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Abstract

Detecting small objects is notoriously challenging due

to their low resolution and noisy representation. Exist-

ing object detection pipelines usually detect small objects

through learning representations of all the objects at multi-

ple scales. However, the performance gain of such ad hoc

architectures is usually limited to pay off the computational

cost. In this work, we address the small object detection

problem by developing a single architecture that internally

lifts representations of small objects to “super-resolved”

ones, achieving similar characteristics as large objects and

thus more discriminative for detection. For this purpose,

we propose a new Perceptual Generative Adversarial Net-

work (Perceptual GAN) model that improves small object

detection through narrowing representation difference of

small objects from the large ones. Specifically, its gener-

ator learns to transfer perceived poor representations of

the small objects to super-resolved ones that are similar

enough to real large objects to fool a competing discrim-

inator. Meanwhile its discriminator competes with the gen-

erator to identify the generated representation and imposes

an additional perceptual requirement – generated represen-

tations of small objects must be beneficial for detection pur-

pose – on the generator. Extensive evaluations on the chal-

lenging Tsinghua-Tencent 100K [45] and the Caltech [9]

benchmark well demonstrate the superiority of Perceptual

GAN in detecting small objects, including traffic signs and

pedestrians, over well-established state-of-the-arts.

1. Introduction

Recent great progress on object detection is stimulated

by the deep learning pipelines that learn deep representa-

tions from the region of interest (RoI) and perform classi-

fication based on the learned representations, such as Fast

R-CNN [11] and Faster R-CNN [32]. Those pipelines in-

deed work well on large objects with high resolution, clear

appearance and structure from which the discriminative fea-

tures can be learned. But they usually fail to detect very

small objects, as rich representations are difficult to learn
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Figure 1. Large and small objects exhibit different representations

from high-level convolutional layers of a CNN detector. The repre-

sentations of large objects are discriminative while those of small

objects are of low resolution, which hurts the detection accuracy.

In this work, we introduce the Perceptual GAN model to enhance

the representations for small objects to be similar to real large ob-

jects, thus improve detection performance on the small objects.

from their poor-quality appearance and structure, as shown

in Figure 1. However, small objects are very common in

many real world applications such as traffic sign detec-

tion, pedestrian detection for advanced autonomous driving.

Small object detection is much more challenging than nor-

mal object detection and good solutions are still rare so far.

Some efforts [4, 25, 18, 39, 23, 1] have been devoted

to addressing small object detection problems. One com-

mon practice [4, 25] is to increase the scale of input im-

ages to enhance the resolution of small objects and produce

high-resolution feature maps. Some others [39, 23, 1] focus

on developing network variants to generate multi-scale rep-

resentation which enhances high-level small-scale features

with multiple lower-level features layers. However, all of

those approaches try to enhance the performance of small

object detection by data augmentation or naively increasing

the feature dimension. Simply increasing the scale of input

images often results in heavy time consumption for training

and testing. Besides, the multi-scale representation con-

structed by the low-level features just works like a black-

box and cannot guarantee the constructed features are inter-

pretable and discriminative enough for object detection. In

this work, we argue that a preferable way to effectively rep-

resent the small objects is to discover the intrinsic structural

correlations between small-scale and large-scale objects for

each category and then use the transformed representations
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to improve the network capability in a more intelligent way.

Therefore, we propose a novel Perceptual Generative

Adversarial Network (Perceptual GAN) to generate super-

resolved representations for small objects for better detec-

tion. The Perceptual GAN aims to enhance the representa-

tions of small objects to be similar to those of large object,

through fully exploiting the structural correlations between

objects of different scales during the network learning. It

consists of two subnetworks, i.e., a generator network and a

perceptual discriminator network. Specifically, the genera-

tor is a deep residual based feature generative model which

transforms the original poor features of small objects to

highly discriminative ones by introducing fine-grained de-

tails from lower-level layers, achieving “super-resolution”

on the intermediate representations. The discriminator net-

work serves as a supervisor and provides guidance on the

quality and advantages of the generated fine-grained details.

Different from the vanilla GAN, where the discriminator is

only trained to differentiate fake and real representations,

our proposed Perceptual GAN includes a new perceptual

loss tailored for the detection purpose. Namely, the discrim-

inator network is trained not only to differentiate between

the generated super-resolved representations for small ob-

jects and the original ones from real large objects with an

adversarial loss, but also to justify the detection accuracy

benefiting from the generated super-resolved features with

a perceptual loss.

