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Robust Feature Point Matching With Sparse Model
Bo Jiang, Jin Tang, Bin Luo, Senior Member, IEEE, and Liang Lin

Abstract— Feature point matching that incorporates pairwise
constraints can be cast as an integer quadratic program-
ming (IQP) problem. Since it is NP-hard, approximate methods
are required. The optimal solution for IQP matching problem is
discrete, binary, and thus sparse in nature. This motivates us to
use sparse model for feature point matching problem. The main
advantage of the proposed sparse feature point matching (SPM)
method is that it generates sparse solution and thus naturally
imposes the discrete mapping constraints approximately in the
optimization process. Therefore, it can optimize the IQP match-
ing problem in an approximate discrete domain. In addition,
an efficient algorithm can be derived to solve SPM problem.
Promising experimental results on both synthetic points sets
matching and real-world image feature sets matching tasks show
the effectiveness of the proposed feature point matching method.

Index Terms— Feature point matching, integer quadratic
programming, nonnegative matrix factorization, sparse model.

I. INTRODUCTION

MANY problems in computer vision can be formulated
as a problem of finding consistent correspondences

between two sets of features [1]–[4]. The goal of feature
point matching is to find a mapping between two feature sets
that preserves both unary features and binary relationships
between feature points as much as possible [1], [4], [5].
Previous approaches have formulated feature point matching
as an Integer Quadratic Programming (IQP) problem [5]–[9].
Since it is known to be NP-hard, feature point matching is
usually solved approximately. Most of the recent literatures
have developed approximate relaxations to the feature point
matching problem [5], [6], [10]–[12], [15]. van Wyk et al. [12]
proposed a matching method by iteratively projecting the
approximate correspondence matrix onto the desired con-
vex domain. Leordeanu and Hebert [7] proposed a sim-
ple approximate method (spectral matching, SM) to feature
matching problem using a spectral relaxation technique. This
method can find the global maximum solution of the relaxed
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continuous problem efficiently by computing the leading
eigenvector of the symmetric nonnegative affinity matrix.
However, SM ignores the mapping constraints in the relaxation
step, and it obtains the final matching solution by using a
greedy technique. Cour et al. [16] extended SM to spectral
matching with affine constraint (SMAC) by incorporating the
affine constraints into the spectral relaxation. Comparing with
SM, it further encodes the one-to-one matching constraint,
therefore it can approximate the original IQP problem more
closely. Torresani et al. [9] represented the feature matching
as an energy minimization problem which can be efficiently
optimized by dual decomposition.

The above relaxation methods generally first develop a
new continuous problem by relaxing the discrete mapping
constraints and then aim to find the global optimum for
this new continuous problem. At last, they obtain the final
discretely binarized solution based on a post-optimization step
(binarized step) using some discretization techniques such as
Hungarian or greedy algorithm. The basic assumption behind
these methods is that the continuous optimum of the relaxation
problem is close to the discrete global optimum of the original
IQP problem [17]. Recently, Leordeanu et al. [17] proposed
an iterative matching method (IPFP) which optimized the
IQP in the discrete domain and therefore satisfies the one-to-
one mapping constraints strictly in the optimization process.
It integrates the discretization step and objective function
optimization simultaneously, and shows strong climbing and
convergence properties. Based on IPFP, Leordeanu et al. [17]
further show experimentally that, searching for a discrete
solution instead of continuous one is generally more beneficial
for finding the global optimum of IQP problem. In addition
to optimization-based methods, probabilistic frameworks can
also be used for interpreting and solving feature matching
problems [13], [14], [18], [19]. Zass and Shashua [14] intro-
duced a probabilistic model for soft Hypergraph matching
between complex feature sets. Cho and Lee [13] interpreted
graph matching problem using a random walk model and pro-
vided a robust matching algorithm by simulating random walks
with re-weighting jumps enforcing the mapping constraints
on the associated graph. Caetano et al. [18], [19] formulated
feature point matching as a problem of finding a maximum
probability configuration in a graphical model. In our work,
we focus on optimization-based matching methods.

The optimal solution for feature matching problems (IQP)
is discrete, binary and thus sparse in nature. To the best
of our knowledge, most existing relaxation methods do not
emphasize this sparse property. This motivates us to use sparse
model for feature point matching problem. Following this
way, we propose a new relaxation method for feature point
matching problem by adapting a sparse model. There are
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three main contributions. (1) A general quadratic programming
problem with nonnegative and sparse constraint is proposed,
followed by an efficient algorithm to solve it. (2) A new
relaxation problem for feature point matching is proposed
by using the proposed quadratic sparse model. (3) We show
experimentally that our sparse feature matching method (SPM)
can generate sparse solution and thus can approximately incor-
porate the discrete mapping constraints in the optimization
process in nature. Comparing with many other relaxation
methods, which aim to find the optimal solution in the
continuous domain, our method can be regarded as optimizing
the IQP problem in an approximate discrete domain and thus
its optimal solution can be closer to the discrete optimum of
original IQP problem.

The remainder of this paper is organized as follows.
In Section II, we introduce the general formulation of feature
matching problem as an IQP problem. In Section III, a gen-
eral nonnegative quadratic programming sparse model is
proposed, followed by an efficient algorithm to solve this
model. In Section IV, we propose our sparse feature matching
method (SPM) based on the proposed quadratic sparse model.
In Section V, some benefits of the proposed model are demon-
strated. In Section VI, we apply our method to some feature
matching tasks on both synthetic point sets data and real-world
image feature sets data.

