transform the 3D
histogram into a 2×2×6=24-bin 1-D feature vector. As for
representing the Shape Context descriptor, we use 2 bins
for vector distances, and 6 bins for vector orientations rang-
ing from 0 to 2π. The length of the 1-D feature vector of
Shape Context is 2×6=12 dimensions. By combining these
two descriptors as a composite descriptor, the feature vec-
tor of the whole point sequence Ω is the ensemble of the
composite descriptor of each point in Ω, with the length
(24+12)×20=720 dimensions.

2.2. AndOr Tree Representation
Our model is defined with three types of nodes in three

layers: one root-node (i.e. the and-node), and a number of
or-nodes and leaf-nodes described by square, dashed circle
and solid circle, respectively, in Fig. 1. The root and-node
represents the whole object, and it has 6 children (or-nodes)
in a layout of 2×3 blocks, each representing one part of a

shape. The number of leaf-nodes is unfixed but less than m
for each or-node. Assume the maximum number of nodes in
the model is 1+n=1+6+6×m: 0 indexes the root node, i=
1,...,6 indexes the or-nodes and j=7,...,n indexes the leaf-
nodes. We also define that j∈ch(i) indexes the child nodes
of node i. Note that we index m leaf-nodes for each or-node
even if some of them do not exist, whose parameters are set
as 0. We present the definitions for the three types of nodes
as follows.

Leaf-node: Each leaf-node Lj ,j=7,...,n is one classifier
of local contour fragment corresponding to its parent node.
All leaf-nodes belonging to the same or-nodes (the localized
block) have the same location in the image. Suppose the
location of the block is pi=(pxi ,p

y
i ) and a contour fragment

cj is selected as input of the classifier. We denote ϕl(pi,cj)
as the feature vector using the contour descriptor. Note that
only the part of cj inside the block is taken into account,
as Fig. 2 illustrates. If the contour cj is entirely out of the
block, ϕl(pi,cj)=0. Therefore, the response of classifier Lj

for cj in location pi is defined as:

Rj(pi,cj)=ωl
j ·ϕl(pi,cj), (1)

where ωl
j is a parameter vector. We set ωl

j=0 if the leaf-
node Lj is empty.

Or-node: Each or-node Ui,i=1,...,6 is used to specify
an appropriate contour fragment from a set of detection can-
didates via its children leaf-nodes Lj .

In order to encode the shape deformation, the or-nodes
are allowed to perturb slightly with respect to the shape
instance. For each or-node Ui, we introduce an offset
di=(dxi ,d

y
i ) to describe the expected spatial position rela-

tive to the position of root node p0=(px0 ,p
y
0). Suppose the

or-node block is located at pi=(pxi ,p
y
i ), the difference be-

tween pi and the expected position is (dx,dy), in which
dx=pxi −(px0+dxi ) and dy=pyi−(py0+dyi ). Therefore, given
the or-node Ui, the cost for the deformation of a leaf-node
Lj is defined as:

Costi,j(p0,pi)=ωs
j ·ϕs(p0,pi), (2)

where ϕs(p0,pi)=(dx,dy,dx2,dy2) is the deformation fea-
ture, and ωs

j is a 4-dimensional parameter vector for Lj , we
set ωs

j=0 if Lj is empty.
The advantages are very clear for introducing the or-

nodes in the tree structure. (1) The intraclass variance and
inconsistency caused by edge computation can be captured
by different leaf-nodes specified by the or-nodes. (2) The
location flexibility of or-nodes can deal with the non-rigid
deformation or local displacement of shapes.

Root-node: The root node at the top is a global classifier
for a set of contour fragments Cr proposed by the or-nodes.
The response of the root-node is defined similarly with the
local classifiers for the leaf-nodes, as:

G(Cr)=ωr·ϕr(Cr), (3)
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where ϕr(Cr) is the feature vector of Cr and ωr is the cor-
responding parameter vector.

2.3. Inference with AndOr Tree
Given the learnt And-Or tree model, the inference task is

to localize optimal contour fragments within the detection
window. The target shape (i.e. the root-node) is located by
sliding the detection window at all positions and scales of
the edge map X . Assuming the location of the root-node is
p0=(px0 ,p

y
0), we describe the inference as follows.