We optimize the parameters of the generator and the dis-

criminator network in an alternative manner to solve the

min-max problem. In particular, the generator network is

trained with the goal of fooling the discriminator by gener-

ating the most large-object like representations from small

objects as well as benefiting the detection accuracy. On

the other hand, the discriminator is trained to improve its

discriminative capability to correctly distinguish the gen-

erated super-resolved representations from those from real

large objects, and also provides feedback about the local-

ization precision to the generator. Through competition be-

tween these two networks, generator is effectively trained

to enhance the representations for small objects to super-

resolved ones capable of providing high detection accuracy.

We evaluate our Perceptual GAN method on the chal-

lenging Tsinghua-Tencent 100K [45] and the Caltech

benchmark [9] for traffic sign and pedestrian detection re-

spectively. Small instances are common on these two

datasets, thus they provide suitable testbed for evaluating

methods on detecting small objects. Our proposed method

shows large improvement over state-of-the-art methods and

demonstrates its superiority on detecting small objects.

To sum up, this work makes the following contribu-

tions. (1) We are the first to successfully apply GAN-alike

models to solve the challenging small-scale object detec-

tion problems. (2) We introduce a new conditional gener-

ator model that learns the additive residual representation

between large and small objects, instead of generating the

complete representations as before. (3) We introduce a new

perceptual discriminator that provides more comprehensive

supervision beneficial for detections, instead of barely dif-

ferentiating fake and real. (4) Successful applications on

traffic sign detection and pedestrian detection have been

achieved with the state-of-the-art performance.

2. Related Work

2.1. Small Object Detection

Traffic Sign Detection Traffic sign detection and recog-

nition has been a popular problem in intelligent vehicles,

and various methods [20, 15, 34, 19, 38, 45] have been pro-

posed to address this challenging task. Traditional methods

for this task includes [20] [15]. Recently, CNN-based ap-

proaches have been widely adopted in traffic sign detection

and classification due to their high accuracy. In particular,

Sermanet et al. [34] proposed to feed multi-stage features

to the classifier using connections that skip layers to boost

traffic sign recognition. Jin et al. [19] proposed to train the

CNN with hingle loss, which provides better test accuracy

and faster stable convergence. Wu et al. [38] used a CNN

combined with fixed and learnable filters to detect traffic

signs. Zhu et al. [45] trained two CNNs for simultaneously

localizing and classifying traffic signs.

Pedestrian Detection The hand-crafted features achieve

great success in pedestrian detection. For example, Dollár

et al. proposed Integral Channel Features (ICF) [8] and

Aggregated Channel Features (ACF) [7], which are among

the most popular hand-crafted features for constructing

pedestrian detectors. Recently, deep learning methods

have greatly boosted the performance of pedestrian detec-

tion [29, 33, 28, 36, 41]. Ouyang et al. [29] proposed a

deformation hidden layer for CNN to model mixture poses

information, which can further benefit the pedestrian detec-

tion task. Tian et al. [36] jointly optimized the pedestrian

detection with semantic tasks. Sermanet et al. [33] utilized

multi-stage features to integrate global shape information

with local distinctive information to learn the detectors.

2.2. Generative Adversarial Networks

The Generative Adversarial Networks (GANs) [14] is

a framework for learning generative models. Mathieu et

al. [26] and Dentonet al. [6] adopted GANs for the appli-

cation of image generation. In [22] and [40], GANs were

employed to learn a mapping from one manifold to another

for style transfer and inpainting, respectively. The idea of

using GANs for unsupervised representation learning was

described in [31]. GANs were also applied to image super-

resolution in [21]. To the best of our knowledge, this work

makes the first attempt to accommodate GANs on the object

detection task to address the small-scale problem by gener-

ating super-resolved representations for small objects.
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Figure 2. Training procedure of object detection network based on

the Perceptual GAN. The perception branch of the discriminator

network along with the bottom convolutional layers is first trained

using the training images that contain only large objects. Then

with the training images that contain only small objects, the gen-

erator network is trained to generate super-resolved large-object

like representations for small objects. The adversarial branch of

the discriminator network is trained to differentiate between the

generated super-resolved representations for small objects and the

original ones for real large objects. By iteratively boosting the

abilities of the generator network and the discriminator network

through alternative training, the detection accuracy especially for

small objects can be improved.

