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Abstract

We focus on Unsupervised Domain Adaptation (UDA) for the
task of semantic segmentation. Recently, adversarial align-
ment has been widely adopted to match the marginal distri-
bution of feature representations across two domains glob-
ally. However, this strategy fails in adapting the representa-
tions of the tail classes or small objects for semantic segmen-
tation since the alignment objective is dominated by head cat-
egories or large objects. In contrast to adversarial alignment,
we propose to explicitly train a domain-invariant classifier by
generating and defensing against pointwise feature space ad-
versarial perturbations. Specifically, we firstly perturb the in-
termediate feature maps with several attack objectives (i.e.,
discriminator and classifier) on each individual position for
both domains, and then the classifier is trained to be invariant
to the perturbations. By perturbing each position individually,
our model treats each location evenly regardless of the cate-
gory or object size and thus circumvents the aforementioned
issue. Moreover, the domain gap in feature space is reduced
by extrapolating source and target perturbed features towards
each other with attack on the domain discriminator. Our ap-
proach achieves the state-of-the-art performance on two chal-
lenging domain adaptation tasks for semantic segmentation:
GTA5→ Cityscapes and SYNTHIA→ Cityscapes.

Introduction
Semantic segmentation is a fundamental problem in com-
puter vision with many applications in robotics, autonomous
driving, medical diagnosis, image editing, etc. The goal is
to assign each pixel with a semantic category. Recently,
this field has gained remarkable progress via training deep
convolutional neural networks (CNNs) (Long, Shelhamer,
and Darrell 2015) on large scale human annotated datasets
(Cordts et al. 2016). However, models trained on specific

∗Corresponding author is Guanbin Li. This work was sup-
ported in part by the State Key Development Program under Grant
No.2016YFB1001004, in part by the National Natural Science
Foundation of China under Grant No.61976250 and No.U1811463,
in part by the Fundamental Research Funds for the Central Univer-
sities under Grant No.18lgpy63. This work was also supported by
SenseTime Research Fund.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) RGB image (b) Without adaptation

(c) ASN (Tsai et al. 2018) (d) Ours

Figure 1: Comparison of semantic segmentation output. This
example shows our method can evenly capture information
of different categories, while classical adversarial alignment
method such as ASN (Tsai et al. 2018) might collapse into
head (i.e., background) classes or large objects.

datasets may not generalize well to novel scenes (see Fig-
ure 1(b)) due to the inevitable visual domain gap between
training and testing datasets. This seriously limits the appli-
cability of the model in diversified real-world scenarios. For
instance, an autonomous vehicle might not be able to sense
its surroundings in a new city or a changing weather condi-
tion. To this end, learning domain-invariant representations
for semantic segmentation has drawn increasing attentions.

Towards the above goal, Unsupervised Domain Adapta-
tion (UDA) has shown promising results (Vu et al. 2019;
Luo et al. 2019). UDA aims to close the gap between the
annotated source domain and unlabeled target domain by
learning domain-invariant while task-discriminative repre-
sentations. Recently, adversarial alignment has been rec-
ognized as an effective way to obtain such representa-
tions (Hoffman et al. 2016; 2017). Typically, in adversarial
alignment, a discriminator is trained to distinguish features
or images from different domains, while the deep learner
tries to generate features to confuse the discriminator. Re-
cent representative approach ASN (Tsai et al. 2018) is pro-
posed to match the source and target domains in the output
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space and has achieved promising results.
However, adversarial alignment based approaches can

be easily overwhelmed by dominant categories (i.e., back-
ground classes or large objects). Since the discriminator is
only trained to distinguish the two domains globally, it can
not produce category-level or object-level supervisory sig-
nal for adaptation. Thus, the generator is not enforced to
evenly capture category-specific or object-specific informa-
tion and fails to adapt representations for the tail categories.
We term this phenomenon as category-conditional shift and
highlight it in the Figure 1. ASN performs well in adapt-
ing head categories (e.g., road) and gains improvement when
viewed globally, but fails to segment the tail categories such
as “sign”, “bike”. Missing the small instances (e.g., traf-
fic light) is generally intolerable in real-world applications.
While we can moderate this issue by equipping the segmen-
tation objective with some heuristic re-weighting schemes
(Berman, Rannen Triki, and Blaschko 2018), those solutions
usually rely on implicit assumptions about the model or the
data (e.g., L-Lipschitz condition, overlapping support (Wu et
al. 2019)), which are not necessarily met in real-world sce-
narios. In our case, we empirically show that the adaptability
achieved by those approximate strategies are sub-optimal.

