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ABSTRACT

This paper aims at task-oriented action prediction, i.e., pre-
dicting a sequence of actions towards accomplishing a spe-
cific task under a certain scene, which is a new problem in
computer vision research. The main challenges lie in how to
model task-specific knowledge and integrate it in the learn-
ing procedure. In this work, we propose to train a recurrent
long-short term memory (LSTM) network for handling this
problem, i.e., taking a scene image (including pre-located ob-
jects) and the specified task as input and recurrently predict-
ing action sequences. However, training such a network usu-
ally requires large amounts of annotated samples for covering
the semantic space (e.g., diverse action decomposition and
ordering). To alleviate this issue, we introduce a temporal
And-Or graph (AOG) for task description, which hierarchi-
cally represents a task into atomic actions. With this AOG
representation, we can produce many valid samples (i.e., ac-
tion sequences according with common sense) by training an-
other auxiliary LSTM network with a small set of annotated
samples. And these generated samples (i.e., task-oriented ac-
tion sequences) effectively facilitate training the model for
task-oriented action prediction. In the experiments, we create
a new dataset containing diverse daily tasks and extensively
evaluate the effectiveness of our approach.

Index Terms— Scene understanding, Task planning, Ac-
tion prediction, Recurrent neural network

1. INTRODUCTION

Automatically predicting and executing a sequence of actions
given a specific task would be one quite expected ability for
intelligent robots [1]. For example, to complete the task
of “make tea” under the scene shown in Figure 1, an agent
need to plan and successively execute a number of steps, e.g.,
“move to the tea box”, “grasp the tea box”. In this paper
we aim to train a neural network model to enable such a ca-
pability, which was rarely addressed in computer vision and
multimedia research.

L. Huang and T. Chen share equal authorship. This work was supported
by State Key Development Program under Grant 2016YFB1001004 and Na-
tional Natural Science Foundation of China under Grant 61622214.

solution 1

A1: {move to, tea-box}
A2: {grasp, tea-box}
A3: {open, tea-box}

A7: {pour into, cup}

A4: {grasp, tea-box}
A5: {put into, cup}
A6: {move to, water-dis}

solution 2

A1: {move to, tea-box}
A2: {grasp, tea-box}
A3: {open, tea-box}

A7: {pour into, cup}

A4: {grasp, tea-box}
A5: {put into, cup}
A6: {grasp, pot}

cup
tea- box

pot

water-dis

How to 
make tea ?

Fig. 1. Two alternative action sequences for completing the
task “make tea” under a specific office scene, which are in-
ferred according to joint understanding of the scene image
and task semantics. An agent can achieved this task by suc-
cessively executing either of the sequences.

We regard this above discussed problem as task-oriented
action prediction, i.e., predicting a sequences of atomic ac-
tions towards accomplishing a specific task. And we refer
an atomic action as a primitive action operating on an ob-
ject, denoted in the form of two-tuples A = (action, object).
Therefore, the prediction of action sequences depends on not
only the task semantics (i.e., how the task to be represented
and planned) but also the visual scene image parsing (e.g.,
recognizing object categories and their spatial relations in the
scene). Since recent advanced deep convolutional networks
(CNNs) achieve great successes in object categorization and
localization, in this work we assume that objects are correctly
located in the given scene. However, this problem remains
challenging due to the diversity of action decomposition and
ordering, long-term dependencies among atomic actions, and
large variation of object layout in the scene.

We develop a recurrent long-short term memory (LSTM)
[2] network to harness the problem of task-oriented action
prediction, since LSTM models has been demonstrated their
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effectiveness on capturing long range sequential dependen-
cies, especially for the tasks like machine translation [3] and
image captioning [4]. These approaches usually adopt the
encoder-decoder architecture, in which an encoder first en-
codes the input data (e.g., an image) into a semantic-aware
feature representation and a decoder then decodes this rep-
resentation into the target sequence (e.g., a sentence descrip-
tion). In this work, we interpret the input image into a vec-
tor that contains the information of object categories and lo-
cations and feed it into the LSTM network (named Action-
LSTM) with the specified task, and the network is capable of
generating the action sequence through the encoder-decoder
learning.

