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Distance Metric Learning via Iterated
Support Vector Machines
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Abstract— Distance metric learning aims to learn from the
given training data a valid distance metric, with which the
similarity between data samples can be more effectively evaluated
for classification. Metric learning is often formulated as a convex
or nonconvex optimization problem, while most existing methods
are based on customized optimizers and become inefficient for
large scale problems. In this paper, we formulate metric learning
as a kernel classification problem with the positive semi-definite
constraint, and solve it by iterated training of support vector
machines (SVMs). The new formulation is easy to implement
and efficient in training with the off-the-shelf SVM solvers.
Two novel metric learning models, namely positive-semidefinite
constrained metric learning (PCML) and nonnegative-coefficient
constrained metric learning (NCML), are developed. Both PCML
and NCML can guarantee the global optimality of their solu-
tions. Experiments are conducted on general classification, face
verification, and person re-identification to evaluate our methods.
Compared with the state-of-the-art approaches, our methods can
achieve comparable classification accuracy and are efficient in
training.

Index Terms— Metric learning, support vector machine, kernel
method, Lagrange duality, alternating minimization.

I. INTRODUCTION

D ISTANCE metric learning aims to train a valid distance
metric which can enlarge the distances between samples

of different classes while reducing the distances between
samples of the same class [1]. Metric learning is closely related
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to other learning problems, including k-Nearest Neighbor
(k-NN) classification [2] and clustering [3], and has also
been widely applied in many image classification tasks, e.g.,
face recognition [4] and person re-identification [5], [6]. One
popular metric learning approach is Mahalanobis distance
metric learning, which is to learn a linear transformation
matrix L or a matrix M = LT L from the training data. Given
two samples xi and x j , their Mahalanobis distance is defined
as:

d2
M

(
xi , x j

)=∥∥L(xi −x j )
∥∥2

2 =(
xi −x j

)T M
(
xi −x j

)
. (1)

To satisfy the nonnegative property of a distance metric,
M should be positive semidefinite (PSD). According
to which one of M and L is learned, Mahalanobis
distance metric learning methods can be grouped into
two categories. Methods that learn L, including neighborhood
components analysis (NCA) [7], large margin components
analysis (LMCA) [8] and neighborhood repulsed metric
learning (NRML) [9], are mostly formulated as nonconvex
optimization problems, which are solved by gradient
descent optimizers. Taking the PSD constraint into account,
methods that learn M, including large margin nearest
neighbor (LMNN) [10] and maximally collapsing metric
learning (MCML) [11], are mostly formulated as convex
semidefinite programming (SDP), which can be optimized by
standard SDP solvers [10], projected gradient [3], Boosting-
like [12], or Frank-Wolfe [13] algorithms. Davis et al. [14]
proposed an information-theoretic metric learning (ITML)
model with an iterative Bregman projection algorithm to
avoid the projections onto the PSD cone. Besides, the use of
online solvers has been discussed in [5] and [15]–[17].

On the other hand, the Mahalanobis distance in (1) can be
equivalently written as:

d2
M

(
xi , x j

) = tr
(

MT (xi − x j )(xi − x j )
T
)

= 〈
M, Xi j

〉
, (2)

where M is a PSD matrix, Xi j = (xi − x j )(xi − x j )
T ,

〈A, B〉 = tr
(
AT B

)
is defined as the Frobenius inner product

of two matrices A and B, and tr(•) stands for the matrix trace
operator. By defining the following kernel function

K
((

xi , x j
)
, (xk, xl)

) = 〈
Xi j , Xkl

〉

=
((

xi − x j
)T

(xk − xl)
)2

, (3)

we can cast the Mahalanobis distance in (2) as a kernel
classifier. For convenience, we rewrite K

((
xi , x j

)
, (xk, xl)

)

as Kijkl in the following sections.
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As kernel methods [18], [19] have been widely studied in
many learning tasks, e.g., semi-supervised learning, multiple
instance learning, multitask learning, etc. Kernel learning
methods, such as support vector machine (SVM), exhibit good
generalization performance. There are many open resources on
kernel classification methods, and a variety of toolboxes and
libraries have been released [20]–[24]. It is thus important
to investigate the connections between metric learning and
kernel classification and explore how to utilize the kernel
classification resources in the research and development of
new metric learning methods. Wang et al. [25] made an
attempt on developing a kernel classification framework for
metric learning. However, in their heuristic two-step greedy
scheme, the PSD constraint is ignored in the first step, and
then they simply project the learned matrix onto the PSD cone
to obtain the final valid distance metric.

In this paper, we propose a novel formulation of metric
learning by casting it as a kernel classification problem with
PSD constraint, which allows us to effectively and efficiently
learn valid distance metrics by iterated training of SVM.
The off-the-shelf SVM solvers such as LibSVM [20] can be
employed to solve the metric learning problem. Specifically,
we propose two novel methods to bridge metric learning
with the well-developed SVM techniques, and they are
easy to implement. First, we propose a Positive-semidefinite
Constrained Metric Learning (PCML) model, which can be
solved via iterating between PSD projection and dual SVM
learning. Second, by re-parameterizing the matrix M, we
propose a Nonnegative-coefficient Constrained Metric Learn-
ing (NCML) model, which can be solved by iterated learning
of two SVMs. Both PCML and NCML have globally optimal
solutions. Compared with [25], our PCML and NCML provide
principled schemes to exploit SVM solver for metric learning
with guarantee on global optimum. The main abbreviations
used in this paper are summarized in Table I. Our experiments
on general classification, face verification and person
re-identification tasks clearly demonstrate the effectiveness of
our methods. The contribution of this work is three-fold:

1) Two models, i.e., PCML and NCML, are proposed
by formulating metric learning as kernel classification
problem with PSD constraint. Both PCML and NCML
models are convex, and can guarantee the PSD property
of the learned distance metric.

2) An optimization algorithm is developed for solving
PCML by iterating between SVM training and PSD
projection. It has the computational complexity of O(d3)
per iteration w.r.t the feature dimension d , and can
converge to global optimum.

3) An optimization algorithms is developed for NCML
by iterating between the training of two SVMs. It has
the computational complexity of O(d) per iteration
w.r.t d , and can guarantee the global optimality of the
solution.

II. RELATED WORK

Compared with nonconvex metric learning models [7], [8],
convex formulation of metric learning [2], [3], [11]–[13] has
drawn increasing attentions due to its desired properties such

TABLE I

SUMMARY OF MAIN ABBREVIATIONS

as global optimality. Most convex models can be formulated as
SDP or quadratic SDP problems. Standard SDP solvers, how-
ever, are inefficient for metric learning, especially when the
size of training samples is big or the feature dimension is high.
Therefore, customized optimizer is developed for each specific
metric learning model. For LMNN, Weinberger and Saul [31]
developed an efficient solver based on sub-gradient descent
and active set. In ITML, Davis et al. [14] suggested an
iterative Bregman projection algorithm. Iterative projected
gradient descent method [3], [32] has been widely employed
for metric learning but it requires an eigenvalue decomposition
in each iteration. Other algorithms such as block-coordinate
descent [33], smooth optimization [34], and Frank-Wolfe [13]
have also been studied for metric learning. Unlike the cus-
tomized algorithms, we formulate metric learning as a kernel
classification problem with PSD constraint and solve it using
the off-the-shelf SVM solvers, which can guarantee the global
optimality and the PSD property of the learned M, and is easy
to implement and efficient in training.

Another line of work aims to develop metric learning
algorithms by solving the Lagrange dual problems.
Shen et al. derived the Lagrange dual of the exponential loss
based metric learning model, and proposed a boosting-like
approach, namely BoostMetric [12], [35]. MetricBoost [36]
and FrobMetric [37], [38] were further proposed to improve
BoostMetric. Liu and Vemuri incorporated two regularization
terms in the duality for robust metric learning [39].
Note that BoostMetric [12], [35], MetricBoost [36], and
FrobMetric [37] are proposed for metric learning with triplet
constraints, whereas in many applications such as verification,
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only pairwise constraints are available in the training
stage.

