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Recognizing Focal Liver Lesions in CEUS With
Dynamically Trained Latent Structured Models

Xiaodan Liang, Liang Lin*, Qingxing Cao, Rui Huang, and Yongtian Wang

Abstract—This work investigates how to automatically classify
Focal Liver Lesions (FLLs) into three specific benign or malig-
nant types in Contrast-Enhanced Ultrasound (CEUS) videos, and
aims at providing a computational framework to assist clinicians
in FLL diagnosis. The main challenge for this task is that FLLs in
CEUS videos often show diverse enhancement patterns at different
temporal phases. To handle these diverse patterns, we propose a
novel structured model, which detects a number of discriminative
Regions of Interest (ROIs) for the FLL and recognize the FLL
based on these ROIs. Our model incorporates an ensemble of local
classifiers in the attempt to identify different enhancement pat-
terns of ROIs, and in particular, wemake themodel reconfigurable
by introducing switch variables to adaptively select appropriate
classifiers during inference. We formulate the model learning as
a non-convex optimization problem, and present a principled opti-
mization method to solve it in a dynamic manner: the latent struc-
tures (e.g. the selections of local classifiers, and the sizes and lo-
cations of ROIs) are iteratively determined along with the param-
eter learning. Given the updated model parameters in each step,
the data-driven inference is also proposed to efficiently determine
the latent structures by using the sequential pruning and dynamic
programming method. In the experiments, we demonstrate supe-
rior performances over the state-of-the-art approaches. We also
release hundreds of CEUS FLLs videos used to quantitatively eval-
uate this work, which to the best of our knowledge forms the largest
dataset in the literature. Please findmore information at “http://vi-
sion.sysu.edu.cn/projects/fllrecog/”.
Index Terms—Cancer recognition, CEUS, computer-aided diag-

nosis, focal liver lesions.

I. INTRODUCTION

L IVER cancer is known as the fifth most common cancer
and second cause of cancer-related death reported by

World Health Organization (WHO) [1]. Focal Liver Lesions
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(FLLs) are or cystic masses that are identified as an abnormal
part of the liver [2]. Hepatocellular carcinoma (HCC) is the
most common type of liver cancer [3]. Early diagnosis of FLLs
plays a key role in successful cancer treatment. Ultrasound
imaging is often used for cancer diagnosis due to its low
cost, efficiency and non-invasiveness. However, conventional
ultrasound may produce vague images and fail in detecting
small masses due to its low sensitivity and signal-to-noise
ratio [4]. Thus, further imaging is required, using Tomography
(CT) or Magnetic Resonance Imaging (MRI) techniques, while
their major disadvantages include the cost of examination, the
cumbersome equipment and the exposure to the ionizing radi-
ation used in CT [5]. Recently, Contrast-Enhanced Ultrasound
(CEUS) was proposed to study the enhancement dynamics of
FLLs in real time, by assessing the FLL enhancement patterns,
i.e. the intensity changes of the FLL areas relative to that of
their adjacent healthy liver tissues (parenchyma) [6]. CEUS has
since markedly improved the accurate diagnosis of the FLLs
[7], [8].
In this paper, our method focuses on three specific types

of FLLs: one malignant FLL (i.e. Hepatocellular Carcinoma
(HCC)) and two benign FLLs (i.e. Hemangioma (HEM) and
Focal Nodular Hyperplasia (FNH)). We use the classification
term to indicate the distinction between benign or malignant,
and the characterization term to indicate the distinction be-
tween the specific FLL types (i.e. HCC, HEM, FNH). As
reported in the medical guidelines [6], radiologists recognize
FLLs by observing the enhancement patterns during all vas-
cular phases (arterial, portal venous, late) [7]. With regard to
classification problem, as shown in Fig. 1, portal venous and
late phase may assist in differentiating malignant FLL (HCC)
and benign ones (HEM and FNH). HCC is hypo-enhancing
(e.g. the wash out phenomenon) while HEM and FNH are
iso- or hyper-enhancing in the portal venous and late phase.
Arterial phase, on the other hand, provides essential informa-
tion to distinct between the specific FLL types. For example,
as the malignant lesions on our dataset, more than 97% HCC
cases often show homogeneous hyper-enhancement (shown
as “HCC1” in Fig. 1), and the remaining 1–3% cases may be
inhomogeneous or rim enhancement in larger nodules ( 5
cm), which contain regions of necrosis (“HCC2”). Among
the benign FLLs, typical HEM cases show peripheral nodular
enhancement (“HEM1”) while high flow HEM cases show
rapid homogeneous hyper-enhancement (“HEM2”). FNH is
often visualized with spoke-wheel vascular pattern hyper-en-
hancement (“FNH1”) or homogeneous enhancement (“FNH2”)
of the whole lesion. The clinical guidelines also advise the
radiologists to consider these diverse characteristics of FLLs
in CEUS for diagnoses [6]. These complicated enhancement
patterns of different FLL types (i.e. HCC, HEM and FNH)
make accurate diagnosis extremely difficult.
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Fig. 1. Diverse enhancement patterns of FLLs in CEUS videos. We consider three common types: Hepatocellular carcinoma (HCC), Hemangioma (HEM) and
Focal Nodular Hyperplasia (FNH). Each FLL can be recognized by the enhancement patterns of Regions of interest (ROIs, indicated by the red boxes) in the arterial
phase (first row), portal venous phase (second row) and late phase (third row). Two instances of each FLL type (i.e. HCC, HEM, FNH) are shown to visualize the
diverse enhancement patterns of FLLs.

Fig. 2. An example of latent structuredmodel generated by our approach. From
bottom to top, the local classifiers (denoted by the solid circles) at the bottom
for localizing the candidate ROIs in each phase; then the most appropriate clas-
sifiers are selectively combined to conduct the FLL recognition. We utilize mul-
tiple local classifiers to capture the diverse enhancement patterns in the arterial
phase. The curves between the local classifiers are used to incorporate temporal
transitions between pairwise ROIs. The bold red circles and curves represent
the selection of local classifiers during the inference.