II. PROBLEM FORMULATION AND RELATED WORK

A. Problem Formulation

Given two sets of features M , containing nM model features
and D, containing nD data features, a corresponding mapping
is a set C of pairs (or assignments) (i, i ′), where i ∈ D and
i ′ ∈ M . Some kinds of mapping constraints are usually
imposed on C , such as: allowing one data feature from D to
match at most one model feature from M and vice-versa
(one-to-one mapping), or allowing one feature from one set
to match more features from the other (one-to-many). If the
features are discriminative, such as SIFT or shape context
descriptors, then there is a score Su(a) for each assignment
a = (i, i ′) that measures how well the feature i ∈ D matches
the feature i ′ ∈ M . Also, for each pair of assignments (a, b),
where a = (i, i ′) and b = ( j, j ′), there is an affinity Sr (a, b)
that measures how compatible the feature pair (i, j) in data
feature D are with the features (i ′, j ′) in model feature M .
When the features are discriminative, then both score Su(a)
and affinity Sr (a, b) exist. However, when the features are non-
discriminative, such as 2D or 3D points, we can also use shape
context descriptor to discriminate the features. Therefore, the
objective of feature point matching is to find the optimal
mapping C∗ between data features D and model features M
that maximizes the following matching score,

C∗ = arg maxC

∑
a∈C

∑
b∈C

Sr (a, b) +
∑

a∈C
Su(a). (1)

Note that if the features are non-discriminative, then Su(a)
can be set to 0 in this objective function. In this paper,
the one-to-one mapping constraints are imposed on C . The
mapping C can be represented by a permutation matrix X
such that Xii ′ = 1 implies that feature i in D corresponds

to feature i ′ in M , and Xii ′ = 0 otherwise. We denote
x ∈ {0, 1}mn as a row-wise vectorized replica of X, i.e.,
x = (X11 . . . X1n . . . Xm1 . . . Xmn)T, where m = |D|, n = |M|.
The feature point matching problem (1) can be generally for-
mulated as an Integer Quadratic Programming (IQP) problem,
i.e., finding the indicator vector x∗ that maximizes the score
function as

x∗ = arg max
x

ε0(x) = xTWx + xTS

s.t. xii ′ ∈ {0, 1}, ∀i
∑n

i ′=1
xii ′ ≤ 1, ∀ j ′ ∑n

j=1
x j j ′ ≤ 1.

(2)

W is a mn×mn affinity matrix with the non-diagonal element
Wa,a = Sr (a, b) and the diagonal term Wa,a = 0. S is mn ×1
score matrix with the element Sa = Su(a). The two-way con-
straints in (2) guarantee the one-to-one matching constraints
between D and M . If the features are non-discriminative,
then S can be set to 0 and (2) becomes

x∗ = arg max
x

ε0(x) = xTWx

s.t. xii ′ ∈ {0, 1}, ∀i
∑n

i ′=1
xii ′ ≤ 1, ∀ j ′ ∑n

j=1
x j j ′ ≤ 1.

(3)

B. Relaxation Algorithms

It is well known that, the problems (2, 3) are NP-hard and
no efficient algorithm exists. Thus lots of approximate
algorithms were proposed to find the approximate
solutions [1], [6], [8], [16], [17], [37], [40]. In general,
from the optimization perspective, a practical relaxation
algorithm should have high approximation ability, i.e.,
it can approximate the original IQP problem as closely as
possible. Specifically, it must satisfy the following two desired
matching properties [1], [16], [17], [29]: (1) it maximizes
the objective score as far as possible; (2) It satisfies the
mapping constraints as closely as possible. In this paper,
we call these properties as objective property and constraint
property, respectively. These two properties have also been
adopted in the work [1]. Usually, the approximate algorithms
cannot guarantee that the solution satisfies the constraints
strictly, and they obtain the final discrete correspondence
solution using some discretization techniques which usually
lead to weak local optimum for the original IQP problem.
Leordeanu and Hebert [7] proposed a spectral technique (SM)
to feature correspondence problems. This method can find the
global maximum solution of the relaxed problem effectively
and thus has strong objective property. However, the method
does not satisfy the constraint property sufficiently because of
the relaxation [1]. Leordeanu et al. [17] also recently proposed
an iterative matching method (IPFP) which integrates the
objective function optimization and discretization step
simultaneously. This method optimizes the IQP in the discrete
domain and thus satisfies the constraint property strictly.
Cour et al. [16] extended SM to spectral matching with
affine constraints (SMAC) by incorporating the matching
constraints within the relaxation process. Comparing with SM,
this method satisfies the constraint property more sufficiently
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and therefore can obtain more effective solution for the
matching problem.

III. NONNEGATIVE QUADRATIC PROGRAMMING

WITH SPARSE CONSTRAINT

In this section, we study the general problem of nonnega-
tive quadratic programming with sparse constraint, which is
formulated as follows,

max
x

ε1(x) = xTWx + xTS s.t. ||x||1 = 1, xi ≥ 0 (4)

where ||x||1 = ∑mn
i=1 |xi | denotes the L1 norm. This

optimization can be explained as a problem subject to a
L1 norm constraint on the solution. One main feature for
this kind of problems is that they can encourage sparse
solutions [20]–[24], i.e., many components of the solution
x are zero (close-to-zero). Note that, when the coefficients
Wi j and Si are all nonnegative, this problem has been widely
studied in the works [34]–[36]. Here, we concern a more
general case, i.e., with the presence of both positive and
negative coefficients.

A. Computational Algorithm

Inspired by recent processes on multiplicative update based
algorithms [25]–[28], in this paper we develop a more general
algorithm to solve the problem in (4). There are two main
aspects of the proposed algorithm: (i) it can naturally deal
with the general polynomials with both positive and negative
coefficients. (ii) It is extremely simple to implement and its
convergence is guaranteed.