In general, it usually requires large amounts of annotated
samples to train LSTM networks, especially for tackling the
complex problems such as task-oriented action prediction. To
overcome this issue, we present a two-stage training method
by employing a temporal And-Or graph (AOG) representa-
tion [5, 6]. First, we define the AOG for task description,
which hierarchically decomposes a task into atomic actions
according to their temporal dependencies. In this semantic
representation, an and-node represents the chronological de-
composition of a task (or sub-task); an or-node represents the
alternative ways to complete the certain task (or sub-task);
leaf-nodes represent the pre-defined atomic actions. The
AOG can thus contain all possible action sequences for each
task by embodying the expressiveness of grammars. Specifi-
cally, given a scene image, a specific action sequence can be
generated by selecting the sub-branches at all of the or-nodes
with a Depth-First Search (DFS) manner. Second, we train
an auxiliary LSTM network (named AOG-LSTM) to predict
the selection at the or-nodes in the AOG, and can thus pro-
duce a large number of new valid samples (i.e., task-oriented
action sequences) that can be used for training the Action-
LSTM. Notably, training the AOG-LSTM requires only a few
manually annotated samples (i.e., scene images and the corre-
sponding action sequences), because making selection in the
context of task-specific knowledge (represented by the AOG)
is seldom ambiguous.

The main contributions of this paper are two-folds. First,
we raise a new problem called task-oriented action predic-
tion and create a benchmark (including 13 daily tasks and
861 RGB-D images captured from 16 scenarios)1. Second,
we propose a general approach for incorporating complex se-
mantics into the recurrent neural network learning, which can
be generalized to various high-level intelligent applications.

2. RELATED WORK

We review the related works according to two main research
steams: task planning and recurrent sequence prediction.
Task planning. In literature, task planning (aslo referred to
symbolic planning [7]) has been traditionally formalized as

1For more details please refer to http://hcp.sysu.edu.cn/.

the deduction [8] or satisfiability [9] problems for a long pe-
riod. Sacerdoti et al. [10] introduced hierarchical planning,
which first planned abstractly and then generated fine-level
details. Yang et al. [11] utilized the PDDL representation for
actions and developed an action-related modeling system to
learn an action model from a set of observed successful plans.
Some works also combined symbolic with motion planning
[12]. Cambon et al. [13] regarded symbolic planning as a con-
straint and proposed a heuristic function for motion planning.
Plaku et al. [14] extended the work and planned with geo-
metric and differential constraints. Wolfe et al. [15] proposed
a hierarchical task and motion planning algorithm based on
the hierarchical transition networks. Although working quite
well in the controlled environments, these methods required
encoding every precondition for each operation or domain
knowledge, and they could hardly generalize to the uncon-
strained environments with large variance [7]. Most recently,
Sung et al. [7] represented the environment with a set of at-
tributes, and proposed to use the Markov Random Field to
learn the sequences of controllers to complete the given tasks.
Recurrent sequence prediction. Recently, the recurrent neu-
ral networks has been widely used in various sequence pre-
diction tasks, including natural language generation [2], ma-
chine translation [3], and image captioning [4]. These works
adopted the similar encoder-decoder architecture for solving
sequence prediction. Cho et al. [3] mapped the free-form
source language sentence into the target language by utilizing
the encoder-decoder recurrent network. Vinyals et al. [4] ap-
plied the similar pipeline for image captioning, which utilized
a CNN as the encoder to extract image features and an LSTM
network as the decoder to generate the descriptive sentence.