Currently, the accuracy of diagnosis highly depends on the
expertise of the radiologists. The experts often make a lot effort
on reviewing the whole CEUS video back and forth to find the
lesions and their patterns, based on numerous diagnosis guide-
lines [3], [6]. Thus, Computer-Aided Diagnosis (CAD) systems
are proposed as a “second reader” to characterize various types
of tumors [9], [10], and in particular, FLLs using ultrasound im-
ages [11], [12]. However, CAD systems for analyzing FLLs in
CEUS videos are still rarely developed, mainly due to the large
variations of enhancement patterns in the three vascular phases.
Some preliminary CAD attempts [13]–[19] rely on manually
pre-defined regions of FLLs, with the exception of Bakas et al.
[16] who proposed a method to automatically identify the frame
where an FLL is best distinguished.
Different from the prior works, we propose to recognize the

FLL types by identifying Regions-of-Interest (ROIs) in CEUS

videos, i.e. detecting one ROI for each phase. The ROIs in all
temporal phases of a CEUS video are also generated for fur-
ther assisting the clinicians. We develop a novel latent struc-
tured model that incorporates an ensemble of local classifiers
to capture diverse enhancement patterns of ROIs. In particular,
we make the model reconfigurable by introducing latent switch
variables to select appropriate local classifiers for optimal com-
bination, inspired by recently proposed And-Or graph models
[20], [21]. That is, we deploy a set of local classifiers for a phase,
and each local classifier localizes one candidate ROI. Thus, the
set of discriminative ROIs can be produced by searching for
the optimal ROI in each phase. We treat the temporal and spa-
tial locations, area size and classifier selection of each ROI as
latent structures of our model, which are automatically deter-
mined during inference for different CEUS videos.
To be accommodated with the real circumstances in FLL di-

agnosis, such as the instability of operation and the motion of or-
gans, we propose an effective feature representation to describe
the appearance of ROIs, which characterizes the appearances
of ROIs from different aspects: (i) the region inside the lesion,
(ii) the morphology of the lesion, and (iii) the tissue area sur-
rounding the lesion. In addition, the appearance similarity be-
tween two ROIs of different temporal phases are incorporated
as a constraint in our model.
Training our latent structured model is another innovation of

this work. There are several challenges for this task. First, the
training data are not manually labeled (e.g. layouts of ROIs),
and the number of local classifiers for different FLL types
is unknown, which is related to the intrinsic pattern variants
for each FLL type. It is difficult to automatically generate
the latent structures without any supervision. In previous
works, researchers utilized elaborative annotations to manually
determine the model configurations [22], [23]. Second, simul-
taneously predicting the ROI layouts and FLL types is difficult
because these two tasks depend on each other. In particular,
recognizing FLL types is founded on the extracted features
of the predicted ROIs and in turn the predicted ROI layouts
are generated by maximizing the recognition accuracy. In our
approach, we overcome these problems by proposing a novel
principled optimization algorithm, inspired by the structural
learning method [21], [24]. The proposed learning algorithm



LIANG et al.: RECOGNIZING FOCAL LIVER LESIONS IN CEUS WITH DYNAMICALLY TRAINED LATENT STRUCTURED MODELS 715

iteratively optimizes the latent structures along with the model
parameter learning. To determine the latent structures, we
propose a two-step procedure. First, we apply the current
updated model on all FLL training videos, in which each local
classifier localizes one ROI by maximizing the detection score.
This step can generate a batch of candidate ROIs for each
training video. Second, we reconfigure the model structures
by reproducing local classifiers for each temporal phase, based
on jointly evaluating the similarities of ROIs from different
training videos and the weightings of ROIs contributing to the
classification. In this way, we re-associate the ROIs of different
training videos to the local classifiers, whose parameters can be
updated accordingly. The number of local classifiers can thus
be adaptively adjusted by considering the number of training
samples that select this classifier.
The main contributions of our method are two-fold. First,

we propose a reconfigurable compositional model to recognize
FLLs in CEUS videos, which is shown to handle well the vari-
ations of the three FLL types (i.e. HCC, HEM, FNH). Second,
we study a novel non-convex optimization algorithm to dynam-
ically generate the model structures along with the parameter
learning. We apply our method on the SYSU-FLL-CEUS
dataset collected from clinics, which contains in total 353
CEUS video sequences of three types of FLLs (HCC, HEM,
and FNH). Our method has shown very promising results
in characterizing the FLL types (i.e. distinguishing between
HCC, HEM and FNH), and classifying the FLLs as benign
or malignant. We also evaluate different learning algorithms
and show that our learning algorithm outperforms the latent
structural SVM [25] and the latent max-margin clustering
algorithm [26]. Moreover, we extensively investigate how the
individual components of our system contribute to its overall
performance.

II. RELATED WORK

In medical imaging, the application of CEUS for differen-
tiating the FLLs is still a relatively new field [13]–[19], [27].
Early results from [27] confirmed that quantitative parametric
curve analysis could help in differentiating FNH from the
others. Cascades of Artificial Neural Networks [13] have also
been employed to classify FLLs based on manually segmented
lesion regions. Anaye et al. [14] analyzes the Dynamic Vascular
Patterns (DVPs) of FLLs with respect to surrounding healthy
parenchyma to differentiate between benign and malignant
FLLs. Rognin et al. [19] developed the parametric imaging
technique for mapping the DVP signatures into a single image.
Bakas et al. [15] developed a histogram-based method to track
a manually initialized FLL and its surrounding parenchyma to
classify it as either benign or malignant based on its vascular
signature. In their recent work [16], a fully automatic method
for selecting the optimal frame for initialization of the FLL can-
didates is proposed. Additionally, their other tracking methods
[17], [18] were proposed to track the FLL and a healthy liver
region for assisting the differentiation between benign and
malignant FLLs.
In all these works, varying degrees of manual interactions are

required to identify the ROIs of FLLs or the normal parenchyma
area. The manual annotations are highly dependent on the skills
and knowledge of the experts, leading to large variations in

inter-/intra-observer variability, the median value of which can
reach 24% according to [28]. Furthermore, the ever-increasing
amount of CEUS data acquired and processed nowadays de-
mands automatic systems that can save the radiologists' time
and effort.
On the other hand, automatic detection and segmentation

of other tumors (e.g. breast tumor, prostate cancer, obstetrics)
using conventional ultrasound have been well studied, as
surveyed in [29], [30]. From the computational point, various
methods [31], [32] were proposed to segment the suspicious
lesions by using the intensity or edge information. Hessian
analysis were also explored to segment common geometrical
structures for all kinds of tumors [33]–[35] with different
modalities (e.g. ultrasound, CT, MRI). In addition, some works
transformed the detection problem into classification task using
the user-defined features [36], [37].
This paper is an extended version of our previous work in