1) Update Algorithm: For any matrix A with both positive
and negative elements, denote A+ = (|A| + A)/2, A− =
(|A| − A)/2. Since xi ≥ 0, problem (4) is equivalent to the
following,

max
x

ε1(x) = xTWx + xTS s.t.
∑mn

i=1
xi = 1, xi ≥ 0.

(5)

This problem can be efficiently solved by an iterative
algorithm. The algorithm iteratively updates a current
solution x(t) as,

x(t+1)
i

= x(t)
i

√
2(W+x(t))i + S+

i + 2(x(t))TW−x(t) + S−Tx(t)

2(W−x(t))i + S−
i + 2(x(t))TW+x(t) + S+T x(t)

.

(6)

The iteration starts with an initial x(0) and is repeated until
convergence. Note that, when the coefficients are all positive,
the update (6) degenerates to the following,

x(t+1)
i = x(t)

i

√
2(Wx(t))i + Si

2(x(t))TWx(t) + STx(t)
. (7)

Indeed, from the multiplicative perspective, we can also
deduce the following update rule when the coefficients are
all positive,

x(t+1)
i = x(t)

i
2(Wx(t))i + Si

2(x(t))TWx(t) + STx(t)
. (8)

We will show in Experimental section that the update
algorithm (7) generally performs slightly better than
algorithm (8) on conducting feature matching tasks.

Note that, the update algorithm (8) can also be derived
from the nonlinear growth transformations proposed in the
works [36], [37], which are also known as Baum-Eagon
theorem or Baum-Eagon inequality. This theorem provides
an effective iterative method for maximizing the polynomial
functions with positive coefficients. Leordeanu and Hebert [34]
also proposed a general update framework for maximizing
the polynomials functions with positive coefficients. To the
best of our knowledge, these algorithms [34]–[37] cannot be
directly used for the polynomials functions with the presence
of negative coefficients, although it may be possible (under
some special constraints) to transform these polynomials to
the polynomials with positive coefficients which does not
change the original global solutions [34], [37]. From the
algorithm perspective, the proposed algorithm (6) can directly
be used for the polynomials with the presence of negative
coefficients, and thus can be regarded as an extension of the
prior works. In the following, we will present a theoretical
proof on the correctness and convergence of the proposed
update algorithms (6) and (8) from multiplicative perspective.
This proof can also be regarded as a new justification for those
Baum-Eagon theorem inspired algorithms [34], [36], [37].

B. Analysis of the Algorithm

We show the correctness and convergence of the proposed
algorithm. For correctness, we show that the update algorithm
yields a correct solution at convergence. Since update (7) is a
special case of update (6), here we only discuss the update (6)
and (8). The correctness of these two algorithms is guaranteed
by the following theorem.

Theorem 1: Both of update rule of (6) and (8) satisfy the
first-order Karush-Kuhn-Tucker (KKT) optimality condition.

Proof: The Lagrangian function is

L(x) = xTWx + xTS − λ(
∑mn

i=1
xi − 1) (9)

where Lagrangian multiplier λ enforces
∑mn

i=1 xi = 1. Then,

∂L

∂xi
= 2(Wx)i + Si − λ. (10)

This leads to KKT complementary slackness condition,

∂L

∂xi
xi = [2(Wx)i + Si − λ] xi = 0. (11)

Summing over index i , we obtain Lagrangian multiplier λ as,

λ = 2xTWx + xTS. (12)

Firstly, for update (6), at convergence,

x∗
i = x∗

i

√
2(W+x∗)i + S+

i + 2(x∗)TW−x∗ + S−Tx∗

2(W−x∗)i + S−
i + 2(x∗)TW+x∗ + S+T x∗ (13)

It is equivalent to (note that W = W+ − W−, S = S+ − S−)
(

2(Wx∗)i + Si − 2(x∗)TWx∗ + STx∗) x∗2
i = 0 (14)
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which is identical to
(

2(Wx∗)i + Si − 2(x∗)TWx∗ + STx∗) x∗
i = 0 (15)

This is exactly the KKT condition (11).
Then, for update (8), at convergence

x∗
i = x∗

i
2(Wx∗)i + Si

2(x∗)TWx∗ + STx∗ (16)

It is equivalent to (2(Wx∗)i +Si −2(x∗)TWx∗ + STx∗)x∗
i = 0

which is the KKT condition (11). Thus, the update (8) also
satisfies the KKT condition at convergence.

The convergence is guaranteed by the following Theorem 2.
Theorem 2: (1) The Lagrangian function L(x) of (9)

is monotonically increasing under the update rule in (6);
(2) When the coefficients are all nonnegative, the Lagrangian
L(x) of (9) is monotonically increasing under the update
rule in (8).

Proof: (1) We use the auxiliary function approach which
has been widely used in many multiplicative inspired
algorithms [20], [23], [26]–[28]. An auxiliary function Z(x, x̃)
of function L(x) satisfies Z(x, x) = L(x) and Z(x, x̃) ≤ L(x).

