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Abstract

Recently, studies on sketch, such as sketch retrieval and
sketch classification, have received more attention in the
computer vision community. One of its most fundamental
and essential problem is how to more effectively describe
a sketch image. Many existing descriptors, such as shape
context, have achieved great success. In this paper, we pro-
pose a new descriptor, namely Symmetric-aware Flip In-
variant Sketch Histogram (SYM-FISH) to refine the shape
context feature. Its extraction process includes three steps.
First the Flip Invariant Sketch Histogram (FISH) descrip-
tor is extracted on the input image, which is a flip-invariant
version of the shape context feature. Then we explore the
symmetry character of the image by calculating the kurto-
sis coefficient. Finally, the SYM-FISH is generated by con-
structing a symmetry table. The new SYM-FISH descrip-
tor supplements the original shape context by encoding the
symmetric information, which is a pervasive characteristic
of natural scene and objects. We evaluate the efficacy of the
novel descriptor in two applications, i.e., sketch retrieval
and sketch classification. Extensive experiments on three
datasets well demonstrate the effectiveness and robustness
of the proposed SYM-FISH descriptor.

1. Introduction
With the popularity of tablets, e.g. iPad and Microsoft

Surface, sketch related studies become unprecedented pop-
ular nowadays. For instance, via such devices, people can
easily draw any object in his/her mind by touching the
screens. The sketches drawn by users are used as queries
to feed into any of the sketch retrieval system. The sketches
are essentially different with the real life images in many
aspects. For example, the information of sketches is mostly
represented by edges, in contrast, however, the things in re-

Query Sketch Top 5 retrived images

Figure 1. Several retrieval results of three query sketches are
shown. The first query is non-symmetric, the second query is bi-
lateral symmetric while the last one is rotation symmetric. For
each query, the retrieval results of three kinds of shape descrip-
tors: shape context, FISH and SYM-FISH are shown sequentially
in different rows. The first column is the query sketch images, and
the remaining columns are returned real life images. The incorrect
retrieval images are highlighted by red bounding boxes.

ality are very likely to be with rich textures. That is to say,
a huge gap exists between the simple stroke and the objects
in the real world, and thus brings great challenges for solv-
ing the problem. Actually, beside sketch retrieval [5], many
other edge related tasks, such as sketch detection [23] and
sketch recognition [2] are also extensively studied.

To describe the shape information of the sketch, many
descriptors are proposed. The most widely used one is
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shape context [2], which shows great success in practice.
But it is unable to capture a very important property of im-
ages: symmetry. Symmetry is ubiquitous in both natural
and man-made environments from galaxies, buildings to bi-
ological structures as well as in the arts. Moreover the sym-
metry is of scale invariance as well as translation invari-
ance. Although there is a long history of symmetry study
[9, 13, 21], it has rarely been integrated into descriptors in a
unified framework.

In this paper, our goal is to design a symmetry-aware
shape descriptor. Three steps are conducted sequentially.
First, the image is represented by a flip invariant descrip-
tor. More specifically, a Flip Invariant Sketch Histogram
(FISH) descriptor is extracted (Section 3.1). It is rotation,
translation, scale and flip invariant. Second, we detect the
symmetry axis. To this end, a simple energy measurement
based on the matching costs between different feature points
are calculated (Section 3.2). The measurement is dense-
ly computed on the image patches under different orienta-
tions. Then we minimize the energy measurement to de-
termine the symmetry directions in each image patch. Fi-
nally, we incorporate the symmetry character into image
representation. We construct a graph named symmetry ta-
ble to describe the symmetry character and generate the
SYMmetric-aware Flip Invariant Sketch Histogram (SYM-
FISH)(Section 4.1). Please note that, based on the graph,
we can handle both the case with and without symmetry
property in the image.