[38], and provides further background, description, insight,
analysis, and evaluation. Compared with the previous version,
our improved model is more effective and flexible in capturing
the diverse patterns of ROIs in each phase. In addition, the
previous model can be directly solved by latent SVM while our
extended model is formulated as a non-convex problem. We
thus propose a novel concave-convex optimization algorithm
to dynamically generate the model structures along with the
parameter learning.
In computer vision area, image parsing was proposed to

parse the natural images into their constituent visual patterns
[22], [23], e.g. object parts, scenes or skeletons, in a manner
similar to parsing sentences in speech and natural language.
This topic has since drawn much attention [39], [40]. Compared
with the traditional classification method, image parsing aims
at seamlessly unifying segmentation, detection and recognition.
However, the uncertainty of hierarchical representations for the
images and the well-known complexity of segmentation and
recognition make it extremely hard to design effective and effi-
cient models. Zhu and Mumford [23] employed the conceptual
stochastic grammar in And-Or graph model to represent com-
plex visual patterns and their relationships. More specifically,
the Or-node is used for alternative configurations of structural
variations for each component and the And-node points to the
composition of a number of components, which can be gener-
ally exhibited as the “selective” and “compositional” concepts
in our model, respectively. This idea has been extended to
other tasks, e.g. action recognition [41], background modeling
[42] and trajectory analysis [43]. Our approach was partially
motivated by these works, and we investigate a unified selective
compositional model for FLL recognition in CEUS that can be
discriminatively trained with a novel non-convex optimization
method.

III. OUR MODEL

In this section, we present a latent structured model to capture
large variations of FLLs in CEUS videos. Given a CEUS video
sequence , is the corresponding type of the FLL, ranging
over a finite set (i.e. HCC, HEM and FNH). We assume the
FLLs can be represented by a number of ROIs in three vascular
phases: arterial, portal venous, and late phases. We define an
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ROI as the minimum enclosing box of an FLL, which is de-
picted by the corresponding layout in the video. Thus, the ob-
jective of our model is to locate the most discriminative ROIs,

, in the CEUS video sequence, and predict
the FLL types (including the characterization and classification
tasks). To capture the diverse variations of FLLs, we train a
set of local classifiers to detect ROIs for each FLL type. Each
local classifier is used to detect one candidate ROI, and the most
appropriate classifiers (associating with ROIs) are selectively
combined to conduct the classification. Meanwhile, the scale
and location information of each ROI are also determined.

A. Latent Structures
The detection results of discriminative ROIs are expressed

with a set of hidden variables (associ-
ated with the ROIs ), where takes value
from a finite set of all possible hypotheses about . More
precisely, , includes two terms: the layout (i.e.
the location and scale) of and the local classifier selection .
The layout specifies the spatial coordinates

, the temporal location (i.e. the frame number in the
video sequence), and the scale of . For each ROI , we
define a set of local classifiers to capture diverse enhancement
patterns. The exact number of local classifiers of each phase
for each FLL type is automatically learned, and limited to be
smaller than the pre-defined maximum number . We denote

as the maximum number of local classifiers.
The classifier selection variable for is used to
indicate the most appropriate local classifier after performing
inference algorithm. As illustrated in Fig. 1, by adaptively com-
bining different local classifiers in three phases, the diverse en-
hancement patterns can be captured and our learned model for
each FLL type is reconfigurable.

B. Modeling Observations
The ultrasonic characteristics (e.g. internal echo, mor-

phology, edge, echogenicity and posterior echo enhancement)
of each ROI often show large variations among different frames
in each video and different patients. To capture all these varia-
tions of the lesions, we represent the feature of each ROI from
the following aspects: the region inside the lesion, denoted as

, is used to capture the internal echo of the FLL; the lesion
region to observe the boundary and the morphology of the
FLL; and the tissue area surrounding the lesions, denoted as

, to measure the posterior echo enhancement. In addition,
the echogenicity of the lesion can be measured by comparing
the intensities of above regions. Given an ROI , the region

is obtained by shrinking by a small factor. The region
is the annular region obtained by enlarging the region by

a small factor and then subtracting it from the original region
. We then propose an effective region representation, which

consists of 5 components as follows:

(1)
where extracts the appearance features of each region, such
as Grey Level Co-occurrence Matrix (GLCM) and Local Phase
(LP); calculates the mean intensity difference of two regions.

Consequently, the concatenation of all these features, ,
captures all the desired ultrasonic characteristics of region .

C. Model Definition
Given a CEUS video , its FLL type , and hidden variables
, the conditional probability of the whole recognition problem

is defined as,

(2)

where is the model parameter vector,
, and is a feature vector depending on the video

sequence , the FLL type , and the hidden variables . We de-
fine the formulation of as the following, including
two factors: the appearance potential and temporal potential,

(3)

where is the appearance potential function of variable
and is the temporal potential function of . is the
set of neighboring hidden variables (defined for the pairwise
temporally adjacent ROIs).
1) Appearance Potential : Given the hidden

variable , the singleton potential function
is conditioned on the FLL type , classifier selection and
appearance feature of .