We define

x(t+1) = arg max
x

Z(x, x(t)). (17)

Then by construction, we have

L(x(t)) = Z(x(t), x(t)) ≤ Z(x(t+1), x(t)) ≤ L(x(t+1)) (18)

This proves that L(x(t)) is monotonically increasing.
In the remainder of proof, we need: (1) find an appropri-

ate auxiliary function; (2) Find the global maximum of the
auxiliary function. We rewrite the Lagrangian function (9) as

L(x) =
∑mn

i, j=1
W+

i j
xix j +

∑mn

i=1
S+

i xi

−
∑mn

i, j=1
W−

i j
xi x j −

∑mn

i=1
S−

i xi

−λ(
∑mn

i=1
xi − 1) (19)

We can show that one auxiliary function of L (x) is

Z(x, x̃)

=
∑mn

i=1

∑mn

j=1
W+

i j x̃i x̃ j

(
1 + log

xi x j

x̃i x̃ j

)

−
∑mn

i=1

(W−x̃)i x2
i

x̃i
+

∑mn

i=1
S+

i x̃i

(
1 + log

xi

x̃i

)

−
∑mn

i=1

1

2
S−

i

(
x2

i

x̃i
+x̃i

)
−λ+

(
∑mn

i=1

1

2

(
x2

i

x̃i
+x̃i

)
−1

)

+λ−
(∑mn

i=1
x̃i

(
1 + log

xi

x̃i

)
− 1

)
(20)

where λ = λ+ − λ−, λ+ ≥ 0, λ− ≥ 0.
Using the inequality z ≥ 1 + log z and a ≤ 1

2

(
a2

b + b
)

, the
first two terms in (20) is a lower bound of the first two terms
in (19). Thus, Z(x, x̃) is an auxiliary function of L(x).

According to (17), we need to find the global maximum of
Z(x, x̃) for x. The gradient is

∂ Z(x, x̃)

∂xi
= (

2(W+x̃)i + S+
i + λ−) x̃i

xi

− (
2(W−x̃)i + S−

i + λ+) xi

x̃i
. (21)

The second derivative is

∂2 Z(x, x̃)

∂xi∂x j
= −

[
(
2(W+x̃)i + S+

i + λ−) x̃i

x2
i

+ (
2(W−x̃)i + S−

i + λ+) 1

x̃i

]
δi j (22)

where δi j = 1 if i = j , otherwise δi j = 0. Thus Z(x, x̃) is a
concave function and has a unique global maximum, which is
obtained by setting the first derivative (21) to zero, i.e.,

xi = x̃i

√
2(W+x̃)i + S+

i + λ−

2(W−x̃)i + S−
i + λ+ . (23)

Thus, we obtain the update (6) by setting x(t+1) = x, x(t) = x̃.
(2) When the coefficients are all positive, we can rewrite

the Lagrangian function (9) as,

L(x) = xTWx + xTS − λ(
∑mn

i=1
xi − 1) (24)

Similarly, we derive the following auxiliary function,

Z(x, x̃) =
∑mn

i=1

∑mn

j=1
Wi j x̃i x̃ j (1 + log

xi x j

x̃i x̃ j
)

+
∑mn

i=1
Si x̃i (1 + log

xi

x̃i
) − λ(

∑mn

i=1
xi − 1).

(25)

We need to find the maximum of Z(x, x̃). The gradient is

∂ Z(x, x̃)

∂xi
= 2(Wx̃)i

x̃i

xi
− λ + x̃i Si

xi
. (26)

The second derivative is

∂2 Z(x, x̃)

∂xi∂x j
= −

[
2
(Wx̃)i x̃i

x2
i

+ x̃i Si

x2
i

]
δi j , (27)

Thus Z(x, x̃) is a concave function of x and has a unique
global maximum, which is obtained as

xi = 2(Wx̃)i x̃i + x̃i Si

λ
= x̃i

2(Wx̃)i + Si

λ
. (28)

Thus, we obtain the update (8) by setting x(t+1) = x, x(t) = x̃.

IV. NONNEGATIVE QUADRATIC SPARSE MODEL

FOR FEATURE POINT MATCHING

The optimal solution for the original IQP matching problem
is discrete, binary and thus sparse in nature, i.e., there
exists small number of positive nonzero elements in the
optimal solution. This motivates us to use sparse model for
feature matching problem. Based on the above nonnegative
quadratic sparse model, we present our sparse feature point
matching (SPM) model in this section.
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A. Sparse Feature Point Matching Model

By adding a L1 norm on the constraint, our sparse feature
point matching (SPM) model can be achieved as solving the
following problem,

max
x

ε1(x) =
mn∑

i, j,i ′ , j ′=1

Wii ′ , j j ′Xii ′ X j j ′ +
mn∑

i,i ′=1

Sii ′ Xii ′

= xTWx + xTS

s.t. ||x||1 = 1, xi ≥ 0 (29)

where x = (X11 . . . X1n...Xm1 . . . Xmn)T. Here W is the affinity
matrix with the non-diagonal elements containing pairwise
affinity between two assignments and the diagonal elements
are zero. S is the matching score matrix. In general, both
W and S are nonnegative. However, in order to enforce
one-to-one matching constraint in optimization process, the
affinity Wii ′ ,i j ′ between two conflict assignments a = (i, i ′),
b = (i, j ′)( j �= j ′) can be penalized to enforce Xii ′ Xi j ′
to be small, because at least one of assignment a and b
must be incorrect. In most literature [7], [13], Wii ′,i j ′ is set
to zero. Although W is nonnegative in this case, Xii ′ Xi j ′
is not penalized indeed. Because if Wii ′ ,i j ′ = 0, then the
objective term Wii ′ ,i j ′ Xii ′ Xi j ′ is ignored in the matching
objective. Therefore, it is desirable to penalize the affinity
Wii ′ ,i j ′ with a negative value, i.e., Wii ′ ,i j ′ = w (w < 0).
In this case, W contains both nonnegative and positive
elements.