• Bottom-up local testing: For each leaf-node Lj , as-
sume the block of its parent Ui is located at pi. The detec-
tion score of Lj is calculated by selecting a contour frag-
ment with the highest classifier response,

SLj
(X,pi) = max

cj∈X
Rj(pi,cj)

= max
cj∈X

ωl
j ·ϕl(pi,cj). (4)

The detection score of the or-node Ui is calculated by
specifying a contour from the candidates localized by its
children leaf-nodes. The deformation cost for the block of
Ui is taken into account as well. For clear definition, we
introduce an auxiliary “switch” vector vi=(vj1 ,vj2 ,...,vjm)
, where vj∈{0,1} and ||vi||=1, to indicate which contour is
chosen from m candidates via Ui. Therefore, the score of
the or-node is defined as,

SUi(X,p0)=max
vi,pi

∑
j∈ch(i)

(SLj (X,pi)·vj−Costi,j(p0,pi)·vj)

=max
vi,pi

∑
j∈ch(i)

max
cj∈X

(ωl
j ·ϕl(pi,cj)·vj−ωs

j ·ϕs(p0,pi)·vj)

= max
vi,pi,ci

∑
j∈ch(i)

(ωl
j ·ϕl(pi,cj)·vj−ωs

j ·ϕs(p0,pi)·vj), (5)

where ci is a vector representing the input contours for each
children leaf-node, ci=(cj1 ,cj2 ,...,cjm).

(a) (b)

Figure 3. Illustration of shape detection. The red boxes denote
bottom-up testings with the leaf-nodes and or-nodes, and the green
box global verification via the root-node. The two detections ( in
(a) and (b) ) have the similar scores of bottom-up testings (i.e.,
0.561:0.364) but different scores at the root-node (i.e., 0.093 :
−0.458).

• Verification via the root-node: We obtain a set of con-
tours based on the local proposals, Cr={ci} where ci is a
contour activated by Ui. Then the verification is achieved

by calculating the response of root-node defined in Equa-
tion(3). As a result, the overall inference score within the
detection window is defined as,

S(X,p0)=

6∑
i=1

SUi(X,p0)+G(Cr)

=

6∑
i=1

max
vi,pi,ci

∑
j∈ch(i)

(ωl
j ·ϕl(pi,cj)·vj−ωs

j ·ϕs(p0,pi)·vj)

+ωr·ϕr(Cr)

=max
V,P,C

6∑
i=1

∑
j∈ch(i)

(ωl
j ·ϕl(pi,cj)·vj−ωs

j ·ϕs(p0,pi)·vj)

+ωr·ϕr(Cr), (6)

where V is a joint vector for each vi: V=(v1,...,v6)=
(v7,...,vn), C a joint vector for each ci: C=(c1,...,c6)=
(c7,...,cn) and P a vector of the positions of or-nodes:
P=(p1,...,p6). We define H=(V,P,C) , and Equation(6)
can be simplified as,

S(X,p0)=max
H

ω·ϕ(X,H,p0), (7)

where ω is the vector of model parameters and ϕ(X,H,p0)
is the feature vector,

ω=(ωl
7,...,ω

l
n,−ωs

7,...,−ωs
n,ω

r). (8)

ϕ(X,H,p0)=(ϕl(p1,c7)·v7,···,ϕl(p6,cn)·vn,
ϕs(p0,p1)·v7,···,ϕs(p0,p6)·vn,ϕr(Cr)). (9)

We present an example to illustrate the inference with
the shape model in Fig. 3. The leaf-nodes are used to local-
ize candidate contour fragments and or-nodes to specify the
optimal ones; the red boxes denote the results of bottom-up
testings. Then we perform the global verification via the
root node denoted by the green box, whose significance can
be clearly demonstrated in the false positive shown in Fig. 3
(b): the aggregation of local similarities needs to be verified.

3. Discriminative Learning for And-Or Tree
The learning of And-Or tree model is an optimization

problem that integrates structure learning and parameter
learning. The proposed learning framework enables us to
learn the structure and the parameters of the model in an al-
ternative way, which is an extension of the original CCCP
proposed in [24]. The significance of this algorithm is as
follows. First, we can adjust the layout of parts (decided by
the or-nodes) accounting for shape variants within the data.
Second, the leaf-nodes can be automatically merged and
created to fit the inferred latent variables. More specifically,
two leaf-nodes having similar discriminative ability (i.e. to
localize similar contours) are encouraged to be merged into
one node; one new leaf-node is encouraged to be created
for detecting the contours that cannot be handled by current
model.