Studies have also given to connect SVM with metric
learning [40]–[42]. Using SVM, Nguyen and Guo [40] for-
mulated metric learning as a quadratic SDP, and adopted a
projected gradient descent algorithm. They select the farthest
neighbors for each sample to construct similar pairs, while we
select the nearest neighbors in PCML and NCML. Moreover,
the formulations and optimizers of our models are different
from the model in [40]. Brunner et al. [41] proposed a
pairwise SVM to learn a dissimilarity function. Their metric
learning pairwise kernel is similar to that used in our mod-
els, but the PSD property is not considered in their model.
Do et al. [42] analyzed the relation of LMNN and SVM,
where LMNN is interpreted as the joint learning of multiple
local SVM-like models. By studying SVM from a metric
learning perspective, they presented an improved SVM for
single sample classification. Different with [42], we explain
metric learning as a SVM for sample pair classification with
the PSD constraint, and propose two novel metric learning
methods, i.e., PCML and NCML, together with optimization
algorithms.

Besides, deep learning has been exploited for nonlinear
metric learning. Based on the max-margin loss, Hu et al. [27]
suggested a discriminative deep metric learning (DDML)
method, and achieved state-of-the-art performance for face
verification in the wild. Hoffer and Ailon [43] trained deep
convolutional network (CNN) with the triplet loss for learning
deep feature representation. Unlike these methods, we study
Mahalanobis distance metric learning from a kernel classifica-
tion perspective, and can guarantee to obtain the global optimal
solutions. For person re-identification, subspace learning can
also be an alternative of metric learning and recently has
achieved the state-of-the-art performance [30], [44].

III. POSITIVE-SEMIDEFINITE CONSTRAINED

METRIC LEARNING (PCML)

In this section, we formulate metric learning as a convex
SDP, and propose the PCML model. We then develop a
learning algorithm by alternatively iterating between SVM
training and PSD projection, and discuss the convergence of
PCML.

A. PCML and Its Dual Problem

Denote by { (xi , yi )| i = 1, 2, . . . , N } a training set, where
xi ∈ R

d is the i th training sample, and yi is the class
label of xi . Let S = {(xi , x j

) : xi and x j have the
sameclass label } be the set of similar pairs, D = {(xi , x j

) :
xi and x j have differentclass labels} be the set of dissimilar
pairs, and b is the distance threshold. We hope the Maha-
lanobis distance of a similar pair should be lower than b − 1,
and that of a dissimilar pair should be higher than b + 1
(see Fig. 1).

By introducing an indicator variable hi j ,

hi j =
{

1, if (xi ,x j ) ∈ D
−1, if (xi ,x j ) ∈ S,

(4)

Fig. 1. Schematic illustration of the constraints of similar and dissimilar
pairs.

the PCML model can be formulated as:

min
M,b,ξ

1

2
‖M‖2

F + C
∑

i, j
ξi j

s.t. hi j
(〈

M, Xi j
〉 − b

) ≥ 1 − ξi j , ξi j ≥ 0, ∀i, j

M � 0, (5)

where ξi j denotes the slack variables, and ‖�‖F denotes the
Frobenius norm.

The PCML model is convex and can be solved by standard
SDP solvers. However, the high complexity of general-purpose
interior-point SDP solver makes it only suitable for small-scale
problems. In order to improve the efficiency, we first analyze
the Lagrange duality of the PCML model, and then propose an
algorithm to iterate between SVM training and PSD projection
to learn the distance metric.

By introducing the Lagrange multipliers λ and PSD
matrix Y, the Lagrange dual of the problem in (5) can be
written as:

max
λ,Y

− 1

2

∥
∥
∥
∑

i, j
λi j hi j Xi j + Y

∥
∥
∥

2

F
+

∑

i, j
λi j

s.t.
∑

i, j
λi j hi j = 0, 0 ≤ λi j ≤ C, ∀i, j, Y � 0. (6)

Please refer to Appendix A for the detailed derivation of
the dual problem. Based on the Karush-Kuhn-Tucker (KKT)
conditions, the matrix M can be obtained by

M =
∑

i, j
λi j hi j Xi j + Y, (7)

and the distance threshold b can be obtained by (43) in
Appendix A. The strong duality allows us to first solve the
dual problem in (6) and obtain the matrix M by (7).

B. Alternating Optimization Algorithm

To solve the dual problem efficiently, we propose an opti-
mization approach by updating λ and Y alternatively. Given Y,
we introduce a new variable η with ηi j = 1 − hi j

〈
Xi j , Y

〉 =
1 − hi j

(
xi − x j

)T Y
(
xi − x j

)
. With the kernel function in (3),

the subproblem on λ can be formulated as the following QP
problem:

max
λ

− 1

2

∑

i, j,k,l
λi j λkl hi j hkl Ki jkl +

∑

i, j
ηi j λi j

s.t.
∑

i, j
λi j hi j = 0, 0 ≤ λi j ≤ C, ∀i, j. (8)

This subproblem on λ is a kernel-based classification
problem, and can be efficiently solved by using the existing
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Algorithm 1 Algorithm of PCML

SVM solvers [20]. Given λ, the subproblem on Y can be
formulated as the projection onto the convex cone of PSD
matrices:

min
Y

‖Y − Y0‖2
F , s.t. Y � 0, (9)

where Y0 = − ∑
i, j λi j hi j Xi j . Through the eigen-

decomposition of Y0, i.e., Y0 = U�UT and � is the diagonal
matrix of eigenvalues, the solution to (9) can be expressed as
Y = U�+UT , where �+ = max (�, 0). Finally, the PCML
algorithm is summarized in Algorithm 1.

C. Optimality Condition

Our algorithms can be treated as an implementation of
generalized block coordinate descent (GBCD) [45] with two
blocks. In our algorithms, the optimal solution to each sub-
problem is obtained. As stated in [45], when the objective
function is strongly convex, GBCD can converge to the global
optimal solution. Therefore, the proposed algorithm can reach
the global optimum of the problems in (5) and (6).

Moreover, the optimality condition of our algorithm can be
checked by the duality gap in each iteration, which is defined
as the difference between the primal and dual objective values:

DualGap(n)
PCML = 1

2

∥
∥
∥M(n)

∥
∥
∥

2

F
+ C

∑

i, j
ξ

(n)
i j −

∑

i, j
λ

(n)
i j

+ 1

2

∥
∥
∥
∑

i, j
λ

(n)
i j hi j Xi j + Y(n)

∥
∥
∥

2

F
, (10)

where M(n), ξ (n), λ(n), and Y(n) are feasible primal and dual
variables, and DualGap(n)

PCML is the duality gap in the nth
iteration. According to (7), we can derive that

M(n) =
∑

i, j
λ

(n)
i j hi j Xi j + Y(n) = Y(n) − Y(n)

0 . (11)

As shown in Sec. III.B, Y(n)
0 = U(n)�(n)U(n)T

, Y(n) =
U(n)�

(n)
+ U(n)T

, and hence M(n) = U(n)�
(n)
− U(n)T

, where

Fig. 2. Duality gap vs. number of iterations on the PenDigits database for
PCML.

�
(n)
− = �

(n)
+ − �(n). Thus,

∥∥M(n)
∥∥2

F can be computed by
∥
∥
∥M(n)

∥
∥
∥

2

F
= tr

(
M(n)T

M(n)
)

= tr
(

U(n)�
(n)
− U(n)T

U(n)�
(n)
− U(n)T

)

= tr
(

U(n)�
(n)2
− U(n)T

)
= tr

(
�

(n)2
−

)
. (12)

Substituting (11) and (12) into (10), the duality gap of PCML
can be obtained as follows

DualGap(n)
PCML = C

∑

i, j
ξ

(n)
i j −

∑

i, j
λ

(n)
i j + tr

(
�

(n)
−

2)
.

(13)

Based on the KKT conditions of the PCML dual problem
in (6), ξ

(n)
i j can be obtained by

ξ
(n)
i j =

{
0, ∀λ

(n)
i j < C

[
1−hi j

(〈
M(n), Xi j

〉−b(n)
)]

+, ∀λ
(n)
i j =C

(14)

b(n) =
〈
M(n), Xi j

〉
− 1/hi j , ∀0 < λ

(n)
i j < C. (15)

Please refer to Appendix A for the detailed derivation of
ξ

(n)
i j and b(n). The duality gap is always nonnegative and

approaches to zero when the primal problem is convex. Thus,
it can be used as the termination condition of the algorithm.
Fig. 2 plots the curve of duality gap versus the number of
iterations on the PenDigits database by PCML. The duality gap
approaches to zero in less than 20 iterations and our algorithm
will reach the global optimum [46, Ch. 5]. In Algorithm 1,
we adopt the following termination condition:

DualGap(t)
PCML < ε · DualGap(1)

PCML, (16)

where ε is a small constant and we set ε = 0.01.