The above optimization can be explained as a problem sub-
ject to a L1 norm constraint on the solution. The main feature
for this kind of problems is that they can encourage sparse
solutions [20]–[24], i.e., many components of the solution x
are zero (close-to-zero). There are three main aspects for our
SPM method. (1) SPM generates sparse solution and thus
approximately incorporates the discrete mapping constraints in
nature, i.e., it can return an approximate discrete solution and
satisfies the constraint property sufficiently. (2) An efficient
update algorithm can be derived to solve SPM optimization
problem. (3) By enforcing the solution to be sparse in
the optimization process, SPM optimizes the problem in
an approximate discrete domain, and thus maximizes the
objective score effectively. Therefore, SPM approximates the
original IQP problem closely and thus leads to an effective
solution for feature point matching problem. Note that,
when S = 0, this problem has also been adopted in the
works [23], [38]–[41]. These works generally discuss
the model from the game-theoretic perspective. Although the
sparse property has been mentioned in the works [39], [41],
it has not been explained and demonstrated in detail. Different
from these works, in this paper we focus on a more general
matching model (29) which can be regarded as an extension
of the prior works [38]–[41], and derive a new efficient
multiplicative update algorithm (update (6) or (8)) to solve
this general problem. Moreover, we discuss this model from
sparse model perspective, and will show experimentally the
strong relationship between the sparsity of the solution and
its effectiveness for the feature matching problem. Also, we
conduct thorough experiments and compare SPM with some

recent works on feature matching tasks on both synthetic and
real world image data.

B. Matching Algorithm

As discussed in Section III, two update algorithms
(update (6) and (8)) can be used for finding the optimal solu-
tion of the proposed SPM model. In the following, we denote
these two algorithms as SPM-G and SPM-M, respectively.
Also, when the affinity matrix W contains negative elements,
we use the update (6) to find the optimal solution. We call it
as SPM-P in the following. Experimentally, both SPM-G and
SPM-M can generate similar optimal solutions and SPM-M
usually performs slightly better than SPM-G on conducting
feature matching tasks (see Experimental section in detail).
Usually, problem (29) is not always convex and the final results
depend on initializations. Here, we compute the initialization
as x(0)

i = vi (
∑mn

i=1 vi)
−1, where v is the principal eigenvector

of W. Indeed, the eigenvector v of W is the global optimum
of the SM method [7], which aims to solve the following
problem,

max
x

xTWx s.t . ||x||2 = 1, (30)

where ||x||2 = (
∑mn

i=1 x2
i )

1/2. By the Raleigh’s ratio theorem,
the optimal solution x∗ of (30) is given by the principal eigen-
vector of W (x∗ = v). If W has non-negative elements, by
Perron-Frobenius theorem [7], the elements of x∗ will be in the
interval [0, 1]. This guaranteed the non-negativity of the ini-
tialization x(0). Also, the optimal solution x∗ of SM method [7]
can be regarded as a global optimal solution for the match-
ing problem (3) under the relaxed constraints (||x||2 = 1).
Indeed, Baratchart et al. [35] proposed a general relaxation
method for IQP problem by relaxing the integral constraint to
the L2 norm constraint, and show some theoretical results on
the global optimality of this relaxed problem. In this paper,
we focus on the L1 norm instead of L2 norm, because it
leads to sparse solution which will be shown very important
for conducting matching task although the global optimality
property cannot be guaranteed in this case. We use the global
optimal solution of the L2 norm relaxed problem as the
initialization for our SPM method. Therefore, the initialization
vector x(0) is close to the optimal solution of the original
IQP matching problem and thus gives a good starting point
for the proposed SPM. Similar idea has also been proposed
in the work [34], which provided a two-stage optimization
method for MAP problem. Indeed, this two-stage optimization
can also be found in some other problems, such as spectral
clustering involving both spectral embedding and k-means
stages [42], [43]. Our SPM (SPM-G) matching method is
summarized as follows. SPM-M and SPM-P are similarly
obtained by replacing the update in Step 4 as the update (7)
and (6).

V. SPARSITY AND DESIRABLE

APPROXIMATION PROPERTY

The main difference between SPM and many other relaxed
methods is that a L1 norm constraint is imposed on the
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Fig. 1. Solution vector for SM and SPM (SPM-G); (a) Two 2D example
point sets to be matched; (b) Ground truth solution vector; (c) Solution vector
x(t) of SPM across different iterations. Note that x(t) becomes more and more
sparse and approximates the ground truth solution more and more closely.

solution x and thus encourages a sparse solution [20]–[24].
Here we show experimentally that, by enforcing the solution
to be sparse in the optimization process, SPM optimizes the
IQP matching problem in an approximate discrete domain
and searches for an approximate discrete solution for the
problem, i.e., it satisfies both constraint and objective proper-
ties approximately and strongly. Therefore, SPM approximates
the IQP problem closely and thus attains effective solution
for feature matching problem. For further illustration, the
sparsity, objective score and constraint preserving residual are
first defined. Define the function f (xi )(i = 1, 2, . . . mn) for
vector x as follows:

f (xi) =
{

0 if xi < 0.001 × mean(x)
xi otherwise

(31)

where mean(x) denotes the mean value of elements in vector x.
Let f (x) denote f (x) = ( f(x1), f(x2) . . . f (xmn)). Let x∗ be
the convergence solution of the relaxation algorithm. Let x̃∗ be
the final binarized discrete solution (x̃∗

i ∈ {0, 1}) obtained by
performing some discretization processes.

Definition 1 (Sparsity): The sparsity of x∗ (x∗
i ≥ 0)

measures the rate of zero (close-to-zero) elements in x∗. It is
calculated as

Sparsity(x∗) = 1 − 1
N || f (x∗)||0, (32)

where f (·) is defined in (31), and || · ||0 denotes the L0 norm,
which counts the number of nonzero entries in a vector. N is
the number of entries in vector x∗.