138



... ... ... ... ... ... 2 6 2 62 6

(a) (b) (c)

Figure 4. Illustration of structure clustering during the learning
iterations. We visualize parts of the model in three intermediate
steps. Note that each part implies an or-node in the model. (a) The
initial structure, i.e. the original regular layout. Two new struc-
tures are generated along with the changing of latent variables. (b)
Two leaf-nodes belonging to part 2 are merged together. (c) A new
leaf-node is created and assigned to part 6.

3.1. Optimization Formulation
Given a set of positive and negative training samples

(X1,y1),...,(XN ,yN ), where X is the edge map within the
detection window, y=±1 is the label for X . We assume
the first K samples indexed from 1 to K are positive sam-
ples. Letting y=1 denote the positive samples and y=−1
the negative samples, we define the feature vector for each
sample (X,y) as,

ϕ(X,y,H)=

{
ϕ(X,H) if y=+1
0 if y=−1

, (10)

where H is the latent variables for X , ϕ(X,H) is equiv-
alent to ϕ(X,H,p0), since the position of root-node p0 is
fixed. Thus Equation(7) can be rewritten as a discrimina-
tive function,

Sω(X)=argmaxy,H(ω·ϕ(X,y,H)). (11)

We can learn the discriminative function(i.e. Equa-
tion(11)) by optimizing the target using structural SVM
with latent variables, as,

min
ω

1

2
∥ω∥2+D

N∑
k=1

[max
y,H

(ω·ϕ(Xk,y,H)+L(yk,y,H))

−max
H

(ω·ϕ(Xk,yk,H))], (12)

where D is a fixed penalty parameter (set as 0.005 em-
pirically), L(yk,y,H) is the loss function. L(yk,y,H)=0 if
yk=y, else L(yk,y,H)=1 in our detection problem.

The optimization target defined in Equation(12) is non-
convex. The CCCP framework was recently proposed
in [24, 25] to convert it into a convex and concave form and
obtain a local optimum solution. Following this framework,

we rewrite the target as

min
ω

[
1

2
∥ω∥2+D

N∑
k=1

max
y,H

(ω·ϕ(Xk,y,H)+L(yk,y,H))] (13)

−[D

N∑
k=1

max
H

(ω·ϕ(Xk,yk,H))] (14)

=min
ω

[f(ω)−g(ω)], (15)

where f(ω) represents the first two terms in (13), and
g(ω) represents the last term in (14). However, the orig-
inal CCCP relies on the assumption that the tree structure
is fixed during the learning iterations, which is not suitable
for our goal, as we need to simultaneously learn the And-Or
structures. An extension of CCCP, namely dynamic CCCP
(dCCCP) is thus proposed to embed structural clustering
into the model parameter learning.

3.2. Optimization with dynamic CCCP
In our learning algorithm, we allow the structure of our

model to be dynamically adjusted during each iteration of
learning, as Fig. 4 illustrates. The proposed dCCCP frame-
work iterates with the following three steps.

Step 1. For optimization, we first need to construct a
hyperplane that upper bounds the concave part −g(ω) of
the target function. Given the parameter vector ωt learned
from the previous iteration, we find the hyperplane qt such
that

−g(ω)≤−g(ωt)+(ω−ωt)·qt,∀ω. (16)

It is performed by searching the best latent variable for each
training data H∗

k=argmaxH(ωt·ϕ(Xk,yk,H)). Note that
ϕ(Xk,yk,H)=0 when yk=−1, thus we only need to esti-
mate the latent variables for positive training data. Then the
hyperplane is constructed as qt=−D

∑N
k=1ϕ(Xk,yk,H

∗
k).