To validate the effectiveness of our proposed approach,
we apply it on two applications: sketch retrieval [5] and s-
ketch classification [15]. The sketch retrieval task is quite
challenging because of the huge gap between the sketch
query and real life repository images. Some of the represen-
tative works on sketch retrieval are MindFinder [4] [5] and
Sketch2photo [6]. These works have achieved some impres-
sive success. However, little attention is paid on studying
the symmetry character of the images. Symmetric is very
essential in image retrieval. For an instance in Figure 1, the
second and the third query images are symmetric, so the re-
trieval results should also be symmetric. Furthermore, we
do the experiment on two benchmark datasets: ETH shape
dataset [8] and a large scale sketch retrieval dataset [17].
Promising results have been achieved. The second applica-
tion is sketch classification. Intuitively, symmetry is useful
for classification, i.e., sketch images from the same catego-
ry may have certain common preference to symmetry. Such
as apples are usually bilaterally symmetric and flowers tend
to rotation symmetric. We conduct extensive experiments
on the sketch dataset [15]. Experimental results show that
the proposed SYM-FISH descriptor is more discriminating
than standard descriptors, such as shape context, and can
significantly improve sketch classification performance.

2. Related work

There are limited related works on sketch classification.
One of the most representative work is [2], which is a his-
togram representation of the sample points. It maps interest
points into a log-polar space based on the relative position-
s of the points. In addition, self-similarity [22] adopts a
similar log-polar mapping function to compute the intensi-
ty differences among log-polar bins. Another work on s-
ketch classification is [15]. The authors used a traditional
bag of word method to classify the sketches. However, all
the aforementioned descriptors do not enforce the descrip-
tors to be flip invariant, while our propose SYM-FISH can
handle the flip cases well.

Image retrieval has made a significant progress in recent
years [12, 20]. Sketch retrieval is as a branch of image re-
trieval but with more difficulties. In MindFinder system [4],
the edge position and gradient were used to represent the
sketches. To make the representation translation invariant
and more discriminative, [16] proposed a tensor descriptor
which firstly divided the image into cells, and then com-
puted the dominant orientation of each cell to construct a
structure preserving descriptor. The above-mentioned de-
scriptors are not robust to the image rotation. Therefore, we
propose a novel sketch descriptors which can handle various
transformations e.g. translation, rotation and scale. Further-
more, [17] proposed a bag of features framework based on
local features. But the retrieval results would be influenced
by the ambiguity of visual words. Thus, in our proposed
method, we introduce the symmetry structure of the image
to compensate such shortcoming.

Symmetry detection has been studied for many years
[13]. A recent related work is [10], which proposed a sym-
metry score approach to find the symmetry feature points,
afterwards constructed a symmetry descriptor for building
matching. But our work is different from theirs because
their method involves the score strategy, but SYM-FISH is
based on the feature points matching.

To encode the full structure information in descriptor
construction process will lead it sensitive to rotation. There-
fore, Zhang et al. [24] propose to build a GVP (geometrical
visual phase) to represent an image. In [24], the authors
construct an offset space to compute the co-occurrences vi-
sual phase words in a particular spatial layout. However
this method may work well for rigid construction e.g. build-
ings, when there existing some distortions the visual phase
will also be changed. Our proposed symmetry visual word
phase is robust to the distortions and noise.

3. The approach

The whole procedure of extracting SYM-FISH descrip-
tor consists of three main components: 1) computing the
FISH descriptor on the input image, 2) discovering the sym-
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Figure 2. FISH descriptor construction process: sampling feature
points, mapping sampled points in the log-polar coordinate, and
developing the descriptor representation. We compare the pro-
posed FISH descriptor with shape context descriptor. (b), (c) and
(d) are the visualization of FISH and shape context descriptors of
red, green and blue stars in the original image (a).

metry character of the image by analyzing matching scores
and 3) constructing a symmetry table combined with FISH
descriptor to finally generate the SYM-FISH.

3.1. Flip Invariant Sketch Histogram

Before we introduce the procedure of extracting FISH
descriptor, we first briefly review how shape context de-
scriptor is extracted. The procedure is shown in Fig. 2.
Shape context is constructed based on the distribution of
feature points sampled along the edge, which is detected by
edge detector operator or by computing the gradient of the
image. Then the log-polar mapping function (five bins for
radius and twelve for angles in our figure representation) is
applied and the number of feature points in each log-polar
bin is computed. After normalization, shape context fea-
ture can be obtained. Although shape context has achieved
great success, it cannot handle the flip case. For example
in Fig. 2 (b) and (d), their shape context features are totally
dissimilar even though their feature points corresponding to
red and blue star in Fig. 2 (a) are quite similar (only under
flip changes).

