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Abstract— A cognitive robot usually needs to perform mul-
tiple tasks in practice and needs to locate the desired area for
each task. Since deep learning has achieved substantial progress
in image recognition, to solve this area detection problem, it is
straightforward to label a functional area (affordance) image
dataset and apply a well-trained deep-model-based classifier
on all the potential image regions. However, annotating the
functional area is time consuming and the requirement of large
amount of training data limits the application scope. We observe
that the functional area are usually related to the surrounding
object context. In this work, we propose to use the existing ob-
ject detection dataset and employ the object context as effective
prior to improve the performance without additional annotated
data. In particular, we formulate a two-stream network that
fuses the object-related and functionality-related feature for
functional area detection. The whole system is formulated in
an end-to-end manner and easy to implement with current
object detection framework. Experiments demonstrate that the
proposed network outperforms current method by almost 20%
in terms of precision and recall.

I. INTRODUCTION

Cognitive robot needs to locate the desired operation area
before it performs the actual action. For example, when a
robot aims to open a drawer, it needs to decide whether a
spherical or wrap grasp to perform and where to perform
such an action, according to the shape and location of the
drawer handle. Given an input scene image, the localization
and recognition of such operation area can be termed as
functional area (affordance) detection as proposed in [24].
With the functional knowledge, the robot can interact with
human and objects through different actions and tasks. This
problem is challenging due to the large appearance variation
in the real world. For example, for a function of “spherical
grasp”, the target area can be a handle of door, drawer or
even other spherically shaped artifacts.

Deep learning has achieved significant success for object
classification and detection [9], [10], [19]. A simple solution
to solve the functional area detection problem is to extract
some potential regions from the image, and then classify the
functionality of these regions by a deep convolutional neural
network (CNN) as in [24]. There are two drawbacks taking
this approach. Firstly, this method only uses the feature
from the image region and ignores the context of the area,
which is critical to cope with appearance variations caused by
occlusion and viewpoint changes (see Fig. 1). For example,
a water tap/valve is usually located near the bottom of the
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Fig. 1. Object context features (extracted from the shaded areas) are
employed to facilitate functional area detection indicated by the bounding
boxes.

faucet. Detecting the larger faucet can help locating the
valve, which is otherwise hard to detect. Secondly, deep
learning usually requires a large amount of training data
and annotating a large functional area detection dataset is
laborious and expensive.

We believe that functional area detection can be benefited
from better usage of contextual knowledge or prior. In
fact, functional area detection is not a standalone problem.
It is different but highly related to the object detection
problem. For example, if a robot can detect a door, it is
likely that there should be an area where it can perform a
pull or a push action. In particular, the object information
of the image region or surrounding area can be used as
useful prior for functionality inference. In addition, object
classification and functionality decision share some similar
image features, such as the image edge and shape. Given the
large amount of existing object dataset, we can transfer the
knowledge learned from these datasets to the new system for
functionality description. This can reduce the requirement of
training data for the new system.

To this end, we propose a two-stream network archi-
tecture for functional area detection. One of the network
streams is trained using an object detection dataset, such as
COCO [12], to learn object-related representation. The other
stream learns the functionality-related feature. Each stream
is built based on the current state-of-the-art object detection
model [19]. The features extracted by these two streams are
then fused for functionality inference. The contributions of
this work include: 1) This is the first attempt to incorporate
object knowledge for functional area detection; 2) A novel
two-stream network is proposed to fuse object-related and



functionality-related features to solve this problem. Exper-
iments demonstrate the effectiveness of employing object
related features in the task of functional area detection and
the superior performance of our method compared to current
approaches.

II. RELATED WORK

A. Object Attribute Classification

To determine the functionality of an area is similar to
the problem of object attribute classification, which has
been extensively studied in the computer vision and robotics
community. For example, in face and human analysis [14],
[11], algorithms discover the attributes such as ‘gender’,
‘race’ and ‘hair style’. Other attribute analysis tasks, such
as cloth color and style for fashion search [25], are also
popular research topics. In the robotics community, there
are extensive studies on the object color, shape and material
attributes recognition in RGB-D data [20].