Step 2. Given H∗
k=(V ∗

k ,P
∗
k ,C

∗
k) of all positive samples,

the contour fragments can be localized from each positive
sample Xk. For each or-node Ui, we obtain a set of ac-
tivated contour fragments {c1i ,c2i ,...,cKi } from all positive
samples {X1,...,XK}. Among this set, we first group the
fragments detected via the same leaf-node into the same
cluster as a temporary partition, and then apply ISODATA
algorithm to perform re-clustering on these contour frag-
ments. Each contour fragment cki is described by the fea-
ture ϕl(pi,c

k
i ) and the Euclidean distance is adopted during

the clustering. The number of clusters are limited to m with
regard to the parameter ω. After clustering, each cluster
represents a “potential” leaf-node whose parameters will be
trained in the step 3. We need to decide the new structure in
this step and thus assign these potential leaf-nodes to parent
or-nodes.

The latent variables Hd
k for each positive sample is also

changed from H∗
k along with the structure adjustment. Sup-

pose the new hyperplane is qdt=−D
∑N

k=1ϕ(Xk,yk,H
d
k ).
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To maintain the property in Equation(16), we constrain the
newly generated qdt by ∥qt−qdt ∥<ε during the clustering
procedure, where ε is set manually. Intuitively, we check
the constraints in each step of splitting or merging clusters,
which is used to restrict the structure adjustment in an ap-
propriate level.

Step 3. Given the latent variables and newly generated
structure, the parameters of the model are learned by solv-
ing the optimization problem: ωt+1=argminω[f(ω)+ω·
qdt ]. By substituting f(ω) with the first two terms in Equa-
tion(13), it can be written as,

min
ω

1

2
∥ω∥2+D

N∑
k=1

[max
y,H

(ω·ϕ(Xk,y,H)+L(yk,y,H))

−ω·ϕ(Xk,yk,H
d
k )]. (17)

This is a standard structural SVM problem, let
∆ϕ(Xk,y,H)=ϕ(Xk,yk,H

d
k )−ϕ(Xk,y,H), the solution

can be expressed as,

ω∗=D
∑
k,y,H

α∗
k,y,H∆ϕ(Xk,y,H), (18)

where α∗ can be obtained by maximizing the dual function:

max
α

∑
k,y,H

αk,y,HL(yk,y,H)

−D

2

∑
k,k′

∑
y,H,y′,H′

αk,y,Hαk′,y′,H′∆ϕ(Xk,y,H)∆ϕ(Xk′ ,y′,H ′),

(19)

which is a dual problem in standard SVM. We solve this
problem by applying the cutting plane method [1] and Se-
quential Minimal Optimization [18]. Once the parameters
ωt+1 is obtained, we repeat the 3-step iteration until the
function defined in Equation(15) converges.

3.3. Initialization
At the beginning of learning, the block of each or-node is

set by regular decomposition, i.e., (dx,dy)=(0,0). Since no
leaf-node stands at the beginning, given the positive sam-
ples, we select the contours with largest length for each
or-node. The structure of our shape model is initialized
by clustering without any constrains, and the initial latent
variables are obtained accordingly. The parameters of the
initialized model can be calculated by solving the standard
structural SVM problem.

Algorithm 1 summarizes the overall algorithm of learn-
ing shape model with the And-Or tree.

4. Experiments
We apply the proposed method on shape detection from

images, using the ETHZ database [8] and the INRIA-Horse
database [9] for validation.

Algorithm 1 Learning Shape Model of the And-Or tree.
Input:

positive and negative training samples,
{Xk,yk}+

∪
{Xk′ ,yk′}−,k=1..K,k′=K+1..N .

Output:
The structure and parameters of the shape model.

Initialization:

1 Initialize the structure of model and the latent variables.
2 Initialize the parameters of model.

repeat
1 Estimate the latent variables H by applying inference on each

positive sample (Xk,yk) with the current model.
2 (a) Localize the contour fragments for each sample (Xk,yk)

using the current latent variables H∗
k .

(b) For each or-node Ui, apply the clustering algorithm with
constrains on the contours {c1i ,c2i ,...,cKi } localized in the
same block.

(c) Explore a new structure by re-assigning leaf-nodes with or-
nodes and modifying the latent variables for each sample
from H∗

k to Hd
k .

3 Estimate the model parameters ω with the fixed model structure
and latent variables Hd.

until The target function defined in Equation(15) converges.
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Figure 5. The precision-recall curves on the ETHZ database. The
black (bold) curves represent the results of our method, and the
other curves are reported from the previous works.