To handle the flip variations, we propose a FISH descrip-
tor, which can be viewed as a post-processing procedure
after shape context feature is extracted. More specifically,
we re-order all the bins in the shape context by two steps:
determine the reference bin and the rotation orientation se-
quentially. First, we determine the reference bin. It is set as

Table 1. The average evaluation results between FISH and Shape
context, and the best are highlighted with bold.

FISH Shape Context
Transformation Precision Recall Precision Recall

Rotation 0.0588 0.3098 0.0160 0.1062
Flip 0.6357 0.8954 0.0046 0.0453

Scale1 0.1847 0.1552 0.1839 0.1550
Scale2 0.1582 0.1316 0.1582 0.1316
Scale3 0.1400 0.1160 0.1408 0.1158
Scale4 0.1348 0.1080 0.1353 0.1092
Scale5 0.1260 0.1028 0.1251 0.1031

the most dense bin (MDB) of the log-polar, i.e. bin marked
by deepest color of the shape context feature in Fig. 2. After
determining the MDB, we re-order all bins in shape context
by putting the MDB in the first bin of the FISH descrip-
tor. Second, the rotation orientation is determined by the
orientation from MDB to the second most dense bin (SMD-
B). To sum up, we can roughly align the FISH features by
re-ordering the bins of shape context according to the in-
ferred reference bin and the rotation orientation. One pos-
sible problem of the above mentioned strategy is the MDB
and SMDB bins may share the same polar angle. In this
case, we skip the original SMDB and depend on the third
MDB to determine the rotation orientation.

We show the effectiveness of the proposed FISH descrip-
tor in Fig. 2. The red and blue stars in Fig. 2 (a) are quite
similar, and thus their FISH are similar, shown in Fig. 2 (b)
and Fig. 2 (d). To the contrary, the green star in Fig. 2 (a)
looks quite dissimilar with the other stars. Therefore, its
FISH Fig. 2 (c) is dissimilar with Fig. 2 (b) and Fig. 2 (d).

Since we map the feature points into log-polar space.
Moreover, the relative distance is used to develop feature
points distribution. Therefore, FISH is translation, rotation
and scale invariant. After re-ordering, FISH is also flip in-
variant.

Evaluation of Flip Invariant Sketch Histogram: We
will quantitatively compare FISH with shape context in the
image matching task. However there is no benchmark s-
ketch dataset specially for matching, a sketch pairs database
is collected by ourselves. The dataset is composed of 250
pairs. each pair is consisted of original image and its rota-
tion, flip and scale version. In the sketch pair database, the
orientation angle is randomly selected from (0,360). The s-
cale parameter selected from the fixed 5 scales from 1

√
2

to
2. For the flip situation, we flip the whole original image.

The setting of the matching experiment is as follows:
300 feature points are sampled on two sketch images, then
an adjacency matrix is constructed by computing the sim-
ilarity among their FISH descriptors. Afterwards, the KM
matching approach [18] is used to get the global one-vs-one
correspondence of feature points. Finally a RANSAC [19]
method is utilized to further improve the matching results.

We use precision and recall to evaluate the matching per-
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Figure 3. The Kurtosis values of different symmetry types. The red
line indicates the detected symmetry axis of the original image.
For bilateral symmetry image (a), the kurtosis value is large and
the distribution has a peak (d). While the rotation symmetry image
(b) has a small kurtosis value and a flat distribution (e). The non-
symmetry image (c) has a smaller kurtosis value distribution (f).

formance. A match is considered as correct if the estimat-
ed matching points are less than 10 pixels away from the
ground truth matching points. The results can be found in
Tab. 1. In this table, we show the average matching results
of 250 sketches. The reason is that the variation tendency of
precision and recall is like other local descriptors. We think
the average value can be used to measure the performance.
In the rotation and scale situations, FISH achieves a compet-
itive matching results comparing with shape context. And
under flip situation, FISH obtains significant improvements.

3.2. Symmetry discovering

According to common sense and previous studies[10],
the symmetry sketch can be divided into two categories1 :
bilateral symmetry and 2n-rotataion symmetry, the defini-
tion of which are:

Bilateral symmetry: A sketch contains only one sym-
metry axis or two (near) orthogonal axises. Specially, two
separated parts could be mapped to each other by the angle
of the symmetry axis. One example of bilateral symmetry
is Fig. 3 (a).