D. Remarks

1) Construction of Pairwise Constraints: Based on the
training set, N2 pairwise constraints can be introduced in
total. However, in practice we only need to choose a subset
of pairwise constraints to reduce the computational cost.

For each sample, we find its k nearest neighbors with the
same label to construct similar pairs and its k nearest neighbors
with different labels to construct dissimilar pairs. Thus, we
only need 2k N pairwise constraints, and we can reduce the
scale of pairwise constraints from O

(
N2

)
to O (k N). Since k

is usually small (i.e., 1∼3), the computational cost of metric
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learning is much reduced. Similar strategy for constructing
pairwise or triplet constraints can be found in [2] and [47].

2) Computational Complexity: We use the LibSVM library
for SVM training. The computational complexity of SMO-
type algorithms [48] is O(k2 N2d). For PSD projection, the
complexity of conventional SVD algorithms is O(d3).

IV. NONNEGATIVE-COEFFICIENT CONSTRAINED

METRIC LEARNING (NCML)

In PCML, the computational complexity of the PSD pro-
jection is O(d3), which limits the training efficiency for
data with high dimension. Therefore, we propose a NCML
model, in which we re-parameterize the matrix M as the
linear combination of a series of rank-1 matrices, and let the
coefficients to be nonnegative to guarantee the PSD property
of the matrix M. NCML does not need any PSD projection in
training and has low computational complexity w.r.t. d .

Given a set of rank-1 PSD matrices Mt = mt mT
t

(t = 1, · · · , T ), a linear combination of Mt is defined as
M = ∑

t αt Mt , where αt is the scalar coefficient. One can
easily prove the following theorem.

Theorem 1: If the scalar coefficient αt ≥ 0, ∀t , the matrix
M = ∑

t αt Mt is PSD, where Mt = mt mT
t is a rank-1 PSD

matrix.
Proof: Denote by u ∈ R

d a random vector. Based on the
expression of M, we have:

uT Mu = uT
(∑

t
αt mt mT

t

)
u

=
∑

t
αt uT mt mT

t u =
∑

t
αt

(
uT mt

)2
.

Since
(
uT mt

)2 ≥ 0 and αt ≥ 0, ∀t , we have uT Mu ≥ 0.
Therefore, M is a PSD matrix.

A. NCML and Its Dual Problem

Motivated by Theorem 1, we impose the PSD constraint
by re-parameterizing the distance metric M, and develop a
nonnegative-coefficient constrained metric learning (NCML)
method to learn the PSD matrix M. Given the training data S
and D, a rank-1 PSD matrix Xi j can be constructed for each
pair

(
xi , x j

)
. By assuming that the learned matrix should be

the linear combination of Xi j with the nonnegative coefficient
constraint, the NCML model is formulated as:

min
M,b,α,ξ

1

2
‖M‖2

F + C
∑

i, j
ξi j

s.t. hi j
(〈

M, Xi j
〉 − b

) ≥ 1 − ξi j , αi j ≥ 0, ξi j ≥ 0, ∀i, j

M =
∑

i, j
αi j Xi j . (17)

By substituting M with
∑

i, j αi j Xi j , we reformulate NCML
as:

min
α,b,ξ

1

2

∑

i, j

∑

k,l
αi j αkl Ki jkl + C

∑

i, j
ξi j

s.t. hi j

(∑

k,l
αkl Ki jkl − b

)
≥ 1 − ξi j

αi j ≥ 0, ξi j ≥ 0, ∀i, j. (18)

By introducing the Lagrange multipliers η and β, and the
kernel function in (3), the Lagrange dual of the primal problem
in (18) can be formulated as:

max
η,β

− 1

2

∑

i, j,k,l

(
βi j hi j + ηi j

)
(βklhkl + ηkl ) Kijkl

+
∑

i, j

βi j

s.t.
∑

k,l

ηkl Ki jkl ≥ 0, 0 ≤ βi j ≤ C, ∀i, j

∑

i, j

βi j hi j = 0. (19)

Please refer to Appendix B for the detailed derivation of the
dual problem. Based on the KKT conditions, the coefficient αi j

can be obtained by:

αi j = βi j hi j + ηi j . (20)

Thus, we can first solve the above dual problem, and then
obtain the matrix M by

M =
∑

i, j
(βi j hi j + ηi j )Xi j , (21)

and the distance threshold b can be obtained by (55) in
Appendix B.

B. Optimization Algorithm

There are two groups of variables, η and β, in problem (19).
We adopt an alternating minimization approach to solve them.
First, given η, the variables βi j can be obtained by:

max
β

− 1

2

∑

i, j,k,l

βi j βklhi j hkl Ki jkl +
∑

i, j

δi j βi j

s.t. 0 ≤ βi j ≤ C, ∀i, j,
∑

i, j

βi j hi j = 0, (22)

where δ is the variable with δi j = (
1 − hi j

∑
kl ηkl

〈
Xi j , Xkl

〉)
.

Clearly, the subproblem on β is similar to the dual of SVM,
and it can be solved by LibSVM [20].

Given β, the subproblem on η can be formulated as follows:

min
η

1

2

∑

i, j

∑

k,l
ηi j ηkl Ki jkl +

∑

i, j
ηi j γi j

s.t.
∑

k,l
ηi j Ki jkl ≥ 0, ∀i, j, (23)

where γi j = ∑
kl βklhkl

〈
Xi j , Xkl

〉
. To simplify the subproblem

on η, we derive its Lagrange dual based on the KKT condition:

ηi j = μi j − hi j βi j , ∀i, j, (24)

where μ is the Lagrange dual multiplier. The Lagrange dual
problem of (23) is formulated as follows:

max
μ

− 1

2

∑

i, j

∑

k,l
μi j μkl Ki jkl +

∑

i, j
γi j μi j

s.t. μi j ≥ 0, ∀i, j. (25)

Please refer to Appendix C for the detailed derivation. Clearly,
problem (25) is more simple and can be efficiently solved by
the SVM solvers.



4942 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 10, OCTOBER 2017

Algorithm 2 Algorithm of NCML

After obtaining μ and β, the solution of α in problem (18)
can be obtained by

αi j = μi j , ∀i, j. (26)

We then have M = ∑
i j αi j Xi j . The NCML algorithm is

summarized in Algorithm 2.

C. Optimality Condition

Our NCML training algorithm can reach global optimum.
From (18) and (19), the duality gap in the nth iteration is

DualGap(n)
NCML

= 1

2

∑

i, j,k,l

α
(n)
i j α

(n)
kl Ki jkl

+ 1

2

∑

i, j,k,l

(β
(n)
i j hi j + η

(n)
i j )(β

(n)
kl hkl + η

(n)
kl )Kijkl

−
∑

i, j

β
(n)
i j + C

∑

i, j

ξ
(n)
i j , (27)

where α
(n)
i j and ξ

(n)
i j are the feasible solutions to the primal

problem, β
(n)
i j and η

(n)
i j are the feasible solutions to the dual

problem, and DualGap(n)
NCML is the duality gap in the nth

iteration. As η
(n)
i j and μ

(n)
i j are the optimal solutions to the

primal subproblem on η in (23) and its dual problem in (25),
respectively, the duality gap of subproblem on η is zero, i.e.,

1

2

∑

i, j,k,l

η
(n)
i j η

(n)
kl Ki jkl +

∑

i, j

η
(n)
i j γ

(n)
i j + 1

2

∑

i, j,k,l

μ
(n)
i j μ

(n)
kl Ki jkl

−
∑

i, j

γ
(n)
i j μ

(n)
i j + 1

2

∑

i, j,k,l

β
(n)
i j β

(n)
kl hi j hkl Ki jkl = 0. (28)

Fig. 3. Duality gap vs. number of iterations on the PenDigits database for
NCML.