Object affordance, another kind of attributes, is more
related to our study. In particular, the affordance of an object
can be viewed as a function of interactions with human or
other agents [8]. For example, Pieropan et al. [17] investigate
object categorization according to function and learns the
affordances of objects from human demonstration, such as
‘readable’ and ‘drinkable’. Recently, Myers et al. [15] detect
the tool parts’ affordance in RGB-D images using hand-
crafted geometrical features. The problem studied in our
work is related to but different from these problems in that
the definition here is not object-centric but area-centric. The
algorithm needs to detect the functional area that can be
either an object or a small part of an object. This problem is
more challenging since the features of the object part may
not be as discriminative as that of the whole object.

B. Object Detection

Another related topic is object detection since we also need
to locate the functional area besides classification. Object
detection also attracts extensive research interests in image
semantic understanding. In early attempts, an algorithm
typically applies a sliding window on the whole image and
performs classification on each location. To handle scale
variations of objects, image pyramid is often introduced
to the original input image. Deformable part based model
(DPM) [6] is also a classic method for object detection. In
particular, each object is denoted as a collection of parts
arranged in a pictorial structure. Each part is described
by hand-crafted feature, such as HOG [4]. Recently, deep
learning technique has shown substantial progress in image
recognition by learning high-level feature abstraction. There
are multiple deep learning based detection methods that show
promising results, such as faster R-CNN [19], YOLO [18]
and SSD [13]. The main idea of these approaches is to
use a deep convolutional neural network (CNN) for learning
object representation from scratch given raw images and the
corresponding annotations rather than designing features by
hand.

C. Functional Area Detection

The problem of functional area detection is proposed
in [24] recently, where a specific definition and dataset is
also presented. To solve this problem, the authors in [24]
propose a two-stage approach. The input of the system is a
static image of indoor scene. In the first stage, the system
uses a visual attention method called selective search [21] to
propose a set of bounding boxes that are potentially to be a
functional area. Selective search is mainly built on a diverse
amount of visual features, such as color, intensity and edge
information. In the second stage, a deep network takes each
of the bounding boxes from the first stage as input. The
output is the probability that an area belongs to a certain
class of functionality. This deep network is first trained on
a large external general image dataset and the parameters
are fine-tuned on the collected functional area dataset. Our
method differs to this algorithm since we explicitly employ
the object-related features learned from other object dataset
without additional annotation and we formulate a new end-
to-end two-stream network structure that is easier to train and
implement. In the experiments, we also observe substantial
improvement with our method.

III. APPROACH

This section presents the proposed approach. Firstly, we
formulate our problem and show the specific definition of
the functional area in Sec. III-A. Then we illustrate how
we can employ a faster R-CNN [19] framework to perform
multi-scale functional area detection. Based on the faster
R-CNN approach, in Sec. III-C, we present our proposed
two-stream network that integrate both the object-related and
functionality-related feature for area detection. The training
approach for this network is then described in Sec. III-D.
It is worth pointing out that faster R-CNN [19] is adopted
here given its good performance on generic object detection.
Other detection frameworks can be similarly applied. The
important contribution of this work is the notion of exploiting
object contextual information for functional area detection.

A. Problem Definition

To formulate the functional area detection problem, we
follow the setting of [24] and assume that the robot takes
a static indoor image as input, and outputs a collection
of rectangles that contain a target area, each with the
corresponding functionality label. There are some previous
works that define the functionality ontologies. In particular,
Worgotter et al. [22] categorize manipulation actions into
some basic types according to hand-object relations. The
authors of [24] further study the common set of a robot
can perform in an indoor environment and propose a robot
functionality ontology, as shown in Fig. 2.

