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Abstract 

 
This paper tries to fill the gap between Traditional 

Chinese Pulse Diagnosis (TCPD) and Doppler 
diagnosis by applying digital signal analysis and 
pattern classification techniques to wrist radial 
arterial Doppler blood flow signals. Doppler blood 
flows signals (DBFS) of patients with cholecystitis, 
gastritis and healthy people are classified by L2-soft 
margin SVM and 5 linear classifiers using the 
proposed feature - piecewise axially integrated 
bispectra (PAIB). A 5-fold cross validation is used for 
performance evaluation. The classification accuracies 
between either two groups of subjects are greater than 
93%. Gastritis can be recognized with higher accuracy 
than cholecystitis. Cholecystitis can be recognized with 
higher accuracy on left hand data than right. The 
findings in this paper partly conform to the theory of 
TCPD. Though the sample size is relatively small, we 
could still argue that the methods proposed here are 
effective and could serve as an assistive tool for TCPD. 
 
 
1. Introduction 
 

In TCPD, doctors put their fingers on human wrist 
to feel vascular pulsation so as to collect pathological 
information of a patient’s overall body condition [13, 
15, 8]. It is also believed in TCPD that pulse waveform 
and its time/frequency properties can reflect the 
pathological changes of internal organs [10, 11]. 

Although modern medicine has revealed the 
mechanics of circulation system and blood flow, and 
their relationships with pulse waveform generation, 
western researchers mainly focus on applications in 

diagnosing and preventing cardiovascular diseases 
such as coronary heart disease, hypertension, 
arteriosclerosis etc through analysis of the DBFS 
waveform [1, 5, 2, 9]. To integrate the viewpoints of 
TCPD and western medicine should not only provide a 
nonintrusive medical diagnosis method but also help 
make TCPD more objective, scientific and acceptable. 
Because of the inter-relationships between pulse 
pressure (captured by digital pulse detector), blood 
velocity (reflected by DBFS), and the elastic 
deformation of arterial wall (which generates the pulse 
contour studied in TCPD), DBFS could serve as such a 
media. 

In this paper, piecewise axially integrated bispectra 
(PAIB) were extracted from wrist radial arterial DBFS. 
L2-soft margin SVM and five linear classifiers were 
used for discriminating between healthy people, and 
patients with gastritis and cholecystitis. Results show 
that analysis of DBFS could be an assistive tool for 
computer-based TCPD in recognizing internal organ 
diseases.  

 
2. Materials and Methods 
 

The whole routine of the proposed method is 
illustrated in Figure 1.  We focus mainly on Feature 
Selection and Pattern Classification in this paper.  

 
2.1. Data Acquisition 
 

142 Doppler sonograms (i.e. Doppler flow-velocity 
images or Doppler pulse waveforms) were collected. 
Data of at least 10-beats long were recorded and at 
least 2 recordings were made on both hands, if 
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possible. Sample data were divided into three groups: 
Group H (19 healthy subjects), Group G (12 patients 
with gastritis) and Group C (14 cholecystitis patients) 
(see Table 1). 

Table 1: Data set in experiments 

Category 
#Samples 

Left 
Hand 

Right 
Hand 

Left and 
Right 

Healthy (H) 18 18 19 
Gastritis (G) 10 8 12 

Cholecystitis (C) 11 11 14 

DBFS should be filtered. In diastole there are many 
small burrs. They are mostly high frequency noises 
that spoil time-frequency property of DBFS. Soft-
threshold wavelet packet filtering was used to smooth 
the signal [4]. The best wavelet packet bases were 
chosen based on Shannon entropy. “Db10” was used to 
decompose the signal. The adaptive threshold value 
selection rule is Rigrsure thresholding rule, a Stein's 
unbiased risk estimator. Only the coefficients of high 
frequency components were filtered (see Figure 2).  

After noise reduction, the waveform contour was 
segmented into periods. The algorithm for finding the 
starting point of each period was that proposed in [6] 
with some adaptation to DBFS.  