As shown in (26), α
(n)
i j and μ

(n)
i j should be equal. We substi-

tute (28) into (27) as follows:

DualGap(n)
NCML = C

∑

i, j
ξ

(n)
i j −

∑

i, j
β

(n)
i j +

∑

i, j
μ

(n)
i j γ

(n)
i j .

(29)

Based on the KKT conditions of the NCML dual problem
in (19), ξ

(n)
i j can be obtained by (30), as shown at the bottom

of this page, where [z] = max (z, 0) and b(n) can be obtained
by

b(n) =
∑

k,l
α

(n)
kl Ki jkl − 1/hi j

= γ
(n)
i j − δ

(n+1)
i j /hi j for all 0 < β

(n)
i j < C. (31)

Please refer to Appendix B for the derivation of ξ
(n)
i j and b(n).

Fig. 3 plots the curve of duality gap versus the number of
iterations on PenDigits by NCML. The duality gap is nearly
zero within 10∼15 iterations, and NCML reaches the global
optimum. In the implementation of Algorithm 2, we adopt
the following termination condition:

DualGap(t)
NCML < ε · DualGap(1)

NCML, (32)

where ε is a small constant and we set ε = 0.01.

D. Remarks

1) Computational Complexity: We use the same strat-
egy as that in PCML to construct the pairwise constraints.
In each iteration, NCML calls for the SVM solver twice
while PCML calls for it only once. When the SMO-type
algorithm [48] is adopted for SVM training, the compu-
tational complexity of NCML is O

(
k2 N2d

)
. One extra

advantage of NCML lies in its lower computational cost
with respect to d , which involves the computation of
K

(
(xi , x j ), (xk, xl)

)
and the construction of matrix M. Since

K
(
(xi , x j ), (xk, xl)

) = (
(xi − x j )

T (xk − xl)
)2

, the cost of
kernel computation is O (d). The cost of constructing the
matrix M is less than O

(
k Nd2

)
, and this operation is required

only once after obtaining β and μ.

ξ
(n)
i j =

⎧
⎨

⎩

0 for all β
(n)
i j < C[

1 − hi j

(∑
k,l α

(n)
kl Ki jkl − b(n)

)]

+ =
[
δ
(n+1)
i j − hi j

(
γ

(n)
i j − b(n)

)]

+ for all β
(n)
i j = C.

(30)
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2) Difference With Doublet-SVM [25]: Our PCML and
NCML are related but distinctly different with doublet-
SVM [25]. Like doublet-SVM, our PCML and NCML
also cast metric learning as kernel classification problems.
However, in doublet-SVM, M is first learned by ignoring the
PSD constraint to exploit SVM solver and then projected onto
the PSD cone. Thus, doublet-SVM is only a heuristic method
and cannot obtain the global solution. In contrast, our PCML
iterates between SVM training and PSD projection to learn M,
and our NCML iterates between two SVMs to learn M.
They provide a principled scheme to exploit SVM solver
for metric learning. As analyzed in Sec. III.C and IV.C, our
algorithms can ensure the global optimality of M. Moreover,
by initializing Y with 0, doublet-SVM actually is a special
case of PCML with one iteration.

V. EXPERIMENTAL RESULTS

We evaluate our PCML and NCML methods for k-NN
classification (k = 1) on general classification, face ver-
ification, and person re-identification. We compare PCML
and NCML with the baseline Euclidean distance metric and
8 state-of-the-art metric learning models, including NCA [7],
ITML [14], MCML [11], LDML [4], LMNN [2], PLML [26],
DML-eig [13] and Doublet-SVM [25]. On each database, if
the partition of training set and test set is not defined, we
evaluate the performance of each method by 10-fold cross-
validation, and the classification error rate and training time
are obtained by averaging over 10 runs of 10-fold cross-
validation (CV). PCML and NCML are implemented using the
LibSVM1 toolbox, and our codes are online available.2 The
source codes of NCA,3 ITML,4 MCML,5 LDML,6 LMNN,7

PLML,8 and DML-eig9 are online available, and we tune their
parameters to get the best results.

A. Evaluation on General Classification Tasks

We use 9 databases from the UCI Machine Learning Repos-
itory [49] and 4 handwritten digit databases to evaluate our
methods. Table II and Table IV provides a summary of these
databases. On the Satellite, SPECTF Heart, Letter, MNIST,
PenDigits, and USPS databases, the training set and test set
are defined. On the other databases, we use 10-fold CV to
evaluate the metric learning models, and the classification error
rate and training time are obtained by averaging over 10 runs
of 10-fold cross-validation. As the dimensions of images in the
MNIST, Semeion and USPS databases are relatively high, we
use principal component analysis (PCA) to reduce the feature
dimension to 100, and train the metrics in the PCA subspace.

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2https://github.com/csfwang/ISVM
3http://www.cs.berkeley.edu/~fowlkes/software/nca/
4http://www.cs.utexas.edu/~pjain/itml/
5http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_

Reduction.html
6http://lear.inrialpes.fr/people/guillaumin/code.php
7http://www.cse.wustl.edu/~kilian/code/code.html
8http://cui.unige.ch/~wangjun/
9http://empslocal.ex.ac.uk/people/staff/yy267/software.html

TABLE II

THE UCI DATABASES USED IN OUR EXPERIMENTS

Fig. 4. Classification error rate (%) versus C . (a) PCML; (b) NCML.

Our PCML and NCML involve only one hyper-parameter,
i.e., the regularization parameter C . We simply adopt the cross-
validation strategy to select C by investigating the influence of
C on the classification error rate. Fig. 4 shows the curves of
classification error rate versus C for PCML and NCML on the
SPECTF Heart database. The curves on other databases are
similar. We can observe that when C < 1, the classification
error rates of PCML and NCML will be low and stable.
When C is higher than 1, the classification error rates jump
dramatically. Thus, we set C < 1 in our experiments.

We compare the classification error rates of the competing
methods in Tables III and V. On Cardiotocography, Segmenta-
tion, PenDigits and Semeion, PCML achieves the lowest error
rates. On Segmentation, SPECTF Heart and PenDigits, NCML
achieves the lowest error rates. According to [50], the average
rank can provide a fair comparison of classification methods.
Therefore, we provide the average ranks of competing methods
in the last rows of Tables III and V. We do not report the error
rate and training time of MCML on MNIST because MCML
requires too large memory space (more than 30 GB) on this
database and cannot run in our PC. From Tables III and V,
PCML and NCML achieve the first and third best average
ranks on the UCI databases, and achieve the best average
ranks on the handwritten digit databases, demonstrating their
effectiveness for general classification tasks.

We compare the training time of competing methods in
Figs. 5 and 6. All the experiments are run in a PC with 4 Intel
Core i5-2410 CPUs (2.30 GHz) and 16GB RAM. Clearly,
doublet-SVM [25] and the proposed PCML and NCML are
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TABLE III

CLASSIFICATION ERROR RATE (%) ON THE UCI DATABASES

TABLE IV

THE HANDWRITTEN DIGIT DATABASES USED IN THE EXPERIMENTS

Fig. 5. Training time (s) of NCA, ITML, MCML, LDML, LMNN,
DML-eig, PLML, Doublet-SVM, PCML and NCML. From 1 to 9, the Data-
base ID represents Breast Tissue, Cardiotocography, ILPD, Letter, Parkinsons,
Satellite, Segmentation, Sonar and SPECTF Heart.

Fig. 6. Training time (s) of NCA, ITML, MCML, LDML, LMNN,
DML-eig, PLML, Doublet-SVM, PCML and NCML. From 1 to 4, the
Database ID represents MNIST, PenDigits, Semeion and USPS.

the fastest in most cases. Although DML-eig is faster than
PCML on Letter, its classification error rate on this database
is much higher than PCML and NCML. On average, PCML
and NCML are 35 and 21 times faster than PLML, the fourth
fastest algorithm, respectively.

Finally, we compare the running time of PCML and NCML
under different feature dimensions d . Fig. 7 shows the training

Fig. 7. Training time (s) vs. PCA dimension on the Semeion database.

time on Semeion with different PCA dimensions. When the
dimension is lower than 110, the training time of NCML is
longer than PCML. When the dimension is higher than 110,
the training time of PCML increases and becomes longer than
NCML. The results are consistent with the complexity analysis
given in Subsections III.D and IV.D.