In this paper, we propose to perform domain adaptation
via feature space adversarial perturbation inspired by (Good-
fellow, Shlens, and Szegedy 2014). Our approach miti-
gates the category-conditional shift by iteratively generat-
ing pointwise adversarial perturbations and then defensing
against them for both the source and target domains. Specif-
ically, we firstly perturb the feature representations for both
source and target samples by appending gradient perturba-
tions to their original features. The perturbations are de-
rived with adversarial attacks on the discriminator to assist
in filling in the representation gap between source and tar-
get, as well as the classifier to capture the vulnerability of
the model. This procedure is facilitated with the proposed
Iterative Fast Gradient Sign Preposed Method (I-FGSPM)
to mitigate the huge gradient gap among multiple attack ob-
jectives. Taking the original and perturbed features as in-
puts, the classifier is further trained to be domain-invariant
by defensing against the adversarial perturbations, which is
guided by the source domain segmentation supervision and
the target domain consistency constraint.

Instead of aligning representations across domains glob-
ally, our perturbation based strategy is conducted on each
individual position of the feature maps, and thus can capture
the information of different categories evenly and alleviate
the aforementioned category-conditional shift issue. In ad-
dition, the adversarial features also capture the vulnerability
of the classifier, thus the adaptability and capability of the
model in handling hard examples (typically tail classes or
small objects) is further improved by defensing against the
perturbations. Furthermore, since we extrapolate the source
adversarial features towards the target representations to fill
in the domain gap, our classifier can be aware of the target
features as well as receiving source segmentation supervi-
sion, which further promotes our classifier to be domain-
invariant. Extensive experiments on GTA5 → Cityscapes
and SYNTHIA→ Cityscapes have verified the state-of-the-

art performance of our method.

Related Work
Semantic Segmentation is a highly active and important re-
search area in visual tasks. Recent fully convolutional net-
work based methods (Chen et al. 2017a; Zhao et al. 2017)
have achieved remarkable progress in this field by train-
ing deep convolutional neural networks on numerous pixel-
wise annotated images. However, building such large-scale
datasets with dense annotations takes expensive human la-
bor. An alternative approach is to train model on synthetic
data (e.g., GTA5 (Richter et al. 2016), SYNTHIA (Ros et al.
2016)) and transfer to real-world data. Unfortunately, even
a subtle departure from the training regime can cause catas-
trophic model degradation when generalized into new envi-
ronments. The reason lies in the different data distributions
between source and target domains, known as domain shift.
Unsupervised Domain Adaptation approaches have
achieved remarkable success in addressing aforementioned
problem. Existing methods mainly focus on minimizing
the statistic distance such as Maximum Mean Discrep-
ancy (MMD) of two domains (Long et al. 2015; 2017).
Recently, inspired by GAN (Goodfellow et al. 2014), ad-
versarial learning is successfully explored to entangle fea-
ture distributions from different domains (Ganin and Lem-
pitsky 2014; Ganin et al. 2016). Hoffman et al. (2016) ap-
plied feature-level adversarial alignment method in UDA for
semantic segmentation. Several following works improved
this framework for pixel-wise domain adaption (Chen et
al. 2017b; Chen, Li, and Van Gool 2018). Besides align-
ment in the bottom feature layers, Tsai et al. (2018) found
that output space adaptation via adversarial alignment might
be more effective. Vu et al. (2019) further proposed to
align output space entropy maps. On par with feature-
level and output space alignment methods, the remarkable
progress of unpaired image to image translation (Zhu et
al. 2017) inspired several methods to address pixel-level
adaptation problems (Hoffman et al. 2017; Zhang et al.
2018). Among some other approaches, Zou et al. (2018)
used self-training strategy to generate pseudo labels for un-
labeled target domain. Saito, Ushiku, and Harada (2017) uti-
lized tri-training to assign pseudo labels and obtain target-
discriminative representations, while Luo et al. (2019) pro-
posed to compose tri-training and adversarial alignment
strategies to enforce category-level feature alignment. And
Saito et al. (2018) used two-branch classifiers and genera-
tor to minimize H∆H distance. Recently, Xu et al. (2019)
reveals that progressively adapting the task-specific feature
norms of the source and target domains to a large range of
values can result in significant transfer gains.
Adversarial Training injects perturbed examples into train-
ing data to increase robustness. These perturbed examples
are designed for fooling machine learning models. To the
best of our knowledge, adversarial training strategy is origi-
nated in (Szegedy et al. 2013) and further studied by Good-
fellow, Shlens, and Szegedy (2014). Several attack meth-
ods are further designed for efficiently generating adver-
sarial examples (Kurakin, Goodfellow, and Bengio 2016;
Dong et al. 2018). As for UDA, Volpi et al. (2018) gener-
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Figure 2: Framework Overview. We illustrate step 2 in the shaded area where source features are taken as an example. In light
of fs/t extracted from the feature extractorG, we employ the multi-objective adversarial attack with our proposed I-FGSPM on
the classifier F as well as discriminator D and then accumulate the gradient maps. Therefore, we obtain the mutated features
fs∗/t∗ after appending the perturbations to the original copies. Furthermore, these perturbed and original features are trained by
an adversarial training procedure (i.e., step 3), which is presented in the upper right. We have highlighted the different training
objectives for the output maps of their corresponding domains, which are predicted by the classifier F and then followed by the
discriminatorD to produce domain prediction maps. The green and red colors stand for the source and target flows respectively.

ated adversarial examples to adaptively augment the dataset.
Liu et al. (2019) produced transferable examples to fill in
the domain gap and adapt classification decision boundary.
However, the above approach is only validated on the clas-
sification task for unsupervised domain adaptation. Our ap-
proach shares similar spirit with Liu et al., while we inves-
tigate adversarial training in the field of semantic segmen-
tation to generate pointwise perturbations that improve the
robustness and domain invariance of the learners.