3. Perceptual GANs

We propose a new Perceptual GAN network to address

the challenging small object detection problems. We intro-

duce new designs on the generator model that is able to gen-

erate super-resolved representations for small objects, and

also a new discriminator considering adversarial loss and

perceptual loss to “supervise” the generative process. In

this section, we first present the alternative optimization for

perceptual GAN from a global view. Then, the details of

the generator for super-resolved feature generation and the

discriminator for adversarial learning are given.

3.1. Overview

The learning objective for vanilla GAN models [14] cor-

responds to a minimax two-player game, which is formu-

lated as

min
G

max
D

L(D,G) � Ex∼pdata(x)
logD(x)

+ Ez∼pz(z) [log(1−D(G(z)))] ,

where G represents a generator that learns to map data z

from the noise distribution pz(z) to the distribution pdata(x)

over data x, and D represents a discriminator that estimates

the probability of a sample coming from the data distribu-

tion pdata(x) rather than G. The training procedure for G is

to maximize the probability of D making a mistake.

In our case, x and z are the representations for large ob-

jects and small objects, i.e., Fl and Fs respectively. We

aim to learn a generator function G that transforms the rep-

resentations of a small object Fs to a super-resolved one

G(Fs) that is similar to the original one of the large ob-

ject Fl. Learning the representation G(Fs) for small objects

matching the distribution of large object feature Fl may be

difficult due to the limited information contained in Fs. We

thus introduce a new conditional generator model which is

conditioned on the extra auxiliary information, i.e., the low-

level features of the small object f from which the generator

learns to generate the residual representation between the

representations of large and small objects through residual

learning instead.

min
G

max
D

L(D,G) � EFl∼pdata(Fl)
logD(Fl)

+ EFs∼pFs (Fs|f)[log(1−D(Fs +G(Fs|f)
︸ ︷︷ ︸

residual learning

))].

In this case, the generator training can be substantially sim-

plified over directly learning the super-resolved representa-

tions for small objects. For example, if the input representa-

tion is from a large object, the generator only needs to learn

a zero-mapping. Besides, we introduce a perceptual loss

on the discriminator to benefit the detection task as detailed

below.

As shown in Figure 2, the generator network aims to

generate super-resolved representation for the small object.

The discriminator includes two branches, i.e. the adversar-

ial branch for differentiating between the generated super-

resolved representation and the original one for the large

object and the perception branch for justifying the detection

accuracy benefiting from the generated representation. We

optimize the parameters embedded in the generator and the

discriminator network in an alternative manner to solve the

adversarial min-max problem.

Denote GΘg
as the generator network with parameters

Θg . We obtain Θg by optimizing the loss function Ldis

Θg = argmin
Θg

Ldis(GΘg
(Fs)), (1)

where Ldis is the weighted combination of the adversarial

loss Ldis a and the perceptual loss Ldis p produced by the

discriminator network, which is detailed in Section 3.3. We

train the adversarial branch of the discriminator network to

maximize the probability by assigning the correct label to

both the generated super-resolved feature for the small ob-

ject GΘg
(Fs) and the feature for the large object Fl.

Suppose DΘa
is the adversarial branch of the discrimi-

nator network parameterized by Θa. We obtain Θa by opti-

mizing a specific loss function La:

Θa = argmin
Θa

La(GΘg
(Fs), Fl), (2)

where the loss La is defined as

La = − logDΘa
(Fl)− log(1−DΘa

(GΘg
(Fs))). (3)

Eventually, La encourages the discriminator network to

distinguish the difference between the currently generated

super-resolved representation for the small object and the

original one from the real large object.

To justify the detection accuracy benefiting from the gen-

erated super-resolved representation, the perception branch

should be first well trained based on the features of large

1224



Generator Network

Pooled

Features

Conv1 Conv2 Conv3 Conv4 Conv5

RoI

Pooling

Eltwise

Sum

Super-Resolved

Features

…

3X3

Conv

1X1

Conv

RoI

Pooling

B Residual Blocks

C
o

n
v

B
N

R
e

LU

C
o

n
v

E
lt

w
is

e
S

u
m

C
o

n
v

B
N

R
e

LU

C
o

n
v

E
lt

w
is

e
S

u
m

Discriminator Network

Input

Large Objects

Features

Super-Resolved

Features

FC FC FC

FC

Cls

Bbox

Perception Branch

?