1) Discussion: In this subsection, we give a brief discussion
on the training efficiency and accuracy of PCML and NCML.

1) Training efficiency: Albeit lower in terms of compu-
tational complexity, NCML requires to run the SVM
solver twice per iteration while PCML only once.
Besides, the number of iterations may also be different
for NCML and PCML. As shown in Fig. 7, when the
feature dimension is lower, PCML is more efficient in
training. As in most of our experiments, the dimensions
of training samples are relatively low, making NCML
less efficient than PCML.

2) Accuracy: From Theorem 1, the feasible domain of
NCML is a subset of that of PCML. Thus, with sufficient
training data, PCML has the opportunity to find distance
metric in a larger searching domain. But in many practi-
cal problems, the training data generally are insufficient.
Thus, the restriction of feasible domain by NCML may
serve as some kind of regularization on the solution, and
sometimes may even benefit classification performance.

B. Face Verification

We evaluate the proposed methods for face verification
using the Labeled Faces in the Wild (LFW) [51] database.
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TABLE V

COMPARISON OF CLASSIFICATION ERROR RATE (%) ON THE HANDWRITTEN DIGIT DATABASES

Fig. 8. The ROC curves of different methods on the LFW database.

The face images in LFW were collected from the Internet
and demonstrate large variations of pose, illumination,
expression, etc. The database consists of 13,233 face images
from 5,749 persons. Under the image restricted setting, the
performance of a face verification method is evaluated by
10-fold CV. For each of the 10 runs, the database provides
300 positive pairs and 300 negative pairs for testing, and
5,400 image pairs for training. The verification rate and
Receiver Operator Characteristic (ROC) curve of each
method are obtained by averaging over the 10 runs.

In our experiments, we use the VGG-Face [52] feature
to evaluate the face verification methods. Since the dimen-
sion of VGG-Face feature is high (i.e., 4096), PCA is
used to reduce the feature dimension to 50. We transform
each feature vector x by x̃ = L−1

S x, where LSLT
S =∑

(xi ,x j )∈S (xi − x j )(xi − x j )
T [53]. Under the restricted set-

ting, we only know whether two images are matched or not
for the given pairs. In the training stage, we use the training
pairs to train a Mahalanobis distance metric. In the test stage,
we compare the distance of the test pair with the distance
threshold to decide whether the two images are matched or
not.

We report the ROC curves and verification accuracies
of PCML, NCML, Doublet-SVM [25], ITML [14], DML-
eig [13], KISSME [5], XQDA [30], DDML [27], TSML [28]10

and LM3L [29] in Fig. 8 and Table VI. It can be seen that our
proposed PCML and NCML methods can achieve satisfactory

10As the ROC curve of TSML [28] hasn’t been released, we haven’t reported
it in this paper.

TABLE VI

VERIFICATION ACCURACIES (%) AND TRAINING TIME (s) OF

COMPETING METHODS ON THE LFW-FUNNELED DATABASE

verification accuracies which are higher or comparable to
the competing methods. The training time of PCML and
NCML are much shorter than ITML [14] and DML-eig [13],
but are longer than Doublet-SVM [25], KISSME [5] and
XQDA [30]. We note that Doublet-SVM [25] is a two-stage
method and KISSME is a one-pass optimization method. And
they cannot guarantee to obtain the global optimum of the
model. XQDA [30] is a subspace method, and its closed-
form solution can be obtained by eigenvalue decomposition.
In contrast, our proposed PCML and NCML methods solve a
convex SDP problem and are able to reach the global optimum.

C. Person Re-Identification

In this subsection, we evaluate the performance of our
methods for person re-identification, i.e., recognizing a person
by the pedestrian image at different locations and at different
times [54]. We use the CUHK03 [55] and CUHK01 [56]
databases to assess the performance of our methods.

1) CUHK03: CUHK03 database contains 14,096 pedestrian
images which are taken from 1,467 persons by two cam-
eras [55]. We randomly select 1,367 persons and use their
images as the training set, and use the images from the rest
100 persons as the test set. For each person in the test set, we
randomly select the images taken by one camera as the probe
images, and use one of the images taken by another camera as
the gallery image. 20 partitions of training set and test sets are
constructed, and the reported accuracies are averaged over all
the partitions. We report the CMC curves, rank-1 accuracies
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Fig. 9. The CMC curves of different methods on the CUHK03 database with
(a) manually labeled bounding box and (b) automatically detected bounding
box.

and training time of PCML, NCML and the competing meth-
ods, i.e. ITML [14], DML-eig [13], LMNN [2], RANK [57],
LDML [4], symmetry-driven accumulation of local features
(SDALF) [58], eSDC [59], KISSME [5], XQDA [30], filter
pairing neural network (FPNN) [55], Doublet-SVM [25] and
Zhang et al. [44], on CUHK03 database with manually labeled
and detected bounding boxes on single-shot setting in Fig. 9
and Table VII. For FPNN [55], RANK [57], SDALF [58] and
eSDC [59], we use the results in their original papers. As
to the other methods, the results are obtained by using an
effective feature representation named Local Maximal Occur-
rence (LOMO) [30]. One can see that the rank-1 accuracies
of PCML and NCML are much higher than most of the
competing methods, comparable to XQDA [30], but lower than
Zhang et al. [44]. Note that Zhang et al. [44] learn nonlinear
discriminative null space via kernelization, while what the
other methods learned are Mahalanobis distance metric or
linear subspace. And this might explain the superiority of
Zhang et al. [44] over the other methods. Analogous to the
results on LFW, the training time of PCML and NCML are
much shorter than ITML [14], XQDA [30], Zhang et al. [44],
LDML [4] and LMNN [2], comparable to DML-eig [13], and
longer than Doublet-SVM [25] and KISSME [5].

2) CUHK01: CUHK01 database consists of 3,884 images
taken from 971 persons [56]. Each person has 4 images taken
by two cameras. The training set contains the images from
485 persons, which are randomly selected from this database.
The images from the other 486 persons construct the test set.
The reported results are based on multi-shot setting. The CMC
curves, rank-1 accuracies and training time of PCML, NCML,

TABLE VII

TRAINING TIME (s) ON THE CUHK03 DATABASE
WITH LOMO FEATURE [30]

Fig. 10. The CMC curves of different methods on the CUHK01 database.

TABLE VIII

TRAINING TIME (s) ON THE CUHK01 DATABASE

WITH LOMO FEATURE [30]

ITML [14], DML-eig [13], Doublet-SVM [25], XQDA [30],
Zhang et al. [44] and other competing methods [2], [4], [5],
[55], [57]–[59] are reported in Fig. 10 and Table VIII, respec-
tively. Except mFilter [60], SalMatch [61], PatMatch [61],
generic metric [56], eSDC [59], SDALF [58], and vis-
Word [62], the results of the other methods are obtained by
using the LOMO feature [30]. We can see that the rank-1
accuracies of PCML and NCML are also higher than most of
the other methods, comparable to XQDA [30], and lower than
Zhang et al. [44]. For person re-identification, subspace meth-
ods such as XQDA [30] and Zhang et al. [44] are also very
effective and generally outperform most competing methods.
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VI. CONCLUSION

We proposed two distance metric learning models, namely
PCML and NCML. The proposed models can guarantee
the positive semidefinite property of the learned matrix M,
and can be solved efficiently by the existing SVM solvers.
Experimental results on general classification tasks showed
that, compared with the state-of-the-art metric learning
methods, including NCA [7], ITML [14], MCML [11],
LDML [4], LMNN [2], PLML [26], DML-eig [13] and
Doublet-SVM [25], the proposed PCML and NCML methods
can not only achieve favorable classification accuracy, but also
are efficient in training. The experimental results on LFW,
CUHK01 and CUHK03 databases indicate that the proposed
methods also perform well in face verification and person
re-identification. For face verification, PCML and NCML
achieve higher or comparable accuracies to the competing
methods on the LFW database. For person re-identification,
our PCML and NCML can obtain better or comparable
accuracy to most Mahalanobis distance metric learning or
linear subspace methods, but are inferior to the kernelized
subspace method by Zhang et al. [44].