2n-fold rotation symmetry: There exist more than two
symmetry lines of a sketch, while these lines are intersected
in one point. In our problem, if a sketch include two sym-
metry lines, which are not orthogonal, we also define it as
rotation symmetry. One example of rotation symmetry is
Fig. 3 (b).

Thus, discovering local symmetry of a region can be con-
verted to search the symmetric axis of the sketch. To detect
the symmetry axis on the input sketch, we propose a com-
pact energy minimization method. The whole strategy is

1The curved symmetry may be considered as another symmetry cate-
gories. But we think the curved symmetry is a kind of piecewise bilateral
symmetry. Moreover in this paper we do not discuss such situation.

Algorithm 1 The procedure for symmetry discovering.
1: Input: an image Ii, the all-zero 36-dim vector `, thresh-

old ~1 and ~2
2: for each sampled angle O within (0,360) degrees do
3: for each sampled point p in the image I do
4: calculate the symmetric score of the {O, p} pair

by Eq. 2.
5: end for
6: set `(o) = S coreIi (O).
7: end for;
8: calculate kurtosis coefficient Kurt(VS core) by Eq. 3.
9: if Kurt(VS core) ≥ ~1 then

10: image I is bilateral symmetric
11: else
12: if #matchedpoints ≥ ~2 then
13: image Ii is rotation symmetric
14: end ifimage Ii is not symmetric
15: end if
16: Output: its symmetry type and the symmetric points;

shown in Algorithm 1. Firstly, as shown in line 2 of Al-
gorithm 1, we traverse all orientations/angles o, which are
evenly distributed in (0,360) degrees, with the interval of 10
degrees. Thus, we have 36 sampled angles. Secondly, we
traverse all sampled keypoints p in the image Ii, as shown
in line 3. Till now, we get the sampled {o, p}(indicating
{angle, point}) pair. Then we divide the sketch image into
two parts based on current {o, p} pair. Then we calculate
the symmetric score for each orientation/angle o. Small-
er matching score means more symmetric. The symmetric
score is defined as:

S coreIi (O) =
∑

j

min D( f i
j(O), f i

c( j)(O)), (1)

∀O ∈ {1, 10, 20, ..., 360} (2)

where c( j) represents the corresponding feature points of j,
and f i

j is the feature representation of point j in the image i.
D(·) displays the Euclidean distance. O represents the sym-
metry directions, which is fixed from 1 degree to 360 degree
for every 10 degrees. Then, we select the minimum scores
of each orientation o as the potential symmetry orientation,
We accumulate all the scores to generate a 36-dim vector,
shown in line 6 of Algorithm 1. We observe that for the bi-
lateral symmetry sketch the matching score S coreIi (O) has
an unimodal distribution, while for the rotation symmetry,
S coreIi (O) has a multimodal distribution. The kurtosis co-
efficient [11] can discriminate the two cases: output lower
value for a single peak distribution and higher value for the
multi-peak distribution. The kurtosis coefficient is calculat-
ed by:

Kurt(VS core) =
1
σ4

∑
λ

(λ − µλ)4S coreIi (3)



where σ is the standard deviation and λ represents the an-
gel of the symmetry axis. µλ is the expected value of λ and
Vscore is the distribution of confidence symmetry. The step
corresponds to line 8 in Algorithm 1. Usually, the bilater-
al symmetry produces much higher Kurt score comparing
with rotation symmetric and non-symmetric, as shown in
Fig. 3 (d). We take advantage of this property, and set a
threshold ~1 shown in line 9 of Algorithm 1. Since both ro-
tation symmetric and non-symmetric produce similar lower
Kurt score, shown in Fig. 3 (e) and Fig. 3 (f). We have
to judge the type by another criterion, i.e., the number of
matching feature points ~2. Intuitively, non-symmetric im-
ages have small number of matched feature points, as shown
in line 12 of Algorithm 1. Till now, we can classify all three
kinds of symmetric types.

Evaluation of symmetry discovering: We test the ef-
fectiveness Algorithm 1 on a subset of sketch database [17].
The validation database is composed of 31 human drawing
sketches, which contain bilateral symmetry sketch, rotation
symmetry sketch and non-symmetry sketch. We would like
to know whether the symmetry type can be correctly classi-
fied. We find that the total classification accuracy is 67.7%,
which is much higher than random guess 33.3%.