3. LSTM BACKGROUND

We start by briefly introducing the technical background of
recurrent LSTM networks. The LSTM is developed for mod-
eling long-term sequential dependencies. In addition to the
hidden state ht, the network contains an extra memory cell ct,
input gate it, forget gate ft, and output gate ot. The key ad-
vantage of LSTM is its ability to remove useless information
and store new knowledge through the memory cell. These be-
haviors are carefully controlled by the gates, which optionally
let the information through. Let σ(·) and tanh(·) be the sig-
moid and the hyperbolic tangent functions, respectively. The
computation process of LSTM can be expressed as below:

it = σ(Wi [xt,ht−1] + bi)

ft = σ(Wf [xt,ht−1] + bf )

ot = σ(Wo [xt,ht−1] + bo)

ct = ft � ct−1 + it � tanh(Wg [xt,ht−1] + bg)

ht = ot � tanh(ct)

(1)

where xt is the input at time-step t, and � denotes the
element-wise multiplication operation. The hidden state ht

http://hcp.sysu.edu.cn/
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{grasp, cup}{move to, cup}
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grasp pot
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(a)

action sequence

A4: {pour into, cup}

A3: {grasp, pot}

A2: {grasp, cup}

A1: {move to, cup}

cup
pot

parsing graph

cup

water-dis

action sequence

A4: {pour into, cup}

A3: {move to, water-dis}

A2: {grasp, cup}

A1: {move to, cup}

parsing graph

pour water with the cup

{grasp, cup}{move to, cup}

pour into cup

take cup pour water from pot

grasp cupmove to cup grasp pot

{grasp, pot} {pour into, cup}

pour water with the cup

{grasp, cup}{move to, cup}

move to water- dis pour into cup

{pour into, cup}

take cup pour water from water-dis

grasp cupmove to cup

{move to, water-dis}

(b)

Fig. 2. An example of temporal And-Or graph for describing the task “pour water with the cup” shown in (a) and two parsing
graphs and their corresponding action sequences under two specific scenes shown in (b).

can be fed to the softmax layer for prediction. We de-
note the computation process of equation (1) as [ht, ct] =
LSTM(xt,ht−1, ct−1) for notation simplification.

4. TASK REPRESENTATION

In this section, we introduce the temporal And-Or graph
(AOG), which captures rich task-specific knowledge and en-
ables to produce large amounts of valid training samples.

4.1. Temporal And-Or graph

The AOG is defined as a 4-tuple set G = {S, VN , VT , P}. S
is the root node denoting a task. The non-terminal node set
VN contains both and-nodes and or-nodes. An and-node rep-
resents the decomposition of a task to its sub-tasks in chrono-
logical order. An or-node is a switch, deciding which alter-
native sub-task to select. Each or-node has a probability dis-
tribution pt (the t-th element of P ) over its child nodes, and
the decision is made based on this distribution. VT is the set
of terminal nodes. In our AOG definition, the non-terminal
nodes refer to the sub-tasks and atomic actions, and the ter-
minal nodes associate a batch of atomic actions. In this work,
we manually define the structure of the AOG for each task.

According to this representation, the task “pour water
with the cup” can be represented as the AOG shown in Figure
2(a). The root node denotes the task, and it is first decom-
posed into two sub-tasks, i.e., “grasp the cup” and “pour wa-
ter into the cup”, under the temporal constraint. The “grasp
the cup” node is an and-node and can be further decomposed
into “move to the cup” and “take the cup” in chronological
order. The “pour water into the cup” node is an or-node, and
it has two alternative sub-branches, i.e., “pour water with the
water dispenser” and “pour water with the pot”. Finally, all
the atomic actions are treated as the primitive actions and as-
sociated objects, which are represented by the terminal nodes.
In this way, the temporal AOG contains all possible action se-
quences of the corresponding task in a syntactic way.
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Fig. 3. The architecture of AOG-LSTM. It is designed for
selecting the sub-branches at all of the or-nodes in a temporal
And-Or graph.

4.2. Sample generation with And-Or graph

In addition to capturing the task semantics, the AOG repre-
sentation enables to generate large amount of valid samples
(i.e., action sequences extracted from the AOG), which are
significant for the recurrent neural network learning. Ac-
cording to the definition of the AOG, a parsing graph, which
corresponds to a specific action sequence (e.g., Figure 2(b)),
will be generated by selecting the sub-branches for all the or-
nodes searched in a DFS manner given a new scene image.
Since the explicit temporal dependencies exist among these
or-nodes, we can recurrently activate these selections by uti-
lizing a LSTM network, i.e., AOG-LSTM.