 
Figure 2: Example of wavelet packet filtering 

2.2. Axially integrated bispectra 
 

It is widely recognized that feature extraction using 
higher order statistics (cumulants or polyspectra) offers 
many advantages compared to traditional techniques 
based on second order statistics [14]: 
(1) retaining both amplitude and phase information; 
(2) being translation or shift invariant;  
(3) being robust to additive Gaussian noise.  

For signal x(t), we define the unified 3rd order 
cumulant using samples x(1), …, x(N) in Eq. (1) where 

kτ  means time delay. 
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Bispectra can be represented by the contour map of  
|Bx(ω1,ω2)| estimates (see Figure 3). The distinctions 
between healthy persons and both groups of patients lie 
in where the |Bx(ω1,ω2)| culminates. In Figure 3, 
frequency points (values along X and Y axes) are 
multiples of fs (sampling frequency), e.g. f1= 0.15 
means f1=0.15*fs. We use f and ω interchangeably in 
this paper. |Bx(ω1,ω2)| of healthy persons culminate 
near (0.05*fs,0.05*fs), yet the peaks shift to around 
(0.025*fs, 0.025*fs) in the contour maps of patients 
with gastritis. The peak shift could be a strong 
evidence implying impacts of pathological changes and 
help differentiating the two categories of samples. 

 
For the convenience of computation, we define the 

feature vectors as follows. The first feature set is 
computed based on the subspectrum in the 1st and 4th 
quadrants. We find that the energy of bispectra mainly 
locates in the frequency band of 0~0.25*fs, so we 
extract the subspectrum with f1 ranging from 0 to 
0.25*fs and f2 ranging from -0.25*fs to 0.25*fs. There 
are altogether 64×32 frequency points. Let B(f1, f2) be 
the bispectra of signal, we define feature vector F1 as 
follows: 

 
(a) Countour maps of 2 patients with gastritis 

 
(b) Countour maps of 2 healthy subjects 

Figure 3: Bispectral contour maps 

 

Figure 1: Block diagram for the routine of 
the proposed method 
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[ ] 1,...,32; 1,...,16( , ) i jPAIB i j = ==1F , (3) 

where 
*4
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Here PAIB stands for piecewise axially integrated 
bispectra [14]. F1 is a 512-dimensional vector.  

For the second feature set the extracted subspectrum 
has f1: 0~0.25*fs and f2: 0~0.25*fs, which contains 
32×32 frequency points. The feature vector F2 with a 
reduced dimension of 256 is constructed in similar 
way,  

[ ] 1,...,32; 1,...,8( , ) i jPAIB i j = ==2F , (5) 

where 
* 4

1 ( 1 )* 4

( , ) ( , ) 1, ..., 32; 1, ..., 8
j

k j

PAIB i j B i k i j
= + −

= = =∑ . (6) 

F1 and F2 were computed as in Figure 4. 

 
 
3. Results 
 

In the experiments, six classifiers including Fisher 
linear discriminant (FLD), quadric-programming 
Fisher linear discriminant (FLD-QP), batch-mode 
perceptron (Perc), Kozinec’s perceptron (Kozi), the K-
nearest neighbor (KNN), and L2-soft support vector 
machine (SVM) [3] are used. The learning rate of the 
perceptron algorithm is η=0.1. Model parameters of 
SVM are C=10, σ=1.  

We made a 5-fold cross-validation to reduce the 
generalized error rate and make the evaluation less 
biased [12]. The overall performance is the average of 
the results of all 5 iterations.  

We denote BIS1 as the classification task between 
Group H and Group G, BIS2 as task between Group H 

and Group C, and BIS3 as task between Group G and 
Group C.  

In Task BIS1, the L2-SVM got a 100% recognition 
rate on both left hand and right hand data. Most linear 
classifiers all got a high recognition rate greater than 
89% (see Table 2). In general, the recognition rate was 
slightly greater on right hand data than left.  

In task BIS2, the situation was just the other way. 
Except for PERC using F1, performances on left hand 
data were substantially greater than right. The highest 
recognition rate of 93% was obtained on left hand data 
using L2-SVM and F2 (see Table 3). Another 
observation is that all classifiers performed better using 
F2 than F1 or at least equally well using either F1 or F2.  