(4)

where is the feature vector describing the appearance
of the region (Section III-B). The indicator function is
equal to one if , zero otherwise. We denote the weight pa-
rameter of each local classifier as . Intuitively, the different
optimal regions are selected with different local classifiers to
capture the variations. The whole parameter is simply the
concatenation of all local classifiers for all FLL types.
2) Temporal Potential : The potential

function models the appearance similarity between FLL
type and the temporal transition of a pair of temporally neigh-
boring regions ,

(5)

where is concatenated by two features: appearance dif-
ference feature, computed by the difference of and

, and spatial displacement feature, i.e. Euclidean
distance between the spatial coordinates of and . Intu-
itively, the temporal potential is used to model the enhancement
changes of a certain FLL between two phases (e.g. hyper-, iso-,
or hypo-enhancement), but not diverse enhancement patterns
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Fig. 3. Mapping the latent structured model with the potentials defined in Eqn.
(3). The squares denote the three different phases and the circles represent the
ROIs detected by local classifiers in each phase. The bottom bar indicates the
feature vectors in different potentials. These ROIs are described by the feature
vectors in the potential, which are connected by the dashed blue arrow lines.
The feature vectors for each FLL consists of seven components (the bottom
bar): three for describing the ROIs detected by different local classifiers in the
arterial phase, two for the ROIs in the portal venous phase and the late phase,
and two for the temporal potential. The feature vectors for the selected ROIs are
highlighted by red, and other feature bins are set into zeros.

of a ROI, we thus use the same weight vector for different
pairs of classifier selections , i.e. the variable and

in the temporal potential are ignored for simplicity. The
parameter is then simply the concatenation of all .
Fig. 3 illustrates the global feature assignments of our model.
The overall parameter of our model is summarized as,

(6)

IV. DATA DRIVEN INFERENCE

To provide more information for diagnosis, the task is formu-
lated as the following joint inference problem of both the FLL
type and the hidden variables:

(7)

The inference is hard primarily because the state space of the
ROI layout variable is huge. Here we propose an efficient in-
ference algorithm by adopting several data-driven pruning steps
into the dynamic programming. For each possible type and
local classifier selections , we first search for the optimal ROI
layout . Finally the best detection result including the optimal
, and is determined by finding maximum detection

score after exhausting searching over all possible types and
local classifier selections .
More precisely, given the FLL type and the local classi-

fier selections , our model is simplified into a standard chain
structure with nodes that can be effectively solved by dy-
namic programming. However, the searching space for the op-
timal ROIs is huge if we check every location and scale in every
frame. Considering many of these candidate regions are redun-
dant, we propose an efficient data-driven inference algorithm,
which combines spatial and temporal pruning techniques to dis-
regard those less discriminative frames and regions. The algo-
rithm includes the following three components:

1) Temporal Pruning: In a typical CEUS video, the appear-
ance of ultrasound frames often varies slowly and smoothly
according to the hemodynamic, and the most discriminative
frames are usually those with the largest contrast changes com-
pared with neighboring frames. Thus, a small set of candidate
frames, which have local maximum of the contrast change, are
automatically selected. Formally, for each frame in a video
, we compute the contrast feature from the co-occurrence

distribution defined over [44]. The contrast vector for all
frames is then . Let be the difference vector
of , the candidate frame set is formed by finding the frames
at the local maximum of . The duration time for each phase
may vary due to individual hemodynamic or different site
of injection, and the average duration time for each phase is
reported in [6]. We use the most stable duration time for each
phase, that is, 10 s–30 s as the arterial phase, 45 s–120 s as the
portal venous phase and 120 s as the late phase. During these
stable duration periods, the explicit FLL enhancement patterns
for each phase can be observed. In addition, since we assume
that the enhancement pattern appears at least in one selected
frame of each phase, our proposed method can automatically
locate the FLL regions by our inference algorithm.
2) Spatial Pruning: After temporal pruning, we also prune

the less important regions in each frame considering the fol-
lowing two priors: saliency prior and location prior. First, we
believe that salient regions (e.g. having higher contrast or con-
taining typical structures) have more discriminative informa-
tion, and thus are more likely to be the candidates of ROIs.
Second, we observe that FLLs often appear in or close to the
center of the images, probably because a skilled ultrasound op-
erator usually places the liver area in the middle of the display.
According to these two observations, we evaluate all the regions
with different scales in each candidate frame (sliding
window protocol), and only select the regions with prior prob-
ability larger than a threshold as the ROI candidates. The
threshold determines the number of candidate ROIs by the
following dynamic programming algorithm, and whether the
candidate ROIs can cover the main parts of FLLs. The larger
means the larger number of candidate ROIs that leads to longer
training and testing time, and higher possibility to cover the
complete FLLs. In our experiments, we set to balance
the learning efficiency and classification accuracy, which is de-
cided by cross-validation on a small validation set. The prior
probability of a region being an ROI is,

(8)

where is the normalized mean saliency of the region
in the saliency map , computed by the quaternion-based spec-
tral saliency method [45]. and are the centers of region
and the whole image (not just the conical area in the ultra-

sound image), respectively. is a Gaussian distri-
bution. The represents the confidence that the FLL is close to
the center of each frame. Due to the difference of radiologists'
operation or patients' hemodynamic, the locations of FLL region
may vary in different CEUS videos. In our experiments, we set

to balance the efficiency and accuracy by cross-vali-
dation. As shown in Fig. 4, by combining these two priors, our
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Fig. 4. Results in the spatial pruning stage. The first row presents the FLLs in the arterial phase for different examples and the location of each FLL is annotated by
a red rectangle. The second row shows the probability map for each pixel. We denote the red colored locations have the highest probability to be a suspicious FLL.

Fig. 5. Example of the dynamic programming inference. We represent each
candidate ROI of each phase as a circle in each row, and the whole hypotheses
of ROIs consist of all candidate ROIs in all candidate frames. Only the ROIs
in the small spatial neighborhood are linked. The optimal locations of ROIs in
three phases (denoted as the red circles) are determined by the efficient dynamic
programming.

predicted probability map has high consistency with the loca-
tions of FLLs. The few wrongly predicted locations will most
likely be further pruned by the following global optimization. It
is often observed that the locations of FLLs do not change much
after the arterial phase [6], and the spatial pruning in the arte-
rial phase can be of no effect. Thus, in the last two phases, we
only search the regions in a spatial neighborhood (e.g. 50 50
pixels) around the locations of the ROI candidates found in the
arterial phase. Note that the size of the spatial neighborhood is
empirically chosen according to the resolution and zoom factor
of the input video.
3) Dynamic Programming: Given the FLL type and

the local component selection , the hidden variables
forms a Markov chain. This model is

composed of the appearance potential for each and
the temporal transition potential for each pair of
neighboring variables . The possible layout of each ROI,
, ranges in the hypothesis set , after above mentioned tem-

poral and spatial pruning. As shows in Fig. 5, each candidate
ROI is only connected with its spatial neighboring candidates
in the next phase. Thus the optimal locations for and , ,
can be calculated by the Viterbi algorithm [46].