As illustrated in Figure 3, our model first extracts the fea-
tures of the given scene image and the task, and maps them
to a feature vector, which serves as the initial hidden state
of the AOG-LSTM. It then encodes the initial AOG as an
adjacency matrix. The matrix is further re-arranged to be a
vector, which is fed into the AOG-LSTM to predict the sub-
branch selection of the first or-node. Meanwhile, the AOG is
updated via pruning the unselected sub-branches. Note that



pour water 

with the cup

graspmove to

LSTM LSTM

cup cup

{pour into, cup}{move to, cup}{start, start}

LSTM

stop

…

stop

cup

pot

Fig. 4. The architecture of Action-LSTM for predicting the
atomic action sequence given a specific task.

the AOG is updated based on the annotated and predicted se-
lection during training and test stages, respectively. Based on
the updated AOG, the same process is conducted to predict
the selection of the second or-node. The process is repeated
until all or-nodes have been visited, and a parsing graph is
then constructed. We denote the image and task features as
f I and fT , the AOG features at time-step t as fAOG

t . The
prediction at time-step t can be expressed as:

c0 = 0; h0 = Whf [f
I , fT ]

[ht, ct] = LSTM(fAOG
t ,ht−1, ct−1)

pt = softmax(Whpht + bp)

(2)

where pt is the probability distribution over all child branches
of the t-th or-node, and the one with maximum value is se-
lected. Making selection at the or-nodes is less ambiguous
since the AOG representation effectively regularizes the se-
mantic space. Thus, we can train the AOG-LSTM only using
a small number of annotated samples. Specifically, we col-
lect a small set of samples annotated with the selections of
all or-nodes given a scene image for each task and define the
cross-entropy objective function to train the AOG-LSTM.

Once the AOG-LSTM is trained, we adopt it to predict
the sub-branch selections for all the or-nodes in the And-Or
graph given different scene images, and generate the corre-
sponding action sequences. In this way, a relative large set
of (I, T,A) samples is obtained, where I , T , A represent the
image, task and predicted sequence, respectively. More im-
portantly, it can also generate samples of unseen tasks using
identical process in which the AOG structures for the new
tasks are also manually defined. These newly generated sam-
ples effectively alleviate the suffering of manually annotating
large mounts of samples in practice.

5. RECURRENT ACTION PREDICTION

We formulate the problem of task-oriented action prediction
in the form of probability estimation p(A1, A2, ..., An|I, T ),
where I and T are the given scene image and the task, and
{A1, A2, ..., An} denotes the predicted sequence. Based on
the chain rule, the probability can be recursively decomposed
as:

p(A1, A2, ..., An|I, T ) =
n∏

t=1

p(At|I, T,At−1), (3)

where At−1 denotes {A1, A2, ..., At−1} for convenient illus-
tration. The atomic action is defined as Ai = (ai, oi). In
this work, we simplify the model by assuming the indepen-
dence between the primitive actions and the associated ob-
jects. Thus the probability can be expressed as:

p(At|I, T,At−1) = p(at|I, T,At−1)p(ot|I, T,At−1). (4)

Here we develop the Action-LSTM network to model
the probability distribution, i.e., equation (3). Specifically,
the Action-LSTM first applies the same process with AOG-
LSTM to extract the features of the task and image, which is
also used to initialize the hidden state of LSTM. At each time-
step t, two softmax layers are utilized to predict the proba-
bility distributions p(at) over all primitive actions and p(ot)
over all associated objects. The conditions on the previous
t − 1 actions can be expressed by the hidden state ht−1 and
memory cell ct−1. The action prediction at time-step t can be
computed by:

c0 = 0; h0 = Whf [f
I , fT ]

[ht, ct] = LSTM(fAt ,ht−1, ct−1)

p(at) = softmax(Wahht + ba)

p(ot) = softmax(Wohht + bo)

(5)

where fAt is the feature vector of the atomic action. Figure
4 gives an illustration of the Action-LSTM. At the training
stage, we define the objective function as the sum of the nega-
tive log likelihood of correct sequence over the whole training
set, including the manually-annotated and the automatically-
generated samples, to optimize the network.