Definition 2 (Objective Score, OS): The objective score of
x∗ is defined as

OS(x∗) = x̃∗TWx̃∗, (33)

where x̃∗ is the final binarized discrete solution (x̃∗
i ∈ {0, 1})

obtained by performing some discretization processes.
Definition 3 (Constraint Preserving Residual, CPR): The

constraint preserving residual of x∗ is defined as

CPR(x∗) = min
β

1

||x̃∗||0 ||x̃∗ − βx∗|| (34)

where β is a weighting parameter to compensate the loss of
residual due to scaling.

As discussed in Section II, the above objective score and
CPR can be regarded as measurements for the objective and

Fig. 2. Top row: sparsity, CPR and objective score of the solution
vector x(t) across the iterations on synthetic feature point matching. Bottom
row: at each iteration, average results over 100 random experiments are dis-
played. Note that as the iteration increases, the solution of SPM approximates
the optimum of original IQP problem (baseline) more closely than SM method.

Fig. 3. Performance curves for our SPM vs. SM method on synthetic data
matching; Note that SPM significantly outperforms SM in both objective score
and matching accuracy.

constraint properties, respectively. The higher the objective
score, the more optimal the solution of the original IQP prob-
lem can be. Meanwhile, the lower the CPR value, the more
closely the solution satisfies the discrete mapping constraint.
Especially, if CPR (x∗) = 0, then the solution x∗ satisfies
the discrete mapping constraints strictly. In the following,
we only show the sparse property of SPM solution under
SPM-G algorithm. This property can also be obtained by
SPM-M algorithm. Fig. 1 shows the solution x(t) across
different iterations on synthetic 2D point sets matching with
deformation noise level σ = 0.05 (see the Experimental
section in detail). Intuitively, as the iteration increases, the
solution of SPM becomes more and more sparse and approxi-
mates the ground truth solution more and more closely. Fig. 2
shows the sparsity, CPR and objective score of the solution x(t)

across different iterations. The average values are computed
by generating 100 random point sets under the deformation
noise level σ = 0.05 (see the Experimental section). The
baselines denote sparsity, CPR and objective score of ground
truth solution. Here, we make the following observations.
(1) As the iteration increases, x(t) becomes more and more
sparse in general and approximates the baseline more and
more closely, which indicates the ability of the SPM algorithm
(SPM-G) to maintain the sparse constraint. (2) The CPR curve
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Fig. 4. Comparison results on synthetic point matching across deformation noise and outlier features in both feature sets.

of x(t) follows the same trend as the sparsity curve, indicating
a strong relationship between CPR and sparsity. This clearly
demonstrates that SPM incorporates the discrete mapping
constraint more and more approximately in the optimization
process, and thus can optimize the IQP matching problem in an
approximate discrete domain, i.e., search for an approximate
discrete solution for the feature matching problem. (3) As
the iteration increases, the objective score of x(t) increases
in general and approximates the baseline more and more
closely, suggesting that SPM can find the discrete solution
for the original IQP problem more optimal than SM by further
enforcing the solution to be sparse and optimizing the problem
in an approximate discrete domain.

These observations suggest that SPM satisfies both con-
straint and objective properties sufficiently and thus approxi-
mates the original IQP matching problem more closely than
SM, i.e., its optimum is closer to the discrete global optimum
of the original IQP problem. These are consistent with the
results shown in Fig. 1 and obviously demonstrate the benefits
of SPM method. Fig. 3 shows the average performance for
our SPM vs. SM method on synthetic data under different
deformation noise levels. Here, we note that, SPM maintains
sparse solution and retains lower CPR value than SM with
different noise levels. Also, as noise level increases, SPM
significantly outperforms SM in both objective score and
matching accuracy, and shows larger performance gaps from
SM method. Here, the accuracy is measured by the number of
detected true matches divided by the total number of ground
truths. These are consistent with the results shown in Fig. 2
and will be further quantified in the experiments.

VI. EXPERIMENT

In this section, we applied SPM some feature matching
tasks. There are two aspects to this study [13], [29], [30].

Fig. 5. Comparison results on synthetic point matching under SPM-G,
SPM-M and SPM-P algorithm, respectively.

We commence with a sensitivity study using the synthetic data.
The aim is to evaluate the average performance of the method
on the different levels of deformation noise and numbers of
outlier feature points. The second part of the study evaluates
the method on the real-world image data. Both in synthetic
data and real-world image data experiments, we have used the
one-to-one mapping constraints, i.e., one model feature can
match at most one data feature and vice-versa. As discussed
in Section IV, we implement our SPM using both the update
rule (7) (SPM-M) and (8) (SPM-G), respectively. We compare
our method with the other state-of-art methods including
SM [7], IPFP [17], SMAC [16] and RRWM [13]. The para-
meters are set as follows: maximum iteration T = 200, error
δ0 = 1e − 6.

A. Synthetic Point Sets Matching

Our first experiment is based on synthetic 2D point sets
data. Similar to the work [7], [13], we have randomly gen-
erated data set of nM 2D model points for model features
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Fig. 6. Comparison results on feature points matching across CMU and YORK sequences, respectively.

M. The range of the x-y point coordinates is
√

nM/10 to
enforce an approximate constant density of 10 points over a
1.0 × 1.0 region. Then, we obtain the corresponding nD data
points in data features D by adding Gaussian noise N(0, σ )
to the nM point positions from M and then transforming
the whole data set with a random rotation and translation.
The parameter σ controls the level of position deformation.
In addition to the deformation noise, we have also evaluated
the effect of the proposed method when outlier features exist
in both feature sets. Here nout outlier feature points have
been added in both feature sets at random positions. For each
assignment a = (i, i ′), the matching score Sa is computed as
Sa = 1 − ||aD

i − aM
i ′ ||2F

(
maxa ||aD

i − aM
i ′ ||2F

)−1
where aD

i , aM
i ′

are the shape context descriptors for the feature points i
in D and i ’ in M, respectively. For each pair of assignments
(a, b), where a = (i, i ′) and b = ( j, j ′), the affinity
Wa,b is computed by Wa,b = e−||di j −di′ j ′ ||2F /σr , where di j

is the Euclidean distance between the points i and j , and
similar to di ′ j ′ . The affinity between two each pair of conflict
assignments is set to zero, as discussed in Section IV. Scaling
facto σr has been set to 0.03 in this experiment. For each
noise level, we have generated 100 random point sets and
then computed the average performances including accuracy,
objective score, sparsity and CPR.