Therefore, for each pair of and , we can find its optimal
ROI layout , and the final detection results can be
determined by exhaustively searching over all and ((7)),
which is related to a small space of possibility. The entire infer-
ence procedure is outlined in Algorithm 1.

V. MODEL LEARNING
In this section we introduce a novel non-convex optimiza-

tion algorithm for jointly generating the latent structure and
learning parameters. Inspired by the existing non-convex op-
timization methods [20], [47], our algorithm trains the model
in a dynamic manner: iteratively determining the model struc-
tures (i.e. re-producing the local classifiers) along with learning
the model parameters. Specifically, the new local classifier is
activated to better capture variations within training data. One
example is illustrated in Fig. 6: from (a) to (b), a new local clas-
sifier is created to capture the additional variations.
Given a CEUS video , we are interested in obtaining the ac-

curate FLL type as well as the layout of ROIs and the classi-
fier selection for the FLL. During the manual diagnosis proce-
dure, the radiologists often annotate a reference ROI of the FLL
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Fig. 6. An illustration of structural model learning. Our learned models for the
HCC class are illustrated in different iterations. a) The learned local classifiers
after the first iteration; b) a new local classifier is created to capture another
pattern variance of FLL.

with maximum contrast and sharpness in the arterial phase, and
then make further decisions by checking the rest of the video but
without labeling the FLL in subsequent frames. Accordingly,
we introduce one reference ROI layout from
the annotated ground-truth, which represents the expert knowl-
edge of diagnosis. Let
be a set of labeled training samples. Given the true label

and the reference ROI , we denote the user-spec-
ified risk of prediction as . The de-
tails of our optimization method are presented in the following
section.

A. Optimization

Beyond the assessment of the predicted label , our loss
function also measures how the output hidden
variables are compatible with the expert knowledge. Note
that the annotated ROI can be used to guide our localiza-
tion of ROIs of the same FLL in the subsequent frames which
should be discriminative as well as informative for recognizing
the FLLs. Thus, only the located ROIs in the spatial neighbor-
hood of (i.e. 50*50 neighborhood) can be regarded as correct.
We use this rule to define the loss function,

if
if
if

(9)
This loss pushes down the score of ROIs that are not

in the neighborhood of the annotated ROI , denoted as
. However, is typically discontinuous,

which is very difficult to minimize. In our method we optimize
the model by minimizing a regularized upper bound on the risk,

(10)

where represents the aggregated response of all examples
with hidden variables , given the true label . C is the
penalty parameter for the training loss. represents the loss
for each training sample, and it is subject to the Maximizing
Margin constraints (i.e. the condition term in (10). Many pre-
viousmethods, e.g. latent structure SVM [25] andAnd-Or graph
learning [20], separately optimized the hidden variable for
each sample by maximizing the response , and
we optimize over all training samples jointly while pro-
ducing local classifiers. Intuitively, for a local classifier, we en-
courage its detections (i.e. ROIs) to be coherent over all ex-
amples, so that the detected ROIs sharing similar enhancement
patterns tend to be grouped together during training. Thus, we
discover the similarity between training samples together with
solving . In this way, we can generate different local clas-
sifiers to capture the variations of FLLs over all training in-
stances. We now present how to encompass these intuitions into
our model optimization.
We define the response over all training samples with three

terms. First, the unary term is used to verify the discriminative
capabilities of ROIs and we represent it by the model response;
second, the pairwise term is introduced to measure the appear-
ance similarity among the ROIs of the different samples; finally,
the regularization term prevents the cluster imbalance problem.
The global optimal hidden variables of all examples can be thus
optimized by maximizing the summation of a unary term for
the model response, a pairwise term for the appearance sim-
ilarity, and a regularization term ,

(11)

where is the neighborhood set of the examples and in our
case, it contains all pairwise samples in the training data; we
weight the pairwise term by . The regularization term restricts
the number of valid local classifiers in our learned structure.

is a non-negative score of each classifier and is the
corresponding indicator function. We define , ,
and as follows, respectively,

;
otherwise

(12)

where is the indicator function; In particular,
because the maximum number of local classifier in last two
phases is set to 1, we only need one local classifier for these
phases. In this way, we only measure the appearance similarities
of ROIs in the arterial phase and the specific classifier selection
is denoted as . is the squared
Euclidean distance between appearance feature of the ROIs of
samples . is set to 1 only if there exists
at least one example which selects the -th classifier.
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By substituting (11) into the optimizing problem (10), the
global optimization function can be rewritten as,

(13)

The term is convex and the pointwise maximum of
convex function is convex. The objective in (13) is a summation
of a convex part and concave part. A local minimum or saddle
point solution can be thus found using the concave-convex pro-
cedure (CCCP) and it can guarantee that our algorithm always
converges [47]. To solve this non-convex optimization problem,
the proposed algorithm iteratively updates the latent structure
and optimizes the model parameters. Given the updated model
parameters in each iteration, we generate the latent structures
with two steps: first, each local classifier locates one candidate
ROI by maximizing the detection score by applying the current
model; second, we select the optimal local classifiers for each
example by transforming this task into a graph-based labeling
problem. According to the classifier selections over examples,
we re-associate the ROIs of all examples with these classifiers,
and reconfigure the model structure. In the next iteration, the
parameters of local classifiers will be trained on the newly par-
titioned data. The number of local classifiers will be adjusted
according to the selections of examples. Ourwhole learning pro-
cedure is presented as follows.
Step 1: The parameter is fixed. We compute the hidden

variables for all training data, which corresponds to approxi-
mating the concave function by a linear upper bound,

(14)

The optimal hidden variables are computed by
maximizing with two following steps: find the best locations

of ROIs for each possible classifier selection , and then
given all of all possible , we select the best local classifiers

and the corresponding best ROIs , i.e. we determine the
latent structures.
a) For each example , we compute the optimal locations
for each classifier selection hypothesis by,

(15)

Eqn. (15) can be solved effectively by our proposed inference
algorithm, detailed in the Section IV.

b) Given the candidate for each possible , we find the
optimal classifier configurations by solving,

(16)

And this optimization problem in (16) can be equivalent to
the minimization of energy ,