6. EXPERIMENTS

6.1. Experimental setting

Dataset. To well define the problem of task-oriented action
prediction, we create a large dataset that contains 13 daily
tasks described by the AOGs and 861 RGB-D scene images.
We define 4 general daily tasks, i.e., “make tea”, “make ra-
men”, “pour water”, “wash apple”, and 9 derived ones, i.e.,
“pour water with cup”, “make tea using water from water-
dispenser”, etc. The derived tasks are similar to the general
ones but with some required objects specified. The images
are captured from 16 scenarios of 5 daily environments, i.e.,
lab, dormitory, kitchen, office and living room. All of the ob-
jects in these images are annotated with their class labels and
location coordinates. As described above, the atomic action
is defined as two-tuples, i.e., a primitive action and its associ-
ated object. In this dataset, we define 7 primitive actions, i.e.,
“open”, “grasp”, “put into”, “move to”, “put under”, “pour
into”, “wash”, and 10 associated objects, i.e., “bowl”, “cup”,



methods primitive actions associated objects average
open grasp put

into
move
to

pour
into

put
under

wash bow cup pot water
dis

tea
box

ramen
cup

ramen
bag

tap basin apple action object

MLP 94.50 90.70 93.20 96.60 82.20 64.30 84.80 95.20 90.90 96.30 99.20 97.70 95.90 100.00 96.00 64.30 95.50 86.60 93.10
RNN 95.70 94.10 95.10 95.70 88.50 64.00 87.90 96.40 94.50 95.10 98.40 98.50 96.30 100.00 89.90 63.60 93.90 88.60 92.70

Ours w/o AOG 94.00 94.30 93.70 96.70 92.50 63.60 100.00 99.30 95.00 96.30 98.40 98.10 97.40 100.00 97.00 81.80 100.00 90.70 96.30
Ours w/ AOG 95.80 95.10 94.40 96.80 94.60 63.60 100.00 99.80 95.70 96.40 98.40 98.10 98.10 100.00 96.00 81.80 100.00 91.50 96.40

Table 1. Accuracy results of recognizing atomic actions (i.e., primitive actions and associated objects) generated by our method
with and without And-Or graph (Ours w/ and w/o AOG, respectively) and the two baseline methods (i.e., RNN and MLP).

methods task1 task2 task3 task4 task5 task6 task7 task8 task9 task10 task11 average

MLP 91.50 86.10 85.30 67.60 74.00 73.80 94.20 85.50 91.70 92.40 81.80 84.00
RNN 86.80 81.90 91.20 83.80 79.00 80.00 98.10 91.60 95.00 95.20 69.70 86.58

Ours w/o AOG 91.50 87.50 94.10 88.40 85.60 81.20 100.00 87.00 91.70 94.30 87.90 89.90
Ours w/ AOG 93.40 93.10 100.00 90.70 85.60 87.50 100.00 87.00 93.30 93.30 87.90 92.00

Table 2. Sequence accuracy results generated by our model with and without the And-Or graph (Ours w/ and w/o AOG) and
the two baseline method (i.e., RNN and MLP). We utilize task 1 to task 11 to denote tasks “make ramen”, “make ramen in the
ramen cup”, “make ramen in the ramen bag”, “pour water”, “pour water from the pot”, “pour water with the cup”, “pour water
from water dispenser”, “make tea”, “make tea with the cup”, “make tea using water from the pot“, “wash apple”.

“pot”, “water-dispenser”, “tea-box”, “ramen-cup”, “ramen-
bag”, “tap”, “basin”, “apple”.

The dataset includes three parts, i.e., training, testing sets
and an augmented set generated from the AOGs. The train-
ing set contains 600 samples for 11 tasks with the annotation
(i.e., the selections of all the or-nodes in the corresponding
AOGs), and this training set is used to train the AOG-LSTM.
The augmented set contains 2,000 samples of (I, T,Ap) , in
which Ap is the predicted sequence. For training the Action-
LSTM, we combine the augmented set and training set as a
whole. The testing set contains 1,270 samples of (I, T,A)
for performance evaluation.