Fig. 4 shows the comparison results. Here we can observe
that: (1) our SPM method (both SPM-G and SPM-M) can
generate expected sparse solutions and return desirable lower
CPR than the other methods, indicating that SPM satisfies the
desirable constraint property more closely. Since IPFP puts the
discretization step into its optimization process, it can satisfy
the mapping constraints strictly (CPR = 0). However, our
SPM method obviously returns the higher objective score and
matching accuracy than IPFP method. (2) RRWM performs
better than SM, SMAC, and IPFP, indicating the effectiveness
of this probabilistic matching method. (3) SPM generally
returns the higher matching accuracy and objective score than
the other methods, demonstrating the effectiveness of the
proposed sparse optimization based feature point matching
method. (4) Compared with SPM-G, SPM-M generally per-
forms slightly better in both matching accuracy and objective

score, indicating the more effectiveness of the proposed multi-
plicative update algorithm (7) on conducting feature matching
tasks. In order to evaluate the performance of the proposed
SPM-P algorithm, here we penalize the affinity between two
conflict assignments with a nonnegative value w (w = −1),
as discussed in Section IV. In this case, the affinity matrix W
contains negative elements and SPM-P can be directly used
to find the optimal solution. Fig. 5 shows the comparison
results. We can note that, SPM-P outperforms both SPM-M
and SPM-G matching algorithms. This obviously demonstrates
that SPM-P algorithm can return desired effective solution for
feature matching problem with the presence of negative affini-
ties, indicating the effectiveness and benefits of the proposed
SPM-P algorithm.

B. Feature Point Matching Across Image Sequences

In this section, we perform feature point matching on CMU
and YORK house sequences which have been widely used in
previous works [13], [29], [30]. For CMU house sequence,
there are 111 images of a toy house captured from moving
viewpoints. For each image, we have first manually marked 25
landmark feature points with known correspondences and then
added 10 outlier feature points at random positions. We have
matched all images spaced by 5, 10, 15, 20, 95 and 100 frames
and computed the average accuracy per separation gap. YORK
house sequence contains 18 images and the adjacent images
were obtained according to the rotation of 5 degree. For each
image, 40 landmark points were manually marked with known
correspondences. We have matched all images spaced by 1,
2, 3. . .9 and 9 frames and computed the average accuracy
per separation gap. For each image pair in these two image
sequences, the coordinates of their landmark points have been
first normalized to the interval [0, 1]. Similar to the synthetic
data, we computed the matching score for each assignment
a = (i, i ′) as Sa = 1 − ||aD

i − aM
i ′ ||2F/maxa ||aD

i − aM
i ′ ||2F ,

where aD
i , aM

i ′ are the shape context descriptors for the feature
point i in D and i ’ in M, respectively. The affinity Wa,b

for each assignment pair (a, b) (a = (i.i ′), b = ( j, j ′))
has been computed by Wa,b = e−||di j −di′ j ′ ||2F /σr , where di j
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Fig. 7. Comparison results on feature points matching across CMU sequence
under SPM-G, SPM-M and SPM-P algorithm, respectively. (a) Matching
examples (left: SPM-G; right: SPM-M). (b) Comparison results under SPM-G,
SPM-M and SPM-P algorithm.

is the Euclidean distance between two points i and j , and
similar to di ′ j ′ . Scaling σr has been set to 0.03 in this
experiment. Some matching examples are shown in Fig. 7(a).
Fig. 6 shows the performance curves with respect to the
separation gaps. Overall, it is possible to summarize the results
as follows: (1) Comparing with SM, SMAC and RRWM,
SPM (both SPM-G and SPM-M) possess the sparse property
of the discrete IPFP method and thus satisfies the constraint
property more closely. (2) SPM returns the best performances
in both matching accuracy and objective score, indicating the
effectiveness of SPM matching method. (3) SPM-M usually
returns better performance than SPM-G, especially on YORK
data set. These comparison results are generally consistent
with the results in the synthetic data experiments, and further
demonstrate the effectiveness of the proposed SPM model
on achieving feature point matching tasks. Fig. 7(b) shows
the comparison results of the SPM-M, SPM-G and SPM-P
algorithms, respectively. We can note that SPM-P obviously
outperforms SPM-M and SPM-G, which further demonstrates
the benefits of the proposed SPM-P on conducting feature
matching problem with the presence of negative affinities.

C. Real-World Image Matching

In this section, we tested our method on some real image
feature matching problems. Firstly, we evaluate the robustness
of the proposed method via experiments with various types
of image pairs used in the works [31]. It contains images of
various geometric and photometric transformations for differ-
ent scene types. Fig. 8(a) shows the six images selected from
this data set. Feature points and correct matches have been
detected on each image pair [31]–[33]. For each image, we
first generate 128-dim SIFT feature descriptors for the feature
points. Then, using the distance of descriptor, all the possible
candidate assignments were collected. Each model feature can
match to the 4 closest data features in SIFT feature space,
allowing multiple correspondences for each feature. Note that

Fig. 8. Images used for evaluation in our experiments. (a) Images used in
the work [31]. (b) Images selected from Zubud database.