(17)

where determines the weight of appearance similarities of
examples within the same classifier. If is large enough, this
optimization problem can be approximately transferred into a
standard clustering algorithm as [20]; if approaches 0, then

can be minimized by only optimizing the unary term of all
training data using the latent structural SVM [48]. In our frame-
work, we integrate these two kinds of learning frameworks. A
growing parameter is introduced to iteratively increase
the weight , which increases the weight of the appearance
similarity constraints. The weight is also updated to adjust
the score of each classifier according to the model structure in
the last iteration. Let be the initialized weight parameter, we
iteratively adjust the weight and the score by,

(18)

where is set as 1.6 empirically. According to our reported
results in Section VI-D, the growing parameter effectively
avoids the premature convergence in model structure optimiza-
tion. Note that represents the number of
examples which select the -th classifier, is thus the nega-
tive of square of the number of samples which select the -th
classifier. Intuitively, encourages the model select the local
classifiers that are able to handle more training instances. In this
way, our regularization term eliminates solitude local classifiers
iteratively.
By substituting from (12) into (17), the pairwise term

is a submodular function because its value would range from
[0,1] if . Besides, the regularization term can be
transformed into the label cost in the graph-cut problem [49].
Then, the optimization of (17) is transfered as a tractable graph-
ical labeling problem. We solve this optimization problem by
the well-studied -expansion method [50]. The classifier selec-
tions for all samples can be effectively determined and
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for each sample is conveniently obtained by . The optimal
hidden variable can be thus calculated. The number of local clas-
sifiers can thus be automatically determined according to the
selections . Specifically, the local classifiers none of ex-
amples has selected will be deleted and the rest local classifiers
are the finally used in the model.
Step 2: By fixing the hidden variable for all training data,

the model parameter can be updated by minimizing a convex
upper bound of the objective in (13),

(19)

This is a standard structural SVM problem, which can be
solved by the cutting plane method [25]. Thus, we can keep the
optimization objective decreasing in each iteration.We adopt an
usual one-vs-one binary classification approach and output the
predicted FLL type and best hidden variables for each sample.

B. Initialization

To obtain a better local minimal, we initialize the number of
local classifiers and classifier selections of each sample by
performing clustering of the reference ROIs . Intuitively, we
partition the samples according to the confidential ROIs from
the radiologists and indirectly give a good initialization for cap-
turing the variance of FLLs in CEUS video. The spectral clus-
tering method is adopted due to its fast implementation. The
hidden variable for determining the location of each ROI is
initialized as the center of image in the middle frame of each
vascular phase. The sketch of our learning algorithm is pre-
sented in Algorithm 2.

VI. EXPERIMENTS

To evaluate our performance, we conducted a series of chal-
lenging tests on a large dataset, and the empirical results are
presented with the analysis in this section.

A. Dataset

Since CEUS is a relatively new technique, especially in the
CAD field, there are not many public datasets available. To
advance research in this area, we build the SYSU-FLL-CEUS
dataset from the CEUS data collected at the First Affiliated Hos-
pital, Sun Yat-sen University, which has been made publicly
available.1 Consent was obtained from all patients for using this
dataset. The equipment used was Aplio SSA-770A (Toshiba
Medical System), and all videos included in the dataset are col-
lected from pre-operative scans. The dataset consists of CEUS
data of FLLs in three types: 186 HCC, 109 HEM and 58 FNH in-
stances (i.e. 186malignant and 167 benign instances).We use 10
CEUS videos of each type as the validation set. The spatial res-
olution of each CEUS video is 768 576, and the video length
varies from 3 to 4 minutes with 15 fps. All videos are selected
based on the assumption that the FLLs can be observed in all
three phases and duration time for each phase is similar among
different videos (e.g. 120 s in the video as the late phase).
These CEUS videos are collected by starting from the arterial
phase, and the previous frames during injection are excluded.
The challenges in this dataset are summarized as follows. First,
no manual temporal segmentation for different phases is pro-
vided. Second, the FLL instances have large variations in size,
location, enhancement patterns. Third, the regions of FLLs may
be invisible in several intermediate frames. Besides the specific
FLL types (i.e. HCC, HEM, FNH), we also provided, in the arte-
rial phase of each video, an ROI which is annotated by a doctor
to assist diagnosing the FLL. These videos were taken by ex-
perts with more than ten years of experience.

B. Implementation Details

In our implementation, we use the popular GLCM feature
[44] to describe the appearance (i.e. enhancement pattern) of
each ROI. Specifically, we extract four statistics (i.e. Contrast,
Correlation, Energy, Homogeneity) of GLCMwith four orienta-
tions ( , 45 , 90 , 135 ). Therefore the feature dimension
of is , and the overall feature dimension of
for each region in (1) is thus 52, which contains three and two
. During the data-driven inference, three scales of regions (i.e.

64 64, 128 128, 200 200) and one step length 20 are used
for the sliding window search. and are empir-
ically set for spatial pruning. Intuitively, the ROIs of different
FLLs often show diverse enhancement patterns (e.g. hyper-, iso-
or hypo-enhancement) in the arterial phase, while the ROIs in
the portal and late phases mostly appear less diverse for malig-
nant or benign tumors. Therefore the maximum number of local
classifiers of the ROIs in the first phase is set to 3, and is
set equal to 1 for portal venous phase, but also for late
phase, respectively. In the learning stage, we empirically set the

1https://drive.google.com/folderview?id=0B5LimsUgYY7ifjRfLUtxb1FR-
Z2ZXcHN0a0oyeFFUaXdyT2xBMDRpclZES0dTMS1uTXk3VjA&usp=sha-
ring
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TABLE I
COMPARISONS OF DIFFERENCE LEARNING ALGORITHM SETTINGS. WE REPORT SENSITIVITIES AND MEAN ACCURACIES FOR CHARACTERIZATION

OF HCC, HEM AND FNH TYPES, AND CLASSIFICATION OF BENIGN AND MALIGNANT. ACC1 AND ACC2 ARE THE MEAN ACCURACIES
FOR THESE TWO CLASSIFICATION PROBLEMS, RESPECTIVELY. SENS. MEANS THE SENSITIVITY OF EACH CLASS

initialized weight parameter , the growing parameter
and the penalty parameter .