Implementation details. f I is the feature vector containing
the class labels and locations of the objects in image I , and
fAt is a one-hot vector denoting a specific task. fT is concate-
nated by two one-hot vectors, denoting the primitive action
and object, respectively. We implement our models using the
Caffe framework [16], and train the AOG-LSTM and Action-
LSTM using the SGD with momentum of 0.9, weight decay
of 0.0005, batch size of 40, and initial learning rates of 0.01.

op
en

gr
as

p

pu
t 
in

to

m
ov

e 
in

to
po

ur
 in

to
pu

t 
un

de
r

w
as

h

open

grasp

put into

move into

pour into

put under

wash

.96 .02 .02

.95 .02 .01

.02 .95 .03

.02 .97

.04 .95

.36 .64

1.00

(a)

bo
w

l

cu
p

po
t

w
at

er
-

 d
is

pe
ns

er
te

a 
bo

x
ra

m
en

 c
up

ra
m

en
 b

ag ta
p

ba
si

n

ap
pl

e

bowl

cup

pot

water-
 dispenser

tea box

ramen cup

ramen bag

tap

basin

apple

.99 .01

.96 .03

.02 .96

.99

.02 .98

.02 .98

1.00

.96 .04

.18 .82

1.00

(b)

Fig. 5. The confusion matrixes for (a) 7 primitive actions and
(b) 10 associated objects of our model.

6.2. Results and analysis

6.2.1. Comparisons with baseline models

To verify the effectiveness of our model, we implement two
neural networks as the baselines for this task, i.e., multi-layer
perception (MLP) and recurrent neural network (RNN). The
MLP predicts the t-th atomic action by taking the task fea-
tures and image features, and the previous t − 1 predicted
atomic actions as input. It repeats the process until a stop sig-
nal is obtained. The learning and inference processes of RNN
is exactly the same with training our Action-LSTM. For fair
comparison, all the networks have one hidden layer of 512
neurons.

We first evaluate the performance of our model for recog-
nizing atomic actions. Figure 5 presents the confusion ma-
trixes for the predicted primitive actions and associated ob-
jects, where our model achieves very high accuracies on most
of the classes. Table 1 further depicts the detailed comparison
of our model against the baseline methods. Our model can
predict the primitive actions and associated objects with the
accuracies of 96.40% and 91.50% on average, outperforming
the baseline methods by 2.9% and 3.3%.

Then we evaluate the accuracy of generating the action
sequences, i.e., whether the task is completed successfully.
We define the sequence accuracy as the fraction of complete
correct sequences with respect to all predicted sequences. The
results on the sequence accuracy are reported in Table 2. Our
model can correctly predict complete action sequences with a
probability of 92% on average. It evidently outperforms the
baseline methods on most of the tasks (8/11) by improving
5.42% accuracy on average.

6.2.2. Benefit of using And-Or graph

In this experiment, we empirically evaluate the contribution
of introducing AOG for the neural network learning. Here we
train the Action-LSTM with and without using the augmented



methods task 12 task 13 average

MLP 34.10 0.00 17.05
RNN 36.60 0.00 18.30

Ours w/o AOG 41.50 0.00 24.40
Ours w/ AOG 82.90 63.20 73.05

Table 3. Sequence accuracy results generated by our model
with and without And-Or graph (Ours w/ and w/o AOG) and
two baseline method (i.e., RNN, MLP). Task 12 and task 13
denote tasks “make tea using water from the water dispenser”,
“pour water with the bowl”, respectively.

sample set, and report the results in the last two rows of Table
1 and Table 2, i.e., Ours w/ and w/o AOG. It can be observed
that the results using AOGs have a notable improvement on
both atomic action recognition and sequence prediction. The
performance improvements clearly demonstrate the effective-
ness of adopting the augmented set. In particular, generating
samples from AOG representations enable us to better capture
the complex task variations and it is an effective way to com-
pensate the neural network learning. Besides, it is noteworthy
that the Action-LSTM performs better than traditional RNN
model, since LSTM has better ability for memorizing the long
term dependencies among actions.