Fig. 9. Matching results between different images; the graph shows how
many of the top k best correspondences are correct (k = sample size).

if x∗ is the optimal solution of relaxation continuous problem
for feature matching, then x∗(a) can be generally regarded as
the confidence that a (a = (i, i ′)) is a correct assignment [7].
Thus, we can use a greedy algorithm to select top k best
correspondences (assignments) from the possible candidate
assignments [7]. We compare our SPM with SM, SMAC
and RRWM, since IPFP generally returns binary solution
(x∗(a) ∈ {0, 1}) and its optimal solution x∗(a) cannot be
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Fig. 10. Some matching examples between real-world images.

TABLE I

MATCHING RESULTS ON ZUBUD AND CALTECH-101-MSRC DATABASES

regarded as the correct confidence and thus cannot be used
directly here. The affinity between two candidate assignments
a = (i, i ′) and b = ( j, j ′) was computed as Wa,b =
1−|di j − di ′ j ′ |/maxa,b |di j − di ′ j ′ |, where di j is the Euclidean
distance between the feature points i and j , and similar to di ′ j ′ .
The score for each assignment a = (i, i ′) is computed as Sa =
e−||aD

i −aM
i′ ||2

F
/σr where aD

i , aM
i ′ are the SIFT descriptors for the

feature points i in D and i ’ in M , respectively. Scaling σr has
been set to 150 in this experiment. Since the ground truths have
been manually labeled for all the candidate correspondences of
each image pair, the correct matches obtained by the matching
algorithms can be accounted. Fig. 10 top row shows the top
150 best assignments for the object image pair using SM and
SPM, respectively. Fig. 9 summarizes how many of the top
k best correspondences are correct (k = sample size). It is
noted that, RRWM generally works better than SM, SMAC for
all image pairs. SPM outperforms RRWM and gives the best
results. SPM-M slightly outperforms SPM-G on the building
and church image pairs, and returns very similar performance
with SPM-G on the other images. These obviously suggest
that SPM can effectively find the correct matches from the
candidate correspondences.

Secondly, we test our method on the image pairs selected
from Zurich Building Image Database (ZuBud) [33]. Some
image samples are shown in Fig. 8 (b). Similar to the first real
image dataset, we generate the possible candidate assignments
based on SIFT feature similarity (distance). The matching
score S and affinity for each assignment pair W are computed
as same as that in the prior real image dataset. 30 image
pairs have been selected for evaluation in this experiment.
We compare our method with SM, SMAC, RRWM and IPFP.

Some matching examples are shown in middle row in Fig. 10.
Table I summarizes the average matching performance. Here,
the relative score (RS) for i -th method is computed as: Relative
scorei = Objective scorei /maxi {Objective scorei}. One can
note that, IPFP generally performs better than SM, SMAC and
RRWM in this dataset, indicating the effectiveness of IPFP
method. SPM generally works better than IPFP and gives the
best performances. This further suggests the effectiveness of
SPM on conducting the real-world image matching tasks.

Thirdly, we evaluate our method on the image pairs selected
from Caltech-101 and MSRC datasets [13]. Here, 30 image
pairs containing various images have been selected, and the
candidate correspondences have been generated using the
SIFT feature descriptors and the MSER detector [32], [33].
The possible candidate correspondences have been firstly
obtained if the feature pair has closer distance in SIFT
feature space than a loose threshold δ = 0.6. For each pair
of assignments a = (i, i ′) and b = ( j, j ′), the affinity
Wa,b has been computed as Wa,b = 1 − da,b/maxa,b da,b,
where da,b is the dissimilarity between two candidate region
correspondences a and b measured by adopting the mutual
projection error function [13], [32], [33]. The matching score
for each assignment a = (i, i ′) has been computed as
Sa = 1 −||aD

i − aM
i ′ ||2F/maxa ||aD

i − aM
i ′ ||2F , where aD

i , aM
i ′ are

the SIFT descriptors for the features i in D and i ′ in M ,
respectively. The ground truths have been manually labeled
for all candidate correspondences for each image pair, and the
accuracy and relative objective score have been computed [13].
Some matching examples are shown in bottom row in Fig. 10,
and the comparison results including average accuracy and
relative objective score are summarized in Table I. We can note
that SPM clearly outperforms the other methods in accuracy,
demonstrating the effectiveness of our method on conducting
real image matching.

D. Complexity Analysis

As summarized in Algorithm 1, our SPM can be effi-
ciently computed by an iteration method. Assume W is a
n × n matrix with full matching, then its computational
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Algorithm 1 Sparse Feature Point Matching (SPM)

complexity is less than O(n2) per iteration. Therefore the
total complexity for SPM is less than O(Mn2), where M is
the maximum iterations. Our experience is that Algorithm 1
converges quickly and the average iteration M is usually less
than 300. Theoretically, SPM has the same complexity with
IPFP and SMAC methods.

VII. CONCLUSION

A robust feature point matching method based on sparse
model is proposed in this paper. Firstly, a general nonnegative
sparse quadratic model has been proposed, followed by a
general update algorithm to solve it. Then, we present our
sparse feature matching method based on the proposed sparse
quadratic model. We show that our SPM based solution is
sparse and thus approximately imposes the discrete mapping
constraints in the optimization process. Also, SPM can find
better solution for original IQP feature matching problem than
other methods. As important methods in computer vision and
pattern recognition, sparse models have been drawing much
attention from different communities. In this paper, it has
been developed for feature point matching task and achieves
promising results. We have shown the strong relationship
between the sparsity of the solution and its effectiveness for
feature point matching, which is the main contribution of this
work.
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