In the experiments, we adopt the standard setup of random-
ized 5-fold cross-validation. The sensitivity for each class and
mean accuracy are used as the evaluation criteria, which are
commonly used by others [14]. The experiments are carried out
on a PC with Core I7 3.4 GHz CPU, 12 GB RAM and conven-
tional hard drive, and the typical processing time for testing a
4-min CEUS video is about 200 seconds.

C. Results and Comparisons
We first report the sensitivities and mean accuracies of our

method in differentiating benign and malignant FLLs. The av-
erage accuracy (92.7%) on 353 FLLs is comparable to the re-
sults reported in previous studies on smaller datasets: 97% [14]
for 146 FLLs, 82.4% [15] for 17 FLLs, 91.6% [17] for 107 FLLs
and 92.8% [18] for 14 FLLs. Note that for all these previous
works, a reference ROI or a region of healthy tissues must be
annotated manually. However, our method automatically pro-
duces the classification results (reported in Table I) without any
manual labeling. In addition, our results compare favorably with
those medical diagnoses in medical literature, which reported
sensitivity ranging from 85%–97% [4], [5], [19], [51]. More-
over, we achieve the promising mean accuracy 84.8% for char-
acterizing the specific HCC, HEM and FNH types and the sen-
sitivities for each type are 88.5%, 86.2% and 63.6%, respec-
tively. In contrast, the sensitivities of HCC and HEM reported
in [13] are 86.9% and 93.8%with the manually labeled contours
of FLLs.
Table II reports the detection accuracies for the lesion regions

of three FLL types. The reference ROI provided by the radiol-
ogists in the arterial phase is treated as ground-truth. Our de-
tected ROI in the arterial phase is evaluated by comparing with
the ground-truth ROI, and the ROI with 0.5 Jaccard similarity
coefficient with ground-truth is regarded as correct. Our method
achieves the promising performance on automatically detecting
the lesion regions of all the three FLL types. This effectiveness
may give rise to a computer-aided system assisting clinicians in
diagnosis of such lesions.
We also visualize the results of our model for the three FLL

types. Our model outputs three most discriminative ROIs in
the three vascular phases for each FLL. In addition, we believe
that the ROIs in the arterial phase which select the same local
classifier for different CEUS videos, form a specific subtype,
related with the different pattern variants of FLLs. Fig. 7 il-
lustrates three discovered subtypes of HCC and two examples

TABLE II
THE SENSITIVITIES (SENS. FOR SHORT) FOR ROI DETECTION OF HCC, HEM

AND FNH TYPES, ACC IS THE MEAN ACCURACY FOR ALL FLL TYPES

within each subtype are shown. Fig. 8 and Fig. 9 show the dis-
covered subtypes and results of HEM and FNH types, respec-
tively. The first column shows the annotated reference ROI pro-
vided by the radiologists. Obviously, the frame number of the
ROI in the arterial phase detected by our algorithm (i.e. the in-
ferred value for hidden variable ) could be different from the
frame number of the annotated ROI picked by the radiologists,
because our learning algorithm does not simply simulate what
the radiologists would do, as in [16], but tries to find the most
discriminative regions in terms of classification. Our algorithm
does tend to pick up those visually discriminative ROIs, such
as the edge-like regions and high-contrast regions, which play
the most important role in recognizing the FLLs. These results
clearly demonstrate that our model can automatically predict the
locations of ROIs of FLLs, as well as the meaningful subtypes
(i.e. the intrinsic variants of enhancement patterns within each
type).
To understand the advantages of our framework, we perform

another three sets of experiments to further investigate the effec-
tiveness and efficiency of our framework in terms of learning,
inference and feature representation, respectively.

D. Discussions on Learning
First, we evaluate the effectiveness of different components

of our model in Table I. By eliminating the regularization term
and pairwise term, our model can be simplified as “Ours1” and
“Ours2”, respectively. By comparing “Ours1” with our full ver-
sion (“Ours”) on the accuracy of characterization, we can ob-
serve that the pairwise term makes the accuracy increase by
1.2% on average, especially by 9.1% for the FNH. The regu-
larization term improves the average accuracy by 0.5% and the
sensitivity of HCC by 4.3%, which shows that the unary score
and pairwise similarity measures should be combined together
when targeting on learning rich and flexible models. Our ex-
tended model also demonstrates superior performance over the
previous method [38]. We denote the previous method [38] as
“Ours3”, where the maximum number of local classifiers for
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Fig. 7. Example results of HCC type. Our model has identified 3 subtypes (i.e. variations) for HCC, and the results of two examples for each subtype are illustrated.
The ground truth ROIs annotated by the radiologists are displayed in the first column. The red boxes of different phases represent the localized discriminative ROIs.

ROIs in each phase is set as 1 to limit the model's capability of
capturing variations. The mean accuracy of “Ours3” decreases
by 2.4% compared to our proposed model “Ours”. This demon-
strates the effectiveness of the selective compositional charac-
teristics of our model.
We test different learning algorithms for training our model.

All classification results are listed in Table I, which shows that
our proposed learning algorithm (named as “Ours”) consistently
outperforms the standard Latent Structural SVM (LSSVM) [25]
and the Latent Max-Margin Clustering (LMMC) [26]. In par-
ticular, for LSSVM [25] used in our experiment, we optimize
all the hidden variables by only maximizing the model score,
that is, the second and third term defined in (11) are eliminated;
for LMMC, the classifier selections are treated as the labeling
assignments in [26]. Following [26], we first optimize all ROI
layouts and then find the optimal label assignment. According to
the results, our method improves LSSVM by 7.4% and LMMC
by 9.4% on average for classifying malignant and benign FLLs.
For multi-class recognition, the average accuracy of our method
is higher than LSSVM by 2.8% and LMMC by 2.5%. In partic-
ular, the sensitivity of FNH of our method is superior to both
competitors by 9.1% and sensitivity of benign is increased by