APPENDIX A
THE DUAL OF PCML

The original problem of PCML is formulated as

min
M,b,ξ

1

2
‖M‖2

F + C
∑

i, j
ξi j

s.t. hi j
(〈

M, Xi j
〉 − b

) ≥ 1 − ξi j , ξi j ≥ 0, ∀i, j

M � 0. (33)

Its Lagrangian is:

L (λ, κ, Y, M, b, ξ ) = 1

2
‖M‖2

F + C
∑

i, j
ξi j

−
∑

i, j
λi j

[
hi j

(〈
M, Xi j

〉 − b
) − 1 + ξi j

]

−
∑

i, j
κi j ξi j − 〈Y, M〉 , (34)

where λi j ≥ 0, κi j ≥ 0,∀i, j , and Y � 0 are the Lagrange
multipliers. Converting the primal problem to its dual problem
needs the following KKT conditions:

∂L (λ, κ, Y, M, b, ξ )

∂M
= 0 ⇒ M−

∑

i, j
λi j hi j Xi j

− Y = 0, (35)
∂L (λ, κ, Y, M, b, ξ )

∂b
= 0 ⇒

∑

i, j
λi j hi j = 0,

(36)
∂L (λ, κ, Y, M, b, ξ )

∂ξi j
= C − λi j − κi j = 0

⇒ 0 ≤ λi j ≤ C, ∀i, j,

(37)

hi j
(〈

M, Xi j
〉 − b

) − 1+ξi j ≥ 0, ξi j ≥ 0, (38)

λi j ≥ 0, κi j ≥ 0, Y � 0, (39)

λi j
[
hi j

(〈
M, Xi j

〉 − b
) − 1+ξi j

] = 0, κi j ξi j = 0. (40)

(35) implies the following relationship:

M =
∑

i, j
λi j hi j Xi j + Y. (41)

Substituting (35)∼(37) back into the Lagrangian, we get the
Lagrange dual problem of PCML:

max
λ,Y

− 1

2

∥
∥∥
∑

i, j
λi j hi j Xi j + Y

∥
∥∥

2

F
+

∑

i, j
λi j

s.t.
∑

i, j
λi j hi j = 0, 0 ≤ λi j ≤ C, ∀i, j, Y � 0. (42)

From (41) and (42), M is explicitly determined by the
training procedure, but b is not. Nevertheless, b can be found
by using the KKT condition in (37) and (40), and we can take
any training point, for which 0 < λi j < C , to compute b by

b = 〈
M, Xi j

〉 − 1/hi j , for all 0 < λi j < C. (43)

After b is computed, we can compute ξi j by

ξi j =
{

0, for all λi j < C
[
1 − hi j

(〈
M, Xi j

〉 − b
)]

+, for all λi j = C,

(44)

where [z]+ = max (z, 0) denotes the hinge loss.

APPENDIX B
THE DUAL OF NCML

The original problem of NCML is as follows:

min
α,b,ξ

1

2

∑

i, j

∑

k,l
αi j αkl Ki jkl + C

∑

i, j
ξi j

s.t. hi j

(∑

k,l
αkl Ki jkl − b

)
≥ 1 − ξi j

ξi j ≥ 0, αi j ≥ 0, ∀i, j. (45)

Its Lagrangian can be defined as:

L (β, σ , ν,α, b, ξ)

= 1

2

∑

i, j,k,l
αi j αkl Ki jkl + C

∑

i, j
ξi j

−
∑

i, j
βi j

[
hi j

(∑

kl
αkl Ki jkl − b

)
− 1 + ξi j

]

−
∑

i, j
νi j ξi j −

∑

i, j
σi j αi j , (46)

where βi j ≥ 0, σi j ≥ 0 and νi j ≥ 0, ∀i, j are the
Lagrange multipliers. Converting the original problem to its
dual problem needs the following KKT conditions:

∂L (β, σ , ν,α, b, ξ )

∂αi j
= 0 ⇒

∑

k,l
αkl Ki jkl

−
∑

k,l
βklhkl Ki jkl − σi j = 0, (47)

∂L (β, σ , ν,α, b, ξ )

∂b
= 0 ⇒

∑

i, j
βi j hi j = 0, (48)

∂L (β, σ , ν,α, b, ξ )

∂ξi j
= 0 ⇒ C − βi j − νi j = 0

⇒ 0 ≤ βi j ≤ C, (49)

hi j

(∑

k,l
αkl Ki jkl − b

)
− 1 + ξi j ≥ 0,

ξi j ≥ 0, αi j ≥ 0, ∀i, j, (50)

βi j ≥ 0, σi j ≥ 0, νi j ≥ 0, ∀i, j, (51)

βi j

[
hi j

(∑

k,l
αkl Ki jkl − b

)
− 1 + ξi j

]
= 0,

νi j ξi j = 0, σi j αi j = 0, ∀i, j. (52)
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Here we introduce a coefficient vector η, which satisfies
σi j = ∑

k,l ηkl
〈
Xi j , Xkl

〉
. Note that

〈
Xi j , Xkl

〉
is a positive

definite kernel. So we can guarantee that every η corresponds
to a unique σ , and vice versa. (47) implies the following
relationship between α, β and η:

αi j = βi j hi j + ηi j , ∀i, j. (53)

Substituting (47)∼(49) back into the Lagrangian, we get the
Lagrange dual problem of NCML as follows:

max
η,β

− 1

2

∑

i, j,k,l

(
βi j hi j + ηi j

)
(βklhkl + ηkl ) Kijkl

+
∑

i, j

βi j

s.t.
∑

k,l
ηkl Ki jkl ≥ 0, 0 ≤ βi j ≤ C, ∀i, j

∑

i, j
βi j hi j = 0. (54)

Analogous to PCML, we can use the KKT condition in (49)
and (52) to compute b and ξi j in NCML. (49) and (52) show
that ξi j = 0 if βi j < C , and hi j

(∑
kl αkl

〈
Xi j , Xkl

〉 − b
)− 1 +

ξi j = 0 if βi j > 0. Thus we can simply take any training data
point, for which 0 < βi j < C , to compute b by

b =
∑

k,l
αkl Ki jkl − 1/hi j . (55)

After obtain b, we can compute βi j by

ξi j =
{

0, ∀ βi j < C
[
1 − hi j

(∑
k,l αkl Ki jkl − b

)]
+, ∀ βi j = C.

(56)

APPENDIX C
THE DUAL OF THE SUBPROBLEM ON η IN NCML

The subproblem on η is formulated as follows:

min
η

1

2

∑

i, j

∑

k,l
ηi j ηkl Ki jkl +

∑

i, j
ηi j γi j

s.t.
∑

k,l
ηkl Ki jkl ≥ 0, ∀i, j, (57)

where γi j = ∑
k,l βklhkl Ki jkl . Its Lagrangian is:

L (μ, η) = 1

2

∑

i, j

∑

k,l
ηi j ηkl Ki jkl

+
∑

i, j
ηi j γi j −

∑

i, j
μi j

∑

k,l
ηkl Ki jkl , (58)

where μ is the Lagrange multiplier which satisfies μi j ≥ 0,
∀i, j . Converting the original problem to its dual problem
needs the following KKT condition:

∂L (μ, η)

∂ηi j
= 0

⇒
∑

k,l
ηkl Ki jkl + γi j −

∑

k,l
μkl Ki jkl = 0. (59)

(59) implies the following relationship between μ, η and β:

ηi j = μi j − hi j βi j , ∀i, j. (60)

Substituting (59) and (60) back into the Lagrangian, we get
the following Lagrange dual problem of the subproblem on η:

max
μ

− 1

2

∑

i, j

∑

k,l
μi j μkl Ki jkl +

∑

i, j
γi j μi j

−1

2

∑

i, j

∑

k,l
βi j βkl hi j hkl Ki jkl

s.t. μi j ≥ 0, ∀i, j. (61)

Since β is fixed in this subproblem,
∑

i, j
∑

k,l
βi j βklhi j hkl Ki jkl remains constant in (61). Thus we can omit
this term and have the following simplified Lagrange dual
problem:

max
μ

− 1

2

∑

i, j

∑

k,l
μi j μkl Ki jkl +

∑

i, j
γi j μi j

s.t. μi j ≥ 0, ∀i, j. (62)

REFERENCES

[1] A. Bellet, A. Habrard, and M. Sebban. (Jun. 2013). “A survey on metric
learning for feature vectors and structured data.” [Online]. Available:
https://arxiv.org/abs/1306.6709

[2] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification,” J. Mach. Learn. Res., vol. 10,
pp. 207–244, Feb. 2009.