1

0

FC FC

FC

Adv

Adversarial Branch

Sigmoid

Generator

Discriminator

(a) (b)

Figure 3. Details of the proposed Perceptual Generative Adversarial network. (a) The generator is a deep residual network which takes

the features with fine-grained details from lower-level layer as input and passes them to 3 × 3 convolutional filters followed by 1 × 1

convolutional filters to increase the feature dimension to be aligned with that of “Conv5”. Then B residual blocks each of which consists

of convolutional layers followed by batch normalization and ReLU activation are employed to learn the residual representation, which is

used to enhance the pooled features from “Conv5” for small objects to super-resolved representation through element-wise sum operation.

(b) The discriminator takes the features of large object and the super-resolved representation of small object as inputs and splits into two

branches. The adversarial branch consists of three fully connected layers followed by sigmoid activation, which is used to estimate the

probability that the current input representation belongs to that of real large object. The perception branch consists of two fully connected

layers followed by two output sibling layers, which are used for classification and bounding box regression respectively to justify the

detection accuracy benefiting from the generated super-resolved representation.

objects to achieve high detection accuracy. Denote DΘp
as

the perception branch of the discriminator network param-

eterized by Θp. We obtain Θp by optimizing a specific loss

function Ldis p with the representation for the large object:

Θp = argmin
Θp

Ldis p(Fl), (4)

where Ldis p is the multi-task loss for classification and

bounding-box regression, which is detailed in Section 3.3.

With the average size of all instances, we obtain two sub-

sets containing small objects and large objects, respectively.

For overall training, we first learn the parameters of bottom

convolutional layers and the perception branch of the dis-

criminator network based on the subset containing large ob-

jects. Guided by the learned perceptual branch, we further

train the generator network based on the subset containing

small objects and the adversarial branch of the discrimina-

tor network using both subsets. We alternatively perform

the training procedures of the generator and the adversarial

branch of the discriminator network until a balance point

is finally achieved, i.e. large-object like super-resolved fea-

tures can be generated for the small objects with high detec-

tion accuracy.

3.2. Conditional Generator Network Architecture
The generator network aims to generate super-resolved

representations for small objects to improve detection accu-

racy. To achieve this purpose, we design the generator as a

deep residual learning network that augments the represen-

tations of small objects to super-resolved ones by introduc-

ing more fine-grained details absent from the small objects

through residual learning.

As shown in Figure 3, the generator takes the feature

from the bottom convolutional layer as the input that pre-

serves many low-level details and is informative for feature

super-resolution. The resulting feature is first passed into

the 3 × 3 convolution filters followed by the 1 × 1 con-

volution filters to increase the feature dimension to be the

same as that of “Conv5”. Then, B residual blocks with the

identical layout consisting of two 3×3 convolutional filters

followed by batch-normalization layer and ReLU activation

layer are introduced to learn the residual representation be-

tween the large and the small objects, as a generative model.

The learned residual representation is then used to enhance

the feature pooled from “Conv5” for the small object pro-

posal through RoI pooling [11] by element-wise sum oper-

ation, producing super-resolved representation.

3.3. Discriminator Network Architecture
As shown in Figure 3, the discriminator network is

trained to not only differentiate between the generated

super-resolved feature for the small object and the original

one from the real large object, but also justify the detec-

tion accuracy benefiting from the generated super-resolved

feature. Taking the generated super-resolved representation

as input, the discriminator passes it into two branches, i.e.,

the adversarial branch and the perception branch. The ad-

versarial branch consists of two fully-connected layers fol-

lowed by a sibling output layer with the sigmoid activation,

which produces an adversarial loss. The perception branch

consists of two fully-connected layers followed by two sib-

ling output layers, which produces a perceptual loss to jus-

tify the detection performance contributing to the super-
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resolved representation. The output units number of the first

two fully-connected layers for both branches are 4096 and

1024 respectively.

Given the adversarial loss Ldis a and the perceptual

loss Ldisp , a final loss function Ldis can be produced as

weighted sum of both individual loss components. Given

weighting parameters w1 and w2, we define Ldis = w1 ×
Ldis a + w2 × Ldisp to encourage the generator network to

generate super-resolved representation with high detection

accuracy. Here we set both w1 and w2 to be one.