10.6% and 38.1%, respectively. The confusion matrices are also
presented in Fig. 10. Our method distinguishes the malignant
HCC from the benign HEM and FNH much better than the
LSSVM and LMMC frameworks. This demonstrates well that
learning by integrating together the unary score of each example
and appearance similarities between examples can help exploit
rich and more discriminative representation of videos. As re-
ported in Table II, our method also achieves superior perfor-
mance on detecting ROIs from lesion regions, i.e. 3.6% over
LMMC and 5.6% over LSSVM.
We also investigated the effect of the growing parameter on

the performance, which is used to gradually increase the weight
of pairwise term with iterations. As displayed in Fig. 11(a),
without the growing parameter, our model structure (i.e. the
number of examples selecting each local classifier) will be con-
verging immediately after 2 iterations. However,by empirically
setting the growing parameter as , the examples that se-
lect each local classifier will gradually adjusted with iterations.
Furthermore, the accuracies reported as “Ours4” in
Table I decrease by 1.2% than those obtained with
for multi-class classification. Besides, the sensitivities of each
FLL type in “Ours4” become imbalanced. In particular, sensi-
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Fig. 8. Example results of HEM type. Our model has identified 2 subtypes (i.e. variations) for HEM, and the results of two examples are illustrated. The ground
truth ROIs annotated by the radiologists are displayed in the first column. The red boxes of different phases represent the localised discriminative ROIs.

Fig. 9. Example results of FNH type. Our model has identified 2 subtypes (i.e. variations) for FNH, and the results of two examples are illustrated. The ground
truth ROIs annotated by the radiologists are displayed in the first column. The red boxes of different phases represent the localized discriminative ROIs.

tivity of HEM decreases by 10.4% and that of HCC increases by
4.5%, which are more sensitive to the imbalance of data sizes
for different types. Note that the larger value will lead to the
longer convergence time for learning model structure, while has
less impact on the accuracies. Thus we empirically set ,
which is a trade-off between the accuracy and learning time.

E. Discussions on Inference
In this experiment, the performance of our data-driven infer-

ence algorithm is tested by altering the procedure of determining
the ROIs, as shown in Table III. Our Data-Driven Inference
(“DDI”) algorithm is compared with 1) “manual1”: the ROIs in

the arterial phase are fixed by the annotation and the inference
is only performed in the portal and late phases; 2) “manual2”:
the maximum number of local classifiers is limited as 1, and
other settings are same as “manual1”; 3) “bruteforce”: the liver
region is labeled and the optimal ROIs are searched in the en-
tire region of liver, without spatial-temporal pruning. The re-
sults demonstrate that our fully automatic inference algorithm
achieves comparable performance to the “manual1” method,
and performs better than “manual2” by 1.1% and “bruteforce”
by 9.8%. Based on the candidate ROIs after the temporal and
spatial pruning, the dynamic programming algorithm takes 7.3
seconds on average to infer the optimal locations of ROIs. The



LIANG et al.: RECOGNIZING FOCAL LIVER LESIONS IN CEUS WITH DYNAMICALLY TRAINED LATENT STRUCTURED MODELS 725

Fig. 10. Three confusion matrices on characterizing the FNH, HCC and HEM types by three different learning algorithms. FNH and HEM types among the benign
lesions can be easily confused with each other due to the small inter-type differences. Our learning algorithm achieves better classification results than LMMC and
LSSVM for the HCC and FNH.

Fig. 11. Evaluation of the effectiveness of the growing parameter . We display the changes of the number of samples that select each local classifier in each
iteration, denoted as the dashed line. The red solid line indicates the average change of all local classifiers. (a): for , which means the weight of the pairwise
terms has not iteratively adjusted; (b) for , same setting as our complete model. The model structure will be converging gradually.

TABLE III
SENSITIVITIES AND MEAN ACCURACIES BY USING THE DIFFERENT

INFERENCE STRATEGIES

“manual1” takes about 5 seconds on average. Without using any
pruning, the “bruteforce” method spends about 150 seconds,
which is time-consuming.
As shown in Fig. 12, we also extensively evaluate how our

algorithm performs under the setting of different step length in
the spatial pruning. Specifically, this evaluation is conducted
with two aspects: the mean accuracy for the benign/malignant
classification and average testing time for processing a 4-min
video. We set 11 different step lengths in the spatial pruning.
Based on the results, we observe that larger step length leads to
the decreased accuracy and shorter testing time. In this paper,
we set the step length as 20.

F. Discussions on Feature Representation
Finally, we compare the region representation of our frame-

work with other state-of-the-art methods: Multiple-ROI [12],
[52] and [53]. Each region representa-

tion is tested with three most popular low-level features used
for ultrasound images: GLCM [44], Law's texture [54], and
Local Phase (LP) [55]. In particular, we extract 16 dimen-
sions of GLCM features, exactly the same as described in the
Section VI-B, 30 dimensions of Law's texture features, and
256 of Local Phase features for each single ROI. The whole
feature vector used to represent a CEUS video is extracted
and concatenated from three manually labeled ROIs in three
phases. Note that we ignore the shape features since all FLLs
often show circular and rounded shapes or even have unclear
boundaries due to the low contrast. We manually select ROIs in
three phases as required in previous works [12], [52], [53] (note
here we do not consider the performance of the inference al-
gorithm), and use linear SVM as the classifier. Table IV shows
that our region representation achieves superior performance
in general.

VII. CONCLUSION
In this work, we first propose a novel structured model to

capture the large variations of FLLs in CEUS videos. A novel
non-convex optimization algorithm is then proposed to itera-
tively optimize the model structure along with the parameter
learning. An efficient data-driven inference method is presented
for recognizing FLLs in videos with the trained model. The ex-
perimental results show very promising classification accura-
cies and we also demonstrate how the system components con-
tribute to the overall performance.
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Fig. 12. Evaluation of mean accuracies for benign/malignant classification (a) and the average testing times (b) with different step length settings during the
data-driven inference.

TABLE IV
COMPARISONS OF REGION REPRESENTATION METHODS BY APPLYING DIFFERENT FEATURE DESCRIPTORS

There are several directions in which we intend to extend
this work. The first is to develop an interactive system based
on our algorithm, which enables radiologists to revise the di-
agnosis according to the detected discriminative ROIs of FLLs
in CEUS videos (e.g. the locations of ROIs and the reference
frames). Second, we plan to integrate deep learning techniques
(e.g. convolutional neural networks) into our framework, in-
stead of using hand-crafted features. Moreover, our learning
framework is very general to be applied to other pattern recogni-
tion tasks including large intraclass variations, e.g. activity anal-
ysis, object modeling, and scene understanding.
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