[3] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance metric
learning, with application to clustering with side-information,” in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), 2002, pp. 521–528.

[4] M. Guillaumin, J. Verbeek, and C. Schmid, “Is that you? Metric
learning approaches for face identification,” in Proc. IEEE 12th Int.
Conf. Comput. Vis. (ICCV), Sep./Oct. 2009, pp. 498–505.

[5] M. Köstinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof, “Large
scale metric learning from equivalence constraints,” in Proc. IEEE Int.
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2012, pp. 2288–2295.

[6] Z. Li, S. Chang, F. Liang, T. S. Huang, L. Cao, and J. R. Smith,
“Learning locally-adaptive decision functions for person verification,”
in Proc. 16th IEEE Int. Conf. Comput. Vis. (ICCV), Jun. 2013,
pp. 3610–3617.

[7] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov, “Neigh-
bourhood components analysis,” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), 2004, pp. 513–520.

[8] L. Torresani and K.-C. Lee, “Large margin component analysis,” in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), 2006, pp. 1385–1392.

[9] J. Lu, X. Zhou, Y.-P. Tan, Y. Shang, and J. Zhou, “Neighborhood
repulsed metric learning for kinship verification,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 36, no. 2, pp. 331–345, Feb. 2014.

[10] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning
for large margin nearest neighbor classification,” in Proc. Adv. Neural
Inf. Process. Syst. (NIPS), 2005, pp. 1473–1480.

[11] A. Globerson and S. Roweis, “Metric learning by collapsing classes,”
in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2005, pp. 451–458.

[12] C. Shen, J. Kim, L. Wang, and A. van den Hengel, “Positive semidefinite
metric learning using boosting-like algorithms,” J. Mach. Learn. Res.,
vol. 13, pp. 1007–1036, Apr. 2012.

[13] Y. Ying and P. Li, “Distance metric learning with eigenvalue optimiza-
tion,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 1–26, Jan. 2012.

[14] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon, “Information-
theoretic metric learning,” in Proc. 24th Int. Conf. Mach. Learn. (ICML),
2007, pp. 209–216.

[15] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, “Metric learning
for large scale image classification: Generalizing to new classes at near-
zero cost,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2012, pp. 488–501.

[16] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” J. Mach. Learn. Res.,
vol. 11, pp. 1109–1135, Jan. 2010.

[17] C. Shen, J. Kim, and L. Wang, “Scalable large-margin Mahalanobis
distance metric learning,” IEEE Trans. Neural Netw., vol. 21, no. 9,
pp. 1524–1530, Sep. 2010.

[18] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization:
A geometric framework for learning from labeled and unlabeled exam-
ples,” J. Mach. Learn. Res., vol. 7, pp. 2399–2434, Nov. 2006.



ZUO et al.: DISTANCE METRIC LEARNING VIA ITERATED SVMs 4949

[19] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector
machines for multiple-instance learning,” in Proc. Adv. Neural Inf.
Process. Syst., 2002, pp. 577–584.

[20] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
2011.

[21] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines:
Fast SVM training on very large data sets,” J. Mach. Learn. Res., vol. 3,
pp. 363–392, Apr. 2005.

[22] A. Bordes, L. Bottou, P. Gallinari, and J. Weston, “Solving multiclass
support vector machines with LaRank,” in Proc. 24th Int. Conf. Mach.
Learn. (ICML), 2007, pp. 89–96.

[23] C. H. Teo, Q. V. Le, A. Smola, and S. V. N. Vishwanathan, “A scalable
modular convex solver for regularized risk minimization,” in Proc.
13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2007,
pp. 727–736.

[24] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal
estimated sub-gradient solver for SVM,” Math. Program., vol. 127, no. 1,
pp. 3–30, Mar. 2011.

[25] F. Wang, W. Zuo, L. Zhang, D. Meng, and D. Zhang, “A kernel
classification framework for metric learning,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 26, no. 9, pp. 1950–1962, Sep. 2015.

[26] J. Wang, A. Woznica, and A. Kalousis, “Parametric local metric learning
for nearest neighbor classification,” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), 2012, pp. 1601–1609.

[27] J. Hu, J. Lu, and Y.-P. Tan, “Discriminative deep metric learning for face
verification in the wild,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2014, pp. 1875–1882.

[28] L. Zheng, K. Idrissi, C. Garcia, S. Duffner, and A. Baskurt, “Triangular
similarity metric learning for face verification,” in Proc. 11th Int. Conf.
Workshops Autom. Face Gesture Recognit. (FG), May 2015, pp. 1–7.

[29] J. Hu, J. Lu, J. Yuan, and Y.-P. Tan, “Large margin multi-metric learning
for face and kinship verification in the wild,” in Proc. Asian Conf.
Comput. Vis. (ACCV), 2014, pp. 252–267.

[30] S. Liao, Y. Hu, X. Zhu, and S. Li, “Person re-identification by
local maximal occurrence representation and metric learning,” in Proc.
IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 2197–2206.

[31] K. Q. Weinberger and L. K. Saul, “Fast solvers and efficient imple-
mentations for distance metric learning,” in Proc. 25th Int. Conf. Mach.
Learn. (ICML), 2008, pp. 1160–1167.

[32] R. Jin, S. Wang, and Y. Zhou, “Regularized distance metric learning:
Theory and algorithm,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
2009, pp. 862–870.

[33] G.-J. Qi, J. Tang, Z.-J. Zha, T.-S. Chua, and H.-J. Zhang, “An efficient
sparse metric learning in high-dimensional space via �1-penalized log-
determinant regularization,” in Proc. 26th Int. Conf. Mach. Learn., 2009,
pp. 841–848.

[34] Y. Ying, K. Huang, and C. Campbell, “Sparse metric learning via smooth
optimization,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2009,
pp. 2214–2222.

[35] C. Shen, J. Kim, L. Wang, and A. van den Hengel, “Positive semidefinite
metric learning with boosting,” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), 2009, pp. 1651–1659.

[36] J. Bi, D. Wu, L. Lu, M. Liu, Y. Tao, and M. Wolf, “Adaboost on low-rank
PSD matrices for metric learning,” in Proc. IEEE Int. Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2011, pp. 2617–2624.

[37] C. Shen, J. Kim, and L. Wang, “A scalable dual approach to semidef-
inite metric learning,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2011, pp. 2601–2608.

[38] C. Shen, J. Kim, F. Liu, L. Wang, and A. van den Hengel, “Efficient
dual approach to distance metric learning,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 2, pp. 394–406, Feb. 2014.

[39] M. Liu and B. C. Vemuri, “A robust and efficient doubly regularized
metric learning approach,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
2012, pp. 646–659.

[40] N. Nguyen and Y. Guo, “Metric learning: A support vector approach,”
in Proc. ECML/PKDD, 2008, pp. 125–136.

[41] C. Brunner, A. Fischer, K. Luig, and T. Thies, “Pairwise support vector
machines and their application to large scale problems,” J. Mach. Learn.
Res., vol. 13, pp. 2279–2292, Aug. 2012.

[42] H. Do, A. Kalousis, J. Wang, and A. Woznica. (Jan. 2012). “A metric
learning perspective of SVM: On the relation of SVM and LMNN.”
[Online]. Available: https://arxiv.org/abs/1201.4714

[43] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,”
in Proc. ICLR, 2015, pp. 84–92.

[44] L. Zhang, T. Xiang, and S. Gong, “Learning a discriminative null space
for person re-identification,” in Proc. IEEE Int. Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 1239–1248.

[45] Y. Xu and W. Yin, “A block coordinate descent method for regular-
ized multiconvex optimization with applications to nonnegative tensor
factorization and completion,” SIAM J. Imag. Sci., vol. 6, no. 3,
pp. 1758–1789, 2013.

[46] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[47] S. C. H. Hoi, W. Liu, and S.-F. Chang, “Semi-supervised distance metric
learning for collaborative image retrieval,” in Proc. IEEE Int. Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2008, pp. 1–7.