3.3. Symmetry-aware Flip Invariant Sketch His-
togram

In image retrieval and classification the local descrip-
tors, such as SIFT [14], shape context [2] and FISH, will
not be directly used for the image representation. Usual-
ly, we summarize all the local descriptors in a sketch im-
age with the Bags of words (BoWs) representation. Thus,
in this section, we will illustrate how to fuse the symmetry
property among feature points into the visual word repre-
sentation. Traditionally BoWs features ignore the relation-
ships between different visual words. A lot of works have
put attention on adding the spatial relation between differ-
ent visual words [3] [24]. In this paper we only focus on
symmetry and do not exploit other spatial structure of the
sketch images.

We propose to use a symmetry table to capture the sym-
metry relations among visual words. The whole process
contains four steps. Firstly, the k-means is used to cluster
the feature points to get the dictionary. And we map all the
feature points into its nearest visual words to get the visu-
al word representation. This step is same with traditional
BoWs framework. Secondly, we detect the symmetric fea-
ture points by the method introduce in Sec 3.2. Thirdly,
we map the symmetry of feature points to symmetry of vi-
sual words. This step is similar with [3] whose purpose
is to transfer the feature points spatial distribution to visual
word representation. Finally, we construct a symmetry table
Y ∈ {0, 1}, which is a N×N matrix, where N is the number
of visual words. Y is an index matrix, whose element Yi, j

indicates whether the visual word Vi and V j are symmetric
in the sketch images. More specifically, Yi, j = 1 if vi and
v j are symmetry, otherwise Yi, j = 0. With the symmetry
table, the symmetry relationship is transferred from feature
points level to the visual words level. To sum up, besides
the original BoWs feature, for each sketch image, we have
a new structural feature called SYMmetry-aware Flip In-
variant Sketch Histogram (SYM-FISH) shape feature. It is
the combination of original FISH feature and a symmetry
table. The SYM-FISH feature is easy to compute and all its
values are binary. Thus the distance between two symmetry
table is just humming distance.

4. Applications of SYM-FISH

4.1. SYM-FISH descriptor in sketch retrieval

Searching the real life images by using a sketch query is
not an easy task. The sketches are essentially different with
the real life images in many aspects. For example, sketch
images convey information mostly by edges while real life
images always have rich texture.

The SYM-FISH is used in the sketch retrieval task by
re-ranking the original ranking list. The original list could
be generated by any retrieval method, such as using the in-
verted file structure. For the SYM-FISH reranking, we first
extract the symmetry table for all the images in the reposito-
ry. Then the original list is reorder by the distances between
symmetry table. We use Eq. 4 to compute the distance be-
tween symmetry tables.

D(Iq, Ir) = ||S Tq − S Tr ||F , (4)

where Iq and Ir display the query image and repository im-
age. S T is the symmetry table for each image. The sub-
script F represents the Frobenius norm.

From the experiments, we observe that SYM-FISH not
always output good rerank results. The main reason is that
it is very difficult to extract the edges of real life images .
And the SYM-FISH descriptor is sensitive to edge detection
errors. To partially solve the problem, we use subwindows
method.

The candidate subwindows are chosen based on the their
objectness [1]. The objecness of an image is defined to find
the regions which most likely include the objects. Suppos-
ing we have m candidate windows in the query image, and
n candidate windows in one repository image. Next, we
should identify how to measure the distance between query
and repository images. Till now, the original image-image
distance has been transfered to a set-set distance, where al-
l candidate windows in an image form a set. To solve the
problem, we assume that if two images are similar, there ex-
ist some quite similar subwindows too. Therefor, we mea-
sure the image-image distance by averaging the distance of
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Figure 4. The sketch retrieval results on ETH dataset. (a)-(c) are average retrieval results for top 10, 20 and 40 cases.

top 3 similar subwindows:

D(Iq, Ir) =
1
3

3∑
i=1

d(i, Ip
q , I

p
r ), (5)

where d(i, Ip
q , I

p
r ) denoted the i-th similar subwindows be-

tween query image Iq and reposotyr image Ir.