In general, there are three main categories: ‘Small part
of furniture/appliance/wall’, ‘Objects’, and ‘Furniture’. For
each category, there are further defined main functions. For
example, for ‘Small part of furniture/appliance/wall’, we
have ‘Open’ for the function of grasp, and ‘Turn on/off’
for the intended media. After the main function, it is the end



Functional 
Area

Main Function End Category Symbol Example

Small part on 
a furniture/
appliance wall

Open Spherical grasp to open Doorknob

Wrap grasp to open Door handle

Turn on/off Turn on/off electricity Electrionical switch

Turn on/off water Tap

Turn on/off fire Gas stove switch

Object
(vessels and 
tools)

Move Two hands raise and 
move

Bowl, Basin

Cylindrical grasp to 
move

Bottle

Hook grasp to move Suitcase handle

Pinch grasp to move Paper, towel

Manipulate Manipulate elongated 
tools

Screwdriver

Furniture Use of furniture To sit, to place and etc. Chair, sofa

Fig. 2. Functionality ontologies studied in this work. The definitions are
originally made in [24].

category, such as ‘Spherical grasp to open’ and ‘Wrap grasp
to open’. In total, we have 11 end categories and thus the
objective is to detect such 11 kinds of areas given the input
image. To facilitate the visualization, each end category is
accompanied with a specific symbol as shown in Fig. 2.

B. Multi-scale Detection in an End-to-End Network

According to the definition in Sec. III-A, a functional area
can be an object or only a small part of the object. That
means the area can be either small or large in the whole
image. The large scale variation imposes extra challenges
for the algorithm. This problem is also critical for object
detection. Early attempts to solve this problem is to apply a
sliding window over the image pyramid. However, this may
not be efficient for some applications. Faster R-CNN [19]
object detection framework is a promising method to solve
this problem.

Figure 3 illustrates the process of faster R-CNN in detec-
tion. In general, faster R-CNN is composed of two modules.
The first module takes an image as input, and generates
the regions of interest. The second module extracts deeper
features from the regions of interest to infer the exact target
class and location. Since some small areas may be missed
in the first stage, it is important to detect plausible regions
in different scales.

In particular, for the first module, called Region Pro-
posal Network (RPN), it can be implemented with a fully
convolutional network with the input image. Then we can
have the feature map generated by the network. A small
network is then applied on each grid of this feature map and
produces the rectangular proposals, each with a score. As
shown in Fig. 3, the target of RPN contains two parts: the
coordinates of each rectangle, and the proposal score of the
rectangle (higher score means more likely to be a region
of interest). In particular, the coordinates are represented
with reference to the anchor boxes of different scales and
aspect ratios. That means the feature of a grid (fixed size)
inferences areas of different sizes. In other words, the output
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Fig. 3. Illustration of faster R-CNN [19]. With different scales and aspect
ratios of the anchor/refrence box, we can detect functional area with different
scales in a forward pass of the network.

proposal can be generated from the features of itself or
additionally with surrounding context. By setting the anchor
boxes’ different scales and aspect ratios, we can exploit
different areas’ contextual information to locate areas with
different scales. To this end, we obtain the regions of interests
and the corresponding feature from the RPN.

For the second module, it contains another deep network
with several convolutional layers for deeper feature extrac-
tion. For each region, it takes the features from the RPN as
input, uses the convolutional layers to extract new features
and performs rectangle classification and location regression
refinement. These two modules can be trained in an end-to-
end manner. After these two modules, we can obtain one
or more rectangles for each class (ı.e., functional category).
The rectangles for each class may highly overlap with each
other. To reduce redundancy, a non-maximum suppression
(NMS) [16] post-process is performed based on the class
score and the output is the desired result.

To this end, we have the RPN for proposal generation
of different scales, and we can use the faster R-CNN as the
multi-scale method for functionality area detection. However,
without object annotation, this method cannot exploit the
surrounding object knowledge, especially for the second
module. To take advantages of the object knowledge, one
can use existing object detection datasets to train the network
first and then fine-tune on the functional area dataset. In our
experiments, we also find that this is a strong baseline. But
with limited samples for the functional area data, this method
will have the risk of overfitting and the object knowledge in
the network may be vanished in the fine-tuning process. To
solve this problem, we proposed to use both of the object-
related feature and functionality-related feature in a two-
stream network as will be described in Sec. III-C.
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Fig. 4. An illustration of the proposed two-stream network. The upper stream (the green part) extracts the functionality-related feature and the lower
stream (the yellow part) extracts the object-related feature. Note that the object-related feature is extracted from the enlarged region of the area proposal.
In this case, we extract and incorporate the surrounding object information for final area inference.