Adversarial Loss Denote DΘa
as the adversarial branch

of the discriminator network with parameters Θa. Taking

the generated representation GΘg
(Fs) for each object pro-

posal as input, this branch outputs the estimated probability

of the input representation belonging to a real large object,

denoted as DΘa
(GΘg

(Fs)). By trying to fool the discrim-

inator network with the generated representation, an adver-

sarial loss is introduced to encourage the generator network

to produce the super-resolved representation for the small

object similar as that of the large object. The adversarial

loss Ldis a is defined as

Ldis a = − logDΘa
(GΘg

(Fs)). (5)

Perceptual Loss Taking the super-resolved representa-

tion for each proposal as input, the perception branch out-

puts the category-level confidences p = (p0, ..., pk) for K+
1 categories and the bounding-box regression offsets, rk =
(rkx, r

k
y , r

k
w, r

k
h) for each of the K object classes, indexed by

k. Following the parameterization scheme in [12], rk speci-

fies a scale-invariant translation and log-space height/width

shift relative to an object proposal. Each training proposal

is labeled with a ground-truth class g and a ground-truth

bounding-box regression target r∗. The following multi-

task loss Ldis p is computed to justify the detection accu-

racy benefiting from the generated super-resolved features

for each object proposal:

Ldis p = Lcls(p, g) + 1[g ≥ 1]Lloc(rg, r
∗), (6)

where Lcls and Lloc are the losses for the classification

and the bounding-box regression, respectively. In partic-

ular, Lcls(p, g) = − log pg is log loss for the ground truth

class g and Lloc is a smooth L1 loss proposed in [11]. For

background proposals (i.e. g = 0), the Lloc is ignored.

4. Experiments

4.1. Datasets and Evaluation Metrics

4.1.1 Traffic-sign Detection Datasets

The Tsinghua-Tencent 100K [45] is a large traffic-sign

benchmark, which contains 30,000 traffic-sign instances.

The images are of resolution 2,048×2,048. Following [45],

we ignore the classes whose instances are less than 100 and

have 45 classes left. The performance is evaluated using the

same detection metrics as for the Microsoft COCO bench-

mark. We report the detection performance on difference

sizes of objects, including small objects (area < 32×32 pix-

els), medium objects (32× 32 < area < 96× 96) and large

objects (area > 96 × 96). The numbers of instances corre-

sponding to the three kinds of division are 3270, 3829 and

599, respectively. This evaluation scheme helps us under-

stand the ability of a detector on objects of different sizes.

4.1.2 Pedestrian Detection Datasets

The Caltech benchmark [9] is the most popular pedestrian

detection dataset. About 250,000 frames with a total of

350,000 bounding boxes and 2,300 unique pedestrians are

annotated. We use dense sampling of the training data (ev-

ery 4th frame) as adopted in [44, 27]. Following the con-

ventional evaluation setting [9], the performance is evalu-

ated on pedestrians over 50 pixels tall with no or partial oc-

clusion, which are often of very small sizes. The evaluation

metric is log-average Miss Rate on False Positive Per Image

(FPPI) in [10−2, 100] (denoted as MR following [42]).

4.2. Implementation Details

For traffic sign detection, we use the pretrained VGG-

CNN-M-1024 model [3] as adopted in [24] to initialize our

network. For pedestrian detection, we use the pretrained

VGG-16 model [35] as adopted in [41]. For the genera-

tor and the discriminator network, the parameters of newly

added convolutional layers and fully connected layers are

initialized with “Xavier” [13]. We resize the image to 1600

pixels and 960 pixels on the shortest side as input for traffic

sign detection and pedestrian detection respectively. Fol-

lowing [16], we perform down-sampling directly by con-

volutional layers with a stride of 2. The implementation is

based on the publicly available Fast R-CNN framework [11]

built on the Caffe platform [17].

The whole network is trained with Stochastic Gradient

Descent (SGD) with momentum of 0.9, and weight decay of

0.0005 on a single NVIDIA GeForce GTX TITAN X GPU

with 12GB memory. For training the generator network,

each SGD mini-batch contains 128 selected object propos-

als from each training image. Following [11], in each mini-

batch, 25% of object proposals are foreground that over-

lap with a ground truth bounding box with at least 0.5 IoU,

and the rest are background. For training the discriminator

network, each SGD mini-batch contains 32 selected fore-

ground object proposals from four training images. The

number of residual blocks in the generator network B is set

as 6. For the Tsinghua-Tencent 100K [45] benchmark, we

train a Region Proposal Network (RPN) as proposed in [32]

to generate object proposals on the training and testing im-

ages. For the Caltech benchmark [9], we utilize the ACF

pedestrian detector [7] trained on the Caltech training set

for object proposals generation. For testing, on average,

the Perceptual GAN processes one image within 0.6 second

(excluding object proposal time).
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Table 1. Comparisons of detection performance for different sizes

of traffic signs on Tsinghua-Tencent 100K. (R): Recall, (A): Ac-

curacy. (In %)