In Task BIS3, we only used F2. G and C samples 
were classified with a high accuracy of about 95%, 
with FLD and PERC being exceptions. Left hand data 
had better performance than right hand data (see Table 
4). In all three tasks, L2-SVM was the classifier with 
best performance.  
 
4. Discussions and Conclusions 
 

In this study, we investigated how to adopt signal 
processing and pattern classification techniques on 
DBFS to assist traditional Chinese medicine (TCM). In 
the tradition of TCM, symptoms rather than disease is 
the widely accepted concept. However we targeted at 
two digestive diseases, gastritis and cholecystitis here 
so that the results can be accepted and understood by a 
larger group of audience. Based on the results in this 
study, we argue the following two points.  Firstly, 
pathological changes caused by certain diseases can be 
detected at wrist radial arterial, as is believed in TCM. 
Secondly, the features proposed in this paper were 
useful in detecting the pathological changes in the 
energy distribution of DBFS at wrist radial arterial.  
We now conclude with the following remarks: 
1) F2 performed better than F1 in general speaking. 

Redundancy reduction is important.  
2) The fact that using PCA to reduce the dimension 

of feature vector got a poor result (we omitted the 
details in this paper), implies that a redundancy of 
a certain degree may be profitable. And this leaves 
us concern of interest in our future work.  

3) PAIB takes into account all the frequency pairs of 
f1 and f2 within a frequency band. It means that the 
shape of the amplitude map of bispectra is taken 
into consideration. More sophisticate methods for 
extracting geometric information from amplitude 
maps are of concern in our future work. 

4) An interesting observation is that when healthy 
subjects and cholecystitis patients were being 

 

Figure 4: Steps for calculating PAIB 
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classified, all the classifiers performed much better 
on the left hand data than right except PERC using 
F2. This conforms to the theory in TCPD which 
tells that diseases of liver and gallbladder should 
be diagnosed by radial arterial pulse waveform of 
left hand [13].  

 

Table 2: Experiment results of Task BIS1 

 
 

Left Hand Right Hand 
H C Avg H C Avg 

FLD F1 61.11 70 64.29 33.33 87.5 50 
F2 66.67 60 60.71 50 37.5 46.15 

QFLD F1 88.89 100 92.86 100 100 100 
F2 88.89 100 92.86 94.44 100 96.15 

PERC F1 88.89 90 89.29 88.89 100 92.31 
F2 83.33 100 89.29 100 100 100 

KOZI F1 100 90 96.43 94.44 100 96.15 
F2 100 100 100 94.44 100 96.15 

KNN F1 94.44 100 96.43 100 100 100 
F2 94.44 100 96.43 94.44 100 96.15 

SVM 
F1 100 100 100 100 100 100 
F2 100 100 100 100 100 100 

Table 3: Experiment results of Task BIS2 

 
 

Left Hand Right Hand 
H C Avg H C Avg 

FLD F1 77.77 45.45 67.86 38.89 63.64 48.28 
F2 61.11 72.73 67.86 66.67 27.27 51.72 

QFLD F1 83.33 100 89.66 77.78 63.64 72.41 
F2 83.33 100 89.66 61.11 63.64 62.07 

PERC F1 66.67 81.82 72.41 94.44 81.82 86.21 
F2 83.33 90.91 86.21 94.44 45.45 75.86 

KOZI F1 77.77 81.82 79.31 83.33 63.64 75.84 
F2 88.89 90.91 89.66 83.33 72.73 79.31 

KNN F1 83.33 72.73 79.31 83.33 63.64 75.86 
F2 94.44 81.82 89.66 83.33 63.64 75.86 

SVM 
F1 82.33 81.82 82.76 77.78 63.64 72.41 
F2 94.44 90.91 93.10 83.33 54.55 72.41 

Table 4: Experiment results of Task BIS3 

       
    

Left Hand Right Hand 
G C Avg G C Avg 

FLD 60 45.45 52.38 75 45.45 57.89 
QFLD 100 90.91 95.24 87.5 54.55 68.42 
PERC 90 81.82 85.71 75 54.55 63.16 
KOZI 100 90.91 95.24 87.5 63.64 73.64 
KNN 100 90.91 95.24 100 45.45 68.42 
SVM 100 90.91 95.24 100 72.73 76.19 

Note: feature set = F2 
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