[48] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods: Support Vector
Learning. Cambridge, MA, USA: MIT Press, 1999, pp. 185–208.

[49] A. Frank and A. Asuncion. (2010). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml

[50] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1–30, Jan. 2006.

[51] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in
unconstrained environments,” Univ. Massachusetts, Boston, MA, USA,
Tech. Rep. 07-49, 2007.

[52] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in Proc. BMVC, 2015, pp. 41.1–41.12.

[53] Q. Cao, Y. Ying, and P. Li, “Similarity metric learning for face
recognition,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2013,
pp. 2408–2415.

[54] S. Gong, M. Cristani, S. Yan, and C. C. Loy, Person Re-Identification.
London, U.K.: Springer, 2014.

[55] W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID: Deep filter pairing
neural network for person re-identification,” in Proc. IEEE Int. Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2014, pp. 152–159.

[56] W. Li, R. Zhao, and X. Wang, “Human reidentification with transferred
metric learning,” in Proc. Asian Conf. Comput. Vis. (ACCV), 2012,
pp. 31–44.

[57] B. McFee and G. Lanckriet, “Metric learning to rank,” in Proc. 27th
Int. Conf. Mach. Learn. (ICML), 2010, pp. 775–782.

[58] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani,
“Person re-identification by symmetry-driven accumulation of local
features,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2010, pp. 2360–2367.

[59] R. Zhao, W. Ouyang, and X. Wang, “Unsupervised salience learning for
person re-identification,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2013, pp. 3586–3593.

[60] R. Zhao, W. Ouyang, and X. Wang, “Learning mid-level filters for
person re-identification,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2014, pp. 144–151.

[61] R. Zhao, W. Ouyang, and X. Wang, “Person re-identification by salience
matching,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2013,
pp. 2528–2535.

[62] Z. Zhang, Y. Chen, and V. Saligrama, “A novel visual word
co-occurrence model for person re-identification,” in Proc. ECCV Work-
shop Vis. Surveill. Re-Identificat., 2014, pp. 122–133.

Wangmeng Zuo (M’09–SM’14) received the Ph.D.
degree in computer application technology from
the Harbin Institute of Technology, Harbin, China,
in 2007. From 2004 to 2004 and from 2005 to 2006,
he was a Research Assistant with the Department
of Computing, The Hong Kong Polytechnic Uni-
versity, Hong Kong. From 2009 to 2010, he was
a Visiting Professor with Microsoft Research Asia.
He is currently a Professor with the School of
Computer Science and Technology, Harbin Institute
of Technology. He has published over 60 papers in

top tier academic journals and conferences. His current research interests
include image enhancement and restoration, object detection, visual tracking,
and image classification. He has served as a Tutorial Organizer in ECCV 2016,
an Associate Editor of the IET Biometrics, Journal of Electronic Imaging, and
the Guest Editor of Neurocomputing, Pattern Recognition, the IEEE T-CSVT,
and the IEEE TNNLS.



4950 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 10, OCTOBER 2017

Faqiang Wang received the B.E. and M.E. degrees
from the Harbin Institute of Technology, Harbin,
China, in 2011 and 2013, respectively, where he is
currently pursuing the Ph.D. degree with the School
of Computer Science and Technology. He was a
Research Assistant with the Department of Com-
puting, The Hong Kong Polytechnic University,
Hong Kong, from 2012 to 2013 and in 2014.
His current research interests include discriminative
learning and computer vision.

David Zhang (F’09) received the degree in com-
puter science from Peking University, the M.Sc.
and Ph.D. degrees in computer science from the
Harbin Institute of Technology (HIT), in 1982 and
1985, respectively, and the second Ph.D. degree
in electrical and computer engineering from the
University of Waterloo, ON, Canada, in 1994. From
1986 to 1988, he was a Post-Doctoral Fellow with
Tsinghua University and then an Associate Professor
with Academia Sinica, Beijing. He is currently a
Chair Professor with The Hong Kong Polytechnic

University, where he is also the Founding Director of the Biometrics Research
Centre (UGC/CRC) supported by the Hong Kong SAR Government in 1998.
He also serves as a Visiting Chair Professor with Tsinghua University and
HIT, and an Adjunct Professor with Shanghai Jiao Tong University, Peking
University, the National University of Defense Technology, and the University
of Waterloo. He is the Author of over 15 books and over 400 international
journal papers. He is a Croucher Senior Research Fellow, a Distinguished
Speaker of the IEEE Computer Society, and a fellow of IAPR. He is the
Technical Committee Chair of the IEEE SMC. He is the Founder and an
Editor-in-Chief of the International Journal of Image and Graphics; a Book
Editor of the International Series on Biometrics (Springer); an Organizer
of the first International Conference on Biometrics Authentication; and an
Associate Editor of over ten international journals, including the IEEE
Transactions. He has been listed as a Highly Cited Researchers in Engineering
by Thomos Reters in 2014, 2015, and 2016, respectively.

Liang Lin received the B.S. degree from the Beijing
Institute of Technology, Beijing, China, in 2003, and
the joint Ph.D. degree from the Beijing Institute
of Technology and the Department of Statistics,
University of California at Los Angeles (UCLA),
Los Angeles, in 2008. From 2008 to 2010, he was
a Post-Doctoral Fellow with UCLA. From 2014
to 2015, he was a Senior Visiting Scholar with
The Hong Kong Polytechnic University and The
Chinese University of Hong Kong. He is currently a
Full Professor with Sun Yat-sen University. He has

authored or co-authored over 100 papers in top-tier academic journals and
conferences. His research interests include computer vision, data analysis and
mining, and intelligent robotic systems. He was a recipient of the Best Paper
Runners-Up Award in ACM NPAR 2010, the Google Faculty Award in 2012,
the Best Student Paper Award in the IEEE ICME 2014, the Hong Kong
Scholars Award in 2014, and The World’s First 10K Best Paper Diamond
Award in the IEEE ICME 2017. He has been serving as an Associate Editor
of the IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS.

Yuchi Huang received the B.E. degree in control from the Beijing University
of Aeronautics and Astronautics, the M.S. degree in pattern recognition from
the Chinese Academy of Sciences in 2004, and the Ph.D. degree in computer
science from Rutgers University in 2010. From 2010 to 2015, he was with
GE Global Research and NEC Labs as a Computer Vision Scientist. He is
currently a Senior Researcher with the Research Division, Educational Testing
Service, Princeton, NJ, USA, where he is conducting research in computer
vision, affective computing, and multimodal analytics for new forms of
learning and educational assessment tools.

Deyu Meng received the B.Sc., M.Sc., and Ph.D.
degrees from Xi’an Jiaotong University, Xi’an,
China, in 2001, 2004, and 2008, respectively. From
2012 to 2014, he took his two-year sabbatical leave
with Carnegie Mellon University. He is currently a
Professor with the School of Mathematics and Statis-
tics, Institute for Information and System Sciences,
Xi’an Jiaotong University. His current research inter-
ests include self-paced learning, noise modeling, and
tensor sparsity.

Lei Zhang (M’04–SM’14) received the B.Sc. degree
from the Shenyang Institute of Aeronautical Engi-
neering, Shenyang, China, in 1995, and the M.Sc.
and Ph.D. degrees in control theory and engineering
from Northwestern Polytechnical University, Xi’an,
China, in 1998 and 2001, respectively. From 2001 to
2002, he was a Research Associate with the Depart-
ment of Computing, The Hong Kong Polytechnic
University. From 2003 to 2006, he was a Post-
Doctoral Fellow with the Department of Electrical
and Computer Engineering, McMaster University,

Canada. In 2006, he joined the Department of Computing, The Hong Kong
Polytechnic University, as an Assistant Professor, where he has been a Chair
Professor since 2017. His research interests include computer vision, pattern
recognition, image and video analysis, and biometrics. He has authored over
200 papers in those areas. As of 2017, his publications have been cited
more than 26,000 times in the literature. He is an Associate Editor of the
IEEE TRANSACTIONS ON IMAGE PROCESSING, the SIAM Journal of Imaging
Sciences, and Image and Vision Computing. He is a Web of Science Highly
Cited Researcher selected by Thomson Reuters.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