C. Two-stream Network for Object Context Fusion

Figure 4 illustrates the proposed two-stream network. In
general, the input is an image I that is fed into two networks,
namely, functionality CNN (CNNfunc) and object CNN
(CNNobj), to extract the functionality-related and object-
related feature maps, respectively. With the functionality-
related feature maps, we generate the area proposals of
a collection of bounding boxes, as the RPN described in
Sec. III-B. Then we can use these proposals to extract the
corresponding features from the feature maps and get a
fixed-sized feature by ROI pooling as in [19]. On the other
hand, we enlarge proposals by a fixed scale (i.e., 0.5), and
use these larger proposals to extract the surrounding object
context features, which can also be obtained by ROI pooling.
Here we design CNNobj and CNNfunc with same network
structure (but different parameter values that are learned as
will be described in Sec. III-D). To this end, we can fuse
the functionality-related features ffunc and object-related
features fobj by

ffused = λffunc + (1− λ)fobj , (1)

where λ weights the importance of the two features. Here
we set λ = 0.5 in our implementation. The fused feature
ffused is then fed into another network CNNpred to generate
the feature CNNpred(ffused). With CNNpred(ffused), we
predict the final area location and functionality label by
regression. Note that in this work we just fuse the features
by a fixed liner combination to verify usefulness of object-
realted feature. A learnable combination way can be further
explored to improve the performance (for example, we learn
λ in the training process).

D. Training with Object Knowledge Transfer

To leverage the existing object detection dataset and
transfer the object knowledge, the training process for the
two-stream network contains two stages. For the first stage,
we need to initialize the network parameters. Here we first
follow the training scheme of faster R-CNN [19] to train
an object detection network as in Fig. 3, using an existing

object detection dataset. As described in [19], the training
process can be conducted end-to-end by back propagation
and stochastic gradient descent [2]. Then the RPN feature
extraction CNN and its parameter is used as CNNfunc

and CNNobj of the two-stream network. And the prediction
network in Fig. 3 and its parameter is used as the CNNpred

of the two-stream network.
For the second stage, to reserve the learned object knowl-

edge, we fix the parameters of CNNobj , and fine-tune the
rest part of the network using the functional area dataset.
Similar to the training of faster R-CNN, there are two loss
functions for the two-stream network. The first one is the loss
of RPN, which is a combination of binary classification loss
(whether the proposal is a functional area) and regression loss
(the Euclidean distance between the ground truth location
and predicted location). The second one is the loss of the
final results, which is the same as the RPN loss except that
the classification loss is not binary but multiple classes for
the functionality type instead. We can see that the two loss
functions are differentiable, so as for the feature combination
Equation (i.e., Eqn.( 1)). Also, the ROI pooling operation can
be differentiable w.r.t. the proposal coordinates as described
in [3]. To this end, we can employ stochastic gradient descent
to train this model directly.

IV. RESULTS

A. Implementation Details

We implement our network with the Tensorflow [1] ma-
chine learning toolbox. For the network structure, we employ
the ResNet-101 as in [7] for its state-of-the-art performance
on image recognition. In particular, both CNNfunc and
CNNobj contain the first 3 ResBlocks in [7] (i.e., conv1,
conv2 x, conv3 x, and conv4 x, totally 91 convolutional
layers of ResNet-101). CNNpred contains the final block
(i.e., conv5 x layers) of ResNet-101. The final result is
produce by two sibling fully connected layers. When we fine-
tune the two-stream network, the learning rate is set 0.0003
and the batch size is 1. The scales of the anchor box are set
as 0.125, 0.2, 0.5, 1, 2 to capture areas in different scales, and



Fig. 5. Example images of the COCO dataset [12].

the aspect ratios are 0.5, 1, 2. The Intersection over Union
(IoU) value for NMS process is set 0.7.

B. Dataset and Evaluation Metrics

We perform experiments on the functional area dataset
proposed in [24]. In particular, this dataset contains around
600 kitchen images from the SUN dataset [23]. Some ex-
amples are depicted in Fig. 7. For each image, different
types of functional area rectangles are annotated by human.
In total, there are around 10,000 annotated area samples.
The statistical distribution of these samples are shown in
Fig. 6. To evaluate the proposed method, we follow the
same experiment protocol published in [19]. The training
set contains 90% images of the whole set and the rest are
used for testing.