Object size Small Medium Large

Fast R-CNN [11] (R) 46 71 77

Fast R-CNN [11] (A) 74 82 80

Faster R-CNN [32] (R) 50 84 91

Faster R-CNN [32] (A) 24 66 81

Zhu et al. [45] (R) 87 94 88

Zhu et al. [45] (A) 82 91 91

Ours (R) 89 96 89

Ours (A) 84 91 91

4.3. Performance Comparison

4.3.1 Traffic-sign Detection

Table 1 provides the comparison of our approach with other

state-of-the-arts in terms of average recall and accuracy on

traffic-sign detection. It can be observed that the proposed

Perceptual GAN outperforms the previous state-of-the-art

method of Zhu et al. [45] in terms of average recall and

accuracy: 89% and 84% vs 87% and 82%, 96% and 91%
vs 94% and 91%, 89% and 91% vs 88% and 91% on three

subsets of different object sizes. Specifically, our approach

makes a large improvement, i.e., 2% and 2% in average re-

call and accuracy on the small-size subset, demonstrating

its superiority in accurately detecting small objects. Ta-

ble 2 shows the comparisons of recall and accuracy for each

category. Our approach achieves the best performance in

most categories such as “p3” and “pm55” in which small in-

stances are most common. More comparisons of accuracy-

recall curves in terms of different object sizes are provided

in Figure 5, which can further demonstrate the effectiveness

of the proposed generative adversarial learning strategy.

Several examples of the detection results for small ob-

jects are visualized in Figure 7. We compare our visual

results with those from Zhu et al. [45]. Note that Zhu et

al. [45] take the original image of resolution 2, 048×2, 048
as input, which may cause heavy time consumption for

training and testing. In contrast, the Perceptual GAN only

takes image of resolution 1600×1600 as input. In addition,

no data augmentation as adopted by Zhu et al. [45] has been

applied. As shown in Figure 7, generally, our method can

accurately classify and localize most objects in small scales,

while Zhu et al. [45] fails to localize some instances due to

serious small-scale problem.

4.3.2 Pedestrian Detection

Since the pedestrian instances on the Caltech benchmark [9]

are often of small scales, the overall performance on it

can be used to evaluate the capability of a method in de-

tecting small objects. We compare the result of Percep-

tual GAN with all the existing methods that achieved best

performance on the Caltech testing set, including VJ [37],

HOG [5], LDCF [27], Katamari [2], SpatialPooling+ [30],

TA-CNN [36], Checkerboards [43], CompACT-Deep [44]
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94.73% VJ
68.46% HOG
24.80% LDCF
22.49% Katamari
21.89% SpatialPooling+
20.86% TA-CNN
18.47% Checkerboards
11.75% CompACT-Deep
9.58% RPN+BF
9.48% Perceptual GAN

Figure 4. Comparisons of detection performance with the state-of-

the-arts on the Caltech benchmark.

and RPN+BF [41]. As shown in Figure 4, the proposed

method outperforms all the previous methods and achieves

the lowest log-average miss rate of 9.48%, validating its su-

periority in detecting small objects.

4.4. Ablation Studies

We investigate the effectiveness of different components

of Perceptual GAN. All experiments are performed on the

Tsinghua-Tencent 100K [45] dataset. The performance

achieved by different variants of Perceptual GAN and pa-

rameter settings on small objects and all the objects of dif-

ferent sizes are reported in the following.

4.4.1 The Effectiveness of Super-resolved Features by

Generator

To verify the superiority of the generated super-resolved

representation in detecting small objects, we compare our

method with several other feature enhancement solutions,

including combining low-level features, improving the im-

age resolution by simply increasing the input scales, tak-

ing images with multi-scales as input. All these methods

are implemented based on the base convolutional layers and

the perceptual branch with end-to-end training. As shown

in Table 3, “Skip Pooling” indicates the model trained by

combining low-level features through skip pooling as pro-

posed in [1]. Our Perceptual GAN outperforms this ap-

proach by 13% and 2% in average recall and accuracy

on small-size objects respectively, which validates that our

method can effectively incorporate fine-grained details from

low-level layers to improve small object detection. “Large

Scale Images” represents the model trained with images of

higher resolution by simply increasing the scale of input im-

ages to 2048 × 2048. “Multi-scale Input” indicates the

model trained with input images with multi-scale settings

(s ∈ 1120, 1340, 1600, 1920, 2300) as adopted in [11]. One

can observe that our Perceptual GAN outperforms both ap-

proaches in performance on small objects. This shows that

our method is more effective in boosting small object detec-

tion than simply increasing the input image scale or using

multi-scale settings.