6.2.3. Generalization to related tasks

Here we “related tasks” as the ones that have similar atomic
actions or temporal context with the existing tasks in the train-
ing set. For example, “pour water with the bowl” is a related
task to “pour water”. Then, it would be interesting to see how
our trained model can be generalized to the related tasks. In
particular, for each related task, we have its AOG representa-
tion but no annotated training samples. In this experiment, the
models of MLP, RNN and Ours without AOG are all trained
on the training set, which only contains the samples of task 1
to task 11, as described above. For our model with AOG, we
first train the AOG-LSTM with the same set of the annotated
samples as the other competing models. Then we utilize the
trained AOG-LSTM to produce samples for all tasks, includ-
ing task 12 and task 13, and then use these samples to train the
Action-LSTM. The results of two tasks are presented in Table
3. We find that the performances of the three methods with-
out using AOG are extremely unsatisfying on the both tasks.
By comparison, our approach with the AOG representations
boosts the average sequence accuracy to 73.05%, outperform-
ing others by nearly 50%. These results well demonstrate the
excellent generalization ability of our model.

7. CONCLUSION

In this paper, we address a challenging problem, i.e., predict-
ing a sequence of actions to accomplish a specific task un-
der a certain scene, by developing a recurrent LSTM neural
network. To alleviate the issue of requiring large amounts
of annotated data, we present a two-stage model training ap-
proach by employing a temporal And-Or graph representa-
tion. From this representation, we can produce a large num-

ber of valid samples (i.e., task-oriented action sequences) that
facilitate the LSTM network learning. Extensive experiments
on a newly created dataset demonstrate the effectiveness and
flexibility of our approach. In future work, we will explore to
automatically learn the And-Or graph structure and generalize
our approach to other intelligent applications.
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[3] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase
representations using rnn encoder-decoder for statistical ma-
chine translation,” in EMNLP, 2014.

[4] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and
tell: A neural image caption generator,” in CVPR, 2015, pp.
3156–3164.

[5] L. Lin, T. Wu, J. Porway, and Z. Xu, “A stochastic graph gram-
mar for compositional object representation and recognition,”
Pattern Recognition, vol. 42, no. 7, pp. 1297–1307, 2009.

[6] C. Xiong, N. Shukla, W. Xiong, and S.-C. Zhu, “Robot learn-
ing with a spatial, temporal, and causal and-or graph,” ICRA,
2016.

[7] J. Sung, B. Selman, and A. Saxena, “Learning sequences of
controllers for complex manipulation tasks,” in ICML, 2013.

[8] James F Allen, “Planning as temporal reasoning.,” in Princi-
ples of Knowledge Representation and Reasoning, 1991.

[9] H. A Kautz, B. Selman, et al., “Planning as satisfiability.,” in
ECAI, 1992, vol. 92, pp. 359–363.

[10] Earl D Sacerdoti, “Planning in a hierarchy of abstraction
spaces,” Artificial intelligence, vol. 5, no. 2, pp. 115–135,
1974.

[11] Q. Yang, K. Wu, and Y. Jiang, “Learning action models from
plan examples using weighted max-sat,” Artificial Intelligence,
vol. 171, no. 2, pp. 107–143, 2007.

[12] S. Kambhampati, M. R Cutkosky, M. Tenenbaum, and S. Lee,
“Combining specialized reasoners and general purpose plan-
ners: A case study.,” in AAAI, 1991, pp. 199–205.

[13] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to
intricate motion, manipulation and task planning,” The Inter-
national Journal of Robotics Research, vol. 28, no. 1, pp. 104–
126, 2009.

[14] E. Plaku and G. Hager, “Sampling-based motion and symbolic
action planning with geometric and differential constraints,” in
ICRA, 2010, pp. 5002–5008.

[15] J. Wolfe, B. Marthi, and S. Russell, “Combined task and mo-
tion planning for mobile manipulation.,” in ICAPS, 2010, pp.
254–258.

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
architecture for fast feature embedding,” in ACM Multimedia,
2014, pp. 675–678.


	 Introduction
	 Related work
	 LSTM background
	 Task representation
	 Temporal And-Or graph
	 Sample generation with And-Or graph

	 Recurrent action prediction
	 Experiments
	 Experimental setting
	 Results and analysis
	 Comparisons with baseline models
	 Benefit of using And-Or graph
	 Generalization to related tasks


	 Conclusion
	 References