For the object network, we use the COCO dataset [12]
to learn the object-related feature as described in Sec. III-D.
In particular, COCO contains 91 common object categories,
such as person, car, desk, bottle and bowl. The images are
collected from the Internet, with various scenarios, such as
kitchen, street and park. Each image is labeled with the
rectangles of the included objects. Some examples are shown
in Fig. 5. The training set of this dataset contains around 80k
images.

For evaluation metrics, we use the precision, recall and F1
score as in [24]. A correct prediction means: 1) the predicted
functional type is correct; 2) the Intersection over Union
(IOU) of the predicted rectangle and ground-truth rectangle is
bigger than 0.5. The precision, recall and F1-score are calcu-
lated as follows: precision = #truepositive

#truepositive+#falsepositive ,
recall = #truepositive

#truepositive+#falsenegative , and F1 = 2 ×
precision×recall
precision+recall , where #truepositive, #falsenegative
denote the number of true positive and false negative sam-
ples, respectively.

C. Baseline Methods

To demonstrate the effectiveness of the proposed algo-
rithm, we employ the following baseline methods:

• Selective search + CNN classification method in [24].
This method first uses selective search [21] that gen-
erates the candidate regions. After that, a CNN takes
each region as input and output the predicted functional
category. The CNN is first pre-trained on the ImageNet
classification dataset [5] and then fine tuned on the
training data. We report the result of this method in the

Fig. 6. Histogram for the numbers of different functional area annotated
in the dataset of [24].

original paper [24]. In particular, since [24] employs
a ‘hard sample mining’ technique to refine the CNN
model, the precision and recall is different in different
rounds of network refinement, we report result of all
the three rounds performed in [24].

• Faster R-CNN method [19]. As described in Sec. III-B,
faster R-CNN is a building block of our method. We
treat it as a baseline for the experiments. In particular,
we first pre-train the faster R-CNN with the COCO
dataset, and then fine tune on the training data as
described in Sec. III-D. For a fair comparison, we also
use the ResNet-101 [7] network for feature extraction
and the prediction network for the final result is also
the same as the proposed approach. Other training
parameters are the same as [7] to achieve reasonable
performance. The main difference between faster R-
CNN and our method is that 1) we reserve and employ
the object-related feature for the functional area infer-
ence, and 2) we use more anchor boxes’ scale and aspect
ratio variations to capture areas in different scales.

D. Quantitative Comparison to Baseline Methods

Table I shows the precision, recall and F1 score of the
proposed method and other baselines. We can observe that
faster R-CNN can achieve better performance then the two-
stage method of [24]. This is because faster R-CNN is
formulated in an end-to-end manner by joint feature learning
and area detection. The multi-scale anchor boxes can handle
areas in different sizes. It also shows that the proposed
method produce superior performance compared to existing
methods. Since the proposed method is built on faster R-
CNN, the result demonstrates that the additionally proposed
object context fusion, and more anchor boxes’ variation is
effective.
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Fig. 7. Example results of the proposed method in the dataset of [24].

TABLE I
PRECISION, RECALL AND F1 SCORE OF DIFFERENT METHODS.

Method Precision Recall F1 score
One round of [24] 5.26% 23.92% 0.0862
Two rounds of [24] 16.18% 15.05% 0.1559

Three rounds of [24] 31.52% 11.58% 0.1694
Faster R-CNN in [19] 38.04% 24.57% 0.2985
Our proposed method 50.12% 29.16% 0.3729

E. Ablative Analysis

To further evaluate the contribution of different compo-
nents of the proposed method, we perform experiments with
different options and settings in our model. The results are
presented in Table II. For the Model A in Table II, we
remove the two-stream structure and only use one stream
(i.e., the faster R-CNN). And we also set the anchor boxes’
scale and ratio as the original ones in [19]. This result
in the original faster R-CNN. In Model B, we keep the
same anchor box parameters and employ the two-stream
structure to fuse the surrounding object-related feature. We
can see that this improve the precision substantially, from
38.04% to 52.29%. This demonstrates the effectiveness of
the object context. Then we evaluate the contribution of the
anchor box’s variations by using larger range of scale and
aspect ratio (i.e., Model C and Model D). This also boosts
the performance. Again, the superior performance of using
object context is demonstrated as Model D is better than
Model C.