Method
Considering the problem of unsupervised domain adaptation
in semantic segmentation. Formally, we are given a source
domain S and a target domain T . We have access to the
source data xs ∈ S with pixel-level labels ys and the tar-
get data xt ∈ T without labels. Our overall framework is
shown in Figure 2. Feature extractor G takes images xs and
xt as inputs and produces intermediate feature maps fs and
ft; Classifier F takes features fs and ft from G as inputs
and predicts C-dimensional segmentation softmax outputs
Ps and Pt; Discriminator D is a CNN-based binary classi-
fier with a fully-convolutional output to distinguish whether
the input (Ps or Pt) is from the source or target domain.

To address aforementioned category-conditional shift, we
propose a framework that alternatively generates pointwise
perturbations with multiple attack objectives and defenses
against these perturbed copies via an adversarial training
procedure. Since our framework conducts perturbations for
each point independently, it circumvents the interference of
different categories. Our learning procedure can also be seen
as a form of active learning or hard example mining, where
the model is enforced to minimize the worst case error when

features are perturbed by adversaries. Our framework con-
sists of three steps as follow:

Step 1: Initialize G and F . We train both the feature ex-
tractor G and classifier F with source samples. Since we
need G and F to learn task-specific feature representations,
this step is crucial. Specifically, we train the feature extractor
and classifier by minimizing cross entropy loss as follow:

Lce(xs, ys) = −
H∑

h=1

W∑
w=1

C∑
c=1

y(h,w,c)
s logP (h,w,c)

s , (1)

where input image size is H × W with C categories, and
Ps = (F ◦ G)(xs) is the softmax segmentation map pro-
duced by the classifier.

Step 2: Generation of adversarial features. The ad-
versarial features fs∗/t∗ are initialized with fs/t extracted
by G from xs/t, and iteratively updated with our proposed
I-FGSPM combining several attack objectives. These per-
turbed features are designed to confuse the discriminator and
the classifier with our tailored attack objectives.

Step 3: Training with adversarial features. With adver-
sarial features from step 2, it is crucial to set proper training
objectives to defense against the perturbations and enable
the classifier to produce consistent predictions. Besides, ro-
bust classifier and discriminator can contiguously generate
confusing adversarial features for further training.

During training, we freeze G after step 1, and alternate
step 2 and step 3 to obtain a robust classifier against domain
shift as well as category-conditional shift. We detail the step
2 and step 3 in the following sections.



Generation of Adversarial Features
In this part, we first introduce the attack objectives and then
propose our Iterative Fast Gradient Sign Preposed Method
(I-FGSPM) for combining multiple attack objectives.

Attack objectives. On the one hand, the generated per-
turbations are supposed to extrapolate the features towards
domain-invariant regions. Therefore, they are expected to
confuse the discriminator which aims to distinguish source
domain from the target one by minimizing the loss function
in Eq. (2), so that the gradient of Ladv(P ) is capable of pro-
ducing perturbations that help fill in the domain gap.

Ladv(P ) = −E[log(D(Ps))]− E[log(1−D(Pt))]. (2)

On the other hand, to further improve the robustness of
the classifier, the adversarial features should capture the
vulnerability of the model (e.g., the tendency of classifier
to collapse into head classes). In this regard, we conduct
an adversarial attack on segmentation classifier and employ
the Lovász-Softmax (Berman, Rannen Triki, and Blaschko
2018) as our attack objective in Eq (3). Since the pertur-
bations are actually hard examples for the classifier, they
carry rich information of the failure mode of the segmen-
tation classifier. Lovász-Softmax is a smooth version of the
jaccard index and we empirically show that our attack objec-
tive can produce proper segmentation perturbations as well
as boosting the adaptability of the model.

Lseg(Ps, ys) = Lovász-Softmax(Ps, ys). (3)

In addition, excessive perturbations might degenerate the
semantic information of feature maps, so that we control
the L2-distance between the original features and their per-
turbed copies to self-adaptively constraint their divergence.
Eventually, we accumulate gradient maps from all attack ob-
jectives and generate adversarial features with our proposed
Iterative Fast Gradient Sign preposed Method (I-FGSPM).

Original I-FGSM. While we can follow the practice in
(Liu et al. 2019) to directly regard the gradients as perturba-
tions, we have empirically found that this strategy may suf-
fer from gradient vanishing in our case. Instead, we draw a
link from adversarial attack to generate more stable and rea-
sonable perturbations. Specifically, to generate the perturba-