Experiment setting. We fix the number of or-nodes in the
shape model as 6, and the initial layout is a regular partition
(e.g. 2×3 blocks). The maximum number of leaf-nodes
for each or-nodes are set as 3. The shape model training
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Applelogos Bottles Giraffes Mugs Swans Average
Our method 0.909 0.898 0.811 0.893 0.964 0.895
Ma et al. [15] 0.881 0.920 0.756 0.868 0.959 0.877
Srinivasan et al. [21] 0.845 0.916 0.787 0.888 0.922 0.872
Maji et al. [17] 0.869 0.724 0.742 0.806 0.716 0.771
Felz et al. [6] 0.891 0.950 0.608 0.721 0.391 0.712
Lu et al. [13] 0.844 0.641 0.617 0.643 0.798 0.709

Table 1. Quantitative results and comparisons with average precision (AP) on the ETHZ database.

is performed in a semi-supervised manner; the clutter-free
contours of positive shapes are labeled and the structures of
the models are determined automatically. We extract edge
maps for negative examples using the Pb edge detector [16]
with an edge link algorithm. We adopt PASCAL Challenge
criterion as the testing standard: a detection is counted as
valid only if the intersection-over-union ratio (IoU) with the
groundtruth bounding-box is greater than 50%, otherwise
detections are counted as false positives. We also submit all
the results of shape detection generated by our method in
the supplemental material.

The learning algorithm converges after 5∼7 iterations.
During detection, images were searched at 6 different
scales, 2 per octave. We carry out the experiments on a
PC with Core Duo 3.0 GHZ CPU and 16GB memory. On
average, it takes 4∼8 hours for training a shape model, de-
pending on the numbers of training/testing examples; the
time cost for a detection on a image is around 2∼3 minutes.

Experiment I. We use all five classes of shapes from
the ETHZ database, (i.e., Apples, Bottles, Giraffes, Mugs
and Swans). There are 32∼87 images in each class, and
each image includes at least one shape instance. In the ex-
periments, half of images for each category are randomly
selected as positive examples, and a comparative number
of negative examples (70∼90) extracted from the remain-
ing categories or backgrounds. The trained shape mod-
els for each category are tested on the remaining images.
A few typical experimental results are shown in Fig. 6
(a). For quantitative evaluation, we adopt the Precision-
Recall (PR) curves and the average precision (AP) as bench-
mark metrics, and compare with the state-of-the-art meth-
ods [17, 21, 6, 13, 15]. The quantitative results are reported
in Fig. 5 and in Table 1. Our method outperforms on 4
categories (i.e. Apples/Mugs/Giraffes/Swans) which have
relatively large intraclass variance or complex backgrounds.

Experiment II. The INRIA-Horse dataset consists of
170 images with one or more horses and 170 images with-
out horses, which is more challenging than the ETHZ
database. Horses appear in images at several scales, and
against occlusions and cluttered backgrounds. We ran-
domly select 50 positive examples and 80 negative exam-
ples for training and test on the remaining images. Fig. 7
reports the recall against the number of false-positives av-

(a)

(b)

Figure 6. A few representative shape detection results generated
by our method. Two false positives in (a) are labeled by the bold
blue frames.

eraged over all 210 test images (FPPI). Compared with the
recently proposed methods, our system substantially per-
forms better: we achieve a detection rate of 91.2% at 1.0
FPPI; the reported results of the competing algorithms are:
87.3% in [23], 85.27% in [17], 80.77% in [8], and 73.75%
in [7]. From the results of shape detection, some of them
are exhibited in Fig. 6 (b), the improvements are basically
made by the accurate location in the context of (i) inconsis-
tent shape contours (caused by pose variants or occlusions)
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and (ii) noisy edge maps.
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Figure 7. Experimental results with the recall-FPPI measurement
on the INRIA-Horse database.

5. Summary
This paper studies a novel contour-fragment-based shape

model with the And-Or tree representation. This model ex-
tends the traditional hierarchical tree structures by introduc-
ing the or-nodes that explicitly specify production rules to
capture shape variations. Our approach achieves the state-
of-art of shape detection on the ETHZ and INRIA-Horse
databases. Moreover, the algorithm of And-Or tree learning
is very general and can be applied to other vision tasks.
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