4.2. SYM-FISH descriptor in sketch classification

In the traditional classification approach [15] , chi-square
distance is usually used to compute the similarity between
different images while the symmetry character of the s-
ketches is not considered. The chi-square distance is just
based on the similarity of the bags of visual words represen-
tation. In our approach, we combine the distance between
visual word representation and the similarity of symmetry
table. Formally, we have:

D(Ii, I j) = χ2(Ii, I j) + λ ∗ S T (Ii, I j) (6)

where χ2(Ii, I j) computes the chi-square distance between
different images, and S T (Ii, I j) is the similarity of symme-
try table between different images. However, there exists
variation within the category, this distance may increment
the distance within the class. In fact, we observe that the
distance within the category is increasing, but the distance
between different categories is growing more larger. To val-
idate the performance of such combination, the experiment
results are shown in Section 5.2.

5. Experiments
We evaluate our proposed descriptor FISH and SYM-

FISH on two applications : sketch retrieval and sketch clas-
sification. In the sketch retrieval experiment, we first check
the performance of FISH and SYM-FISH on ETH shape
database [8]. The further validation of these two descrip-
tors is on a large scale sketch retrieval dataset [17]. In the
sketch classification experiment, we test the performance of
proposed descriptors on sketch classification dataset [15].

5.1. Sketch Retrieval Results

5.1.1 Evaluation on the ETH dataset

In this experiment, we compare FISH, SYM-FISH with
shape context [2], self-similarity [22] and HOG [7] on ETH
shape dataset. This dataset contains five classes (bottles,
swans, mugs, giraffes and apple logos) with a total of 255
images collected from the web. It is very challenging, as the
objects appear in a wide range of scales. And there is con-
siderable intra-class shape variations, and many images are
severely cluttered, with objects comprising only a fraction
of the whole image. The ETH dataset provides one repre-
sentative sketch image for each class, which is used as the
input query in our experiment. All the real life images in
the dataset are used as repository data. We use precision
to measure the performance of different descriptors, which
is the ratio of corresponding images in the top n returned
images: Precision = #corresponding images/ n.

The results are shown in Fig. 4, we test all the five de-
scriptors in top 10, 20 and 40 cases. And we conclude that
SYM-FISH achieves the best performance. Note that it is
significantly better than shape context, the most widely used
shape descriptor. The possible explanation is that the pro-
posed SYM-FISH descriptor becomes more robustness be-
cause of the novel encoding approach and can better handle
the flip situation. Moreover, the introduced symmetry prop-
erty enables the representation more discriminative. We
also test the performance w.r.t. different vocabulary sizes
from 100 to 1000. From Fig. 4, we can see that in all cases,
the maximal precision is achieved when the dictionary size
is 500, which is a trade-off between descriptors’ discrimi-
nation and quantization error.

5.1.2 Evaluation on the Large Scale Image Database

We have demonstrated the effectiveness of FISH and SYM-
FISH on a relatively small ETH database. In this ex-
periment, we validate their performances on a large scale



dataset [17]. This database is composed of two parts, name-
ly a benchmark dataset and a distractor image dataset. The
benchmark dataset contains 31 benchmark sketches as well
as 40 corresponding images for each sketch while the dis-
tractor image dataset contains 100,000 creative commons
images. We mix the benchmark dataset and the distractor
images together and use each of the 31 benchmark sketch-
es as the query. For each query, a list which contains the
ranking of the corresponding 40 benchmark images is s-
tored. We use Kendalls rank correlation [17] to measure
the performance ranging in [-1, 1] and higher value means
the higher consistency:

τ =
#concordant pairs − #discordant pairs

1
2 n(n − 1)

, (7)

where # concordant pairs evaluates the consistency between
two lists and # discordant pairs measure the inconsistency
between two lists. n is the length of the rank lists.

In this experiment, we compare the description perfor-
mance of FISH and SYM-FISH with shape context. All re-
sults are illustrated in Table 2. We can observe that FISH is
marginally better than shape context and SYM-FISH is the
best one. We also show several qualitative retrieval exam-
ples in Fig. 5. The results are obtained by using SYM-FISH
descriptor. We can see that, in most cases, the returned re-
sults are visually and semantically similar with the query.