F. Qualitative Analysis

To visualize the performance of the proposed method,
some example results are presented in Fig. 7. It shows that
the result covers areas in different sizes. Even some small
drawer handle can be detected as ‘Wrap grasp to open’.
However, we also observe many missed areas, such as the gas
stove switches in Fig. 7 (b). This is caused by 1) the details
of the image may be missed due to the subsample layers in
the feature extraction CNN; 2) the NMS post-process that
merge neighboring areas with overlap. We can investigate
other multi-scale detection framework such as [13] to reserve
these details in future research.

To further study how to improve the performance of the
current method, we visualize the confusion matrix of the
predicted area and ground truth label of these areas, as shown
in Fig. 8. Since this is not a classification problem, to obtain
the ground truth label of the predicted area, we find the
annotated area with the largest overlap with the predicted
area. If the IoU is bigger than 0.5, then the ground truth is
set the label of that annotated area. Otherwise, the ground
truth label is ‘Background’. From Fig. 8, we observe that
most of the error cases are that the ‘Background’ is classified
as certain functional area. To further study this problem, we
investigate the result and find some false positive cases. But
we also find some areas that are actually correct but the
annotations are missing. Some of these cases are shown in
Fig. 9. We can see that some of the areas are in different
viewpoints or in a crowded scene. This indeed imposes some
challenges for the annotator.

The generalization ability of the proposed method also



TABLE II
PRECISION, RECALL AND F1 SCORE OF OUR METHOD WITH DIFFERENT PARAMETER SETTINGS.

Model ID Anchor Box Scales Anchor Box Aspect Ratios with Object Context Precision Recall F1 score
A [0.5 1.0 2.0] [0.5 1.0 2.0] No 38.04% 24.57% 0.2985
B [0.5 1.0 2.0] [0.5 1.0 2.0] Yes 52.29% 24.78% 0.3363
C [0.125 0.25 0.5 1.0 2.0] [0.25 0.5 1.0 1.5 2.0] No 50.18% 28.17% 0.3608
D [0.125 0.25 0.5 1.0 2.0] [0.25 0.5 1.0 1.5 2.0] Yes 50.12% 29.16% 0.3729

Fig. 8. Confusion matrix of the result produced by the proposed method.
The vertical axis is the ground truth label and the horizontal axis is the
predicted label.

worths investigation. Since the training and testing data
is in the kitchen environment, we download some other
indoor images (but not in a kitchen) from the web and
test our method on these images. The results are shown in
Fig. 10. Although there are some errors, we can see that
some meaningful novel areas are detected. For example, the
pillow is not presented in the kitchen training dataset, but the
algorithm can still assign the ‘pinch grasp to move’ label.
Similarly, it learns that a bed can be assigned to ‘sit’. This
demonstrates that the model has the ability to be extended
to some new areas.

V. CONCLUSION

In this work, we investigate how to incorporate the sur-
rounding object context to boost the functional area de-
tection. We formulate a two-stream deep network structure
that extract and fuse the functionality-related and object-
related feature for functional area inference. The problem of
handling multi-scale areas are also discussed. We compare
the proposed method with existing functional area detection
approach [24] and deep-learning-based object detection ap-
proach [19] and our superior performance is demonstrated.
We also evaluate the effectiveness of the proposed object-
related feature fusion. Interesting, we also find that our
method can handle some areas with different objects that
are not seen in the training data. This motivates us that we

(a) (b)

(c) (d)

Fig. 9. Some target areas with missing annotation but correctly detected
by our method.

can study how to extend the algorithm in the future. It is
also worth pointing out we employ faster R-CNN [18] in
our framework because of its state-of-the-art performance on
generic object detection. Other detection framework can also
be similarly applied in the future. The important contribution
of this work is the usage of object contextual information for
functional area detection.
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