We further visualize some of the generated super-
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Figure 5. Comparisons of overall detection performance on Tsinghua-Tencent 100K, for small, medium and large traffic signs.

Table 2. Comparisons of detection performance for each class on Tsinghua-Tencent 100K. (R): Recall, (A): Accuracy. (In %)

Class i2 i4 i5 il100 il60 il80 io ip p10 p11 p12 p19 p23 p26 p27

Fast R-CNN [11] (R) 51 74 84 44 61 10 70 73 54 71 21 42 65 63 36

Fast R-CNN [11] (A) 82 86 85 85 70 91 75 80 72 73 47 48 79 74 100

Faster R-CNN [32] (R) 60 76 80 74 89 77 72 64 62 61 53 73 75 78 81

Faster R-CNN [32] (A) 44 46 45 41 57 62 41 39 45 38 60 59 65 50 79

Zhu et al. [45] (R) 82 94 95 97 91 94 89 92 95 91 89 94 94 93 96

Zhu et al. [45] (A) 72 83 92 100 91 93 76 87 78 89 88 53 87 82 78

Ours (R) 84 95 95 95 92 95 92 91 89 96 97 97 95 94 98

Ours (A) 85 92 94 97 95 83 79 90 84 85 88 84 92 83 98

Class p3 p5 p6 pg ph4 ph4.5 ph5 pl100 pl120 pl20 pl30 pl40 pl5 pl50 pl60

Fast R-CNN [11] (R) 50 78 8 88 32 77 18 68 39 14 18 58 69 34 41

Fast R-CNN [11] (A) 85 87 100 86 92 82 88 86 92 89 59 78 88 65 73

Faster R-CNN [32] (R) 55 82 54 84 57 80 46 86 77 46 61 68 69 62 65

Faster R-CNN [32] (A) 48 57 75 80 68 58 51 68 67 51 43 52 53 39 53

Zhu et al. [45] (R) 91 95 87 91 82 88 82 98 98 96 94 96 94 94 93

Zhu et al. [45] (A) 80 89 87 93 94 88 89 97 100 90 90 89 84 87 93

Ours (R) 93 96 100 93 78 88 85 96 98 96 93 96 92 96 91

Ours (A) 92 90 83 93 97 68 69 97 98 92 91 90 86 87 92

Class pl70 pl80 pm20 pm30 pm55 pn pne po pr40 w13 w32 w55 w57 w59 wo

Fast R-CNN [11] (R) 2 34 43 19 58 87 90 46 95 32 41 43 73 74 16

Fast R-CNN [11] (A) 100 84 70 67 76 85 87 66 78 40 100 57 66 64 55

Faster R-CNN [32] (R) 68 68 63 63 79 77 83 63 98 71 59 63 79 78 50

Faster R-CNN [32] (A) 61 52 61 67 61 37 47 37 75 33 54 39 48 39 37

Zhu et al. [45] (R) 93 95 88 91 95 91 93 67 98 65 71 72 79 82 45

Zhu et al. [45] (A) 95 94 91 81 60 92 93 84 76 65 89 86 95 75 52

Ours (R) 91 99 88 94 100 96 97 83 97 94 85 95 94 95 53

Ours (A) 97 86 90 77 81 89 93 78 92 66 83 88 93 71 54

Table 3. Comparisons of detection performance with several vari-

ants of Perceptual GAN on Tsinghua-Tencent 100K. (R): Recall,

(A): Accuracy. (In %)

Object size Small All

Skip Pooling (R) 76 87

Skip Pooling (A) 82 86

Large Scale Images (R) 85 92

Large Scale Images (A) 81 86

Multi-scale Input (R) 89 93

Multi-scale Input (A) 77 83

Ours (R) 89 93

Ours (A) 84 88

resolved features, as shown in Figure 6. The second and

the last column show the original features pooled from the

top convolutional layer for proposals of small objects and

large objects respectively. The learned residual representa-

tion and the generated super-resolved features by the gener-

ator for small objects are shown in the third and the fourth

column respectively. One can observe that the generator

successfully learns to transfer the poor representations of

small objects to super-resolved ones similar to those of large

objects, validating the effectiveness of the Perceptual GAN.