Table 2. The retrieval results on large scale image benchmark [17].
For all dictionary size, the best results are achieved by SYM-FISH.

Dictionary Size Shape context FISH SYM-FISH
100 0.12395 0.11683 0.1261
300 0.10911 0.11041 0.1409
500 0.10914 0.10815 0.1688
700 0.10391 0.10225 0.1762
900 0.11594 0.12225 0.1829

1000 0.11066 0.1243 0.1801

5.2. Sketch Classification Results

In this section, we test the effectiveness of the proposed
SYM-FISH on the sketch classification task. In this part,
a subset of human sketch dataset [15] is used, which con-
tains 24 categories: airplane, bicycle, car(sedan), cat, chair,
computer monitor, couch, cow, dog, flying bird, horse, mo-
torbike, person setting, person walking, potted plant, race
car, sailboat, sheep, speed boat, table, table lamp, train, tv
and wine-bottle. Each sketch class contains about 80 im-
ages with different styles. To train the sketch model, we
randomly divide the dataset into 2 subset: 58 images from
each category are randomly selected as the training set and
the remaining images are used as testing set. We train 24
SVM classifiers one for each category in a one-vs-all man-
ner. We use the self-defined kernel converted from Eq. 6.

In this experiment, we compare three descriptors: shape
context, FISH, SYM-FISH. The comparison results are

Query Sketch Top 5 retrieved images

Figure 5. Examples of the retrieval results using the proposed
SYM-FISH descriptor in the large scale dataset [17]. The first
column is the query sketch image, while the remaining columns
correspond to the retrieved real life images. The incorrect results
are highlighted by red bounding boxes.
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Figure 6. The classification results w.r.t. different dictionary size.

shown in Fig. 6. The evaluation metric is category’s recog-
nition accuracy. We can observe that in most cases, SYM-
FISH achieves best performance. We also show the accura-
cies for each category in Tab. 2. Again, in 10 out of total 24
categories, SYM-FISH achieves best results. The average
result of 0.53 is much higher than 0.47, which is the result
of shape context. The reasons can be summarized as fol-
lows: firstly there exists many flip situations in the dataset



Table 3. The comparisons between our descriptors and baselines.
The best results are highlighted in bold.

Categories [15] SC[2] FISH SYM-FISH
airplane 0.38 0.44 0.30 0.63
bicycle 0.77 0.56 0.44 0.59

car(sedan) 0.30 0.63 0.48 0.52
cat 0.22 0.26 0.15 0.37

chair 0.67 0.52 0.74 0.78
computer monitor 0.81 0.48 0.59 0.59

couch 0.62 0.59 0.63 0.67
cow 0.5 0.22 0.2 0.19
dog 0.41 0.19 0.11 0.37

flying bird 0.19 0.19 0.11 0.22
horse 0.54 0.52 0.63 0.44

motorbike 0.44 0.48 0.44 0.41
person setting 0.52 0.44 0.59 0.46

person walking 0.69 0.52 0.59 0.56
potted plant 0.81 0.67 0.81 0.81

race car 0.22 0.22 0.11 0.07
sailboat 0.93 0.59 0.74 0.67
sheep 0.58 0.41 0.44 0.56

speed boat 0.35 0.22 0.11 0.37
table 0.89 0.7 0.74 0.70

table lamp 0.27 0.59 0.70 0.67
train 0.44 0.37 0.33 0.41

tv 0.56 0.48 0.67 0.67
wine-bottle 0.81 0.89 0.70 0.89

Average 0.538 0.47 0.48 0.53

and our proposed descriptor is flip-invariant. Secondly, the
symmetry table can better preserve the symmetry proper-
ties of the sketches which both decrease the intra-category
distances and increase inter-category distances.

6. Conclusion and Future Work

In this paper, we propose a novel shape descriptor SYM-
FISH which can handle the flip changes and encode im-
age’s symmetric property. It is low-dimensional and easy
to compute. We thoroughly analyze its characteristics on
two applications: sketch retrieval and classification. Ex-
periments validate that SYM-FISH is significantly and con-
sistently better than the shape context descriptors in most
cases. Although we only validate the effectiveness of the
descriptor on sketch retrieval and classification tasks in this
paper, we believe that it can also be used in other tasks, such
as sketch detection. We leave it as our future work.
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