Residual

Representation

Pooled Features 

For Small Objects

Super-resolved 

Features

Features For 

Large Objects
Small Objects

Figure 6. Visualization of the super-resolved features.

4.4.2 The Effectiveness of Adversarial Training

The proposed Perceptual GAN trains the generator and the

discriminator through alternative optimization. To demon-

strate the necessity of adversarial training, we report the per-

formance of our model with or without alternative optimiza-

tion during training stage in Table 4. “Ours Baseline” indi-

cates the model of training the proposed detection pipeline

with the generator network end-to-end without any alterna-
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Figure 7. Detection results of Zhu et al. [45] and the proposed method on Tsinghua-Tencent 100K. The green, red, and blue rectangle denote

the true positive, false positive and false negative respectively. The proposed Perceptual GAN can successfully detect most small-size traffic

signs which the method of Zhu et al. [45] has missed or detected incorrectly. Best viewed in color.

Table 4. Comparisons of detection performance by Perceptual

GAN with or without alternative optimization on Tsinghua-

Tencent 100K. (R): Recall, (A): Accuracy. (In %)

Object size Small All

Ours Baseline (R) 80 89

Ours Baseline (A) 80 85

Ours Alt (R) 89 93

Ours Alt (A) 84 88

Table 5. Comparisons of detection performance for introducing

fine-grained details from different lower-level layers on Tsinghua-

Tencent 100K. (R): Recall, (A): Accuracy. (In %)

Object size Small All

Ours Conv3 (R) 74 86

Ours Conv3 (A) 78 85

Ours Conv2 (R) 87 92

Ours Conv2 (A) 80 86

Ours Conv1 (R) 89 93

Ours Conv1 (A) 84 98

tive optimization step. “Ours Alt” indicates the model of al-

ternatively training the generator and the discriminator. By

comparing “Ours Alt” with “Ours Baseline”, one can ob-

serve that considerable improvements in the recall and ac-

curacy on small-size object detection can be obtained when

using alternative optimization. This shows that Perceptual

GAN can improve its performance in detecting small ob-

jects by recursively improving the ability of the generator

and the discriminator through adversarial training.

4.4.3 Different Lower Layers for Learning Generator

The proposed generator learns fine-grained details of small

objects from representations of lower-level layers. In par-

ticular, we employ the features from “Conv1” as the inputs

for learning the generator. To validate the effectiveness of

this setting, we conduct additional experiments using fea-

tures from “Conv2” and “Conv3” for learning the genera-

tor, respectively. As shown in Table 5, we can observe that

performance consistently decreases by employing the rep-

resentations from higher layers. The reason is that lower

layers can capture more details of small objects. Therefore,

using low-level features from “Conv1” for learning the gen-

erator gives the best performance.

4.5. Discussion on General Small Object Detection

To evaluate the generalization capability of the proposed

generator on more general and diverse object categories, we

train the proposed detection pipeline with the generator net-

work end-to-end on the union of the trainval set of PASCAL

VOC 2007 and VOC 2012 [10], and evaluate it on the test

set of VOC 2007 on the most challenging classes (i.e., boat,

bottle, chair and plant) in which small instances are most

common. Our method achieves 69.4%, 60.2%, 57.9% and

41.8% in Average Precision (AP) for boat, bottle, chair, and

plant, respectively. It significantly outperforms those of the

Fast R-CNN [11] baseline, i.e., 59.4%, 38.3%, 42.8% and

31.8%, well demonstrating the generalization capability of

the proposed generator for general small object detection.

5. Conclusion

In this paper, we proposed a novel generative adversarial

network to address the challenging problem of small object

detection. Perceptual GAN generates super-resolved repre-

sentations for small objects to boost detection performance

by leveraging the repeatedly updated generator network and

the discriminator network. The generator learns a resid-

ual representation from the fine-grained details from lower-

level layers, and enhances the representations for small ob-

jects to approach those for large objects by trying to fool the

discriminator which is trained to well differentiate between

both representations. Competition in the alternative opti-

mization of both networks encourages the Perceptual GAN

to generate super-resolved large-object like representations

for small objects, thus improving detection performance.

Extensive experiments have demonstrated the superiority of

the proposed Perceptual GAN in detecting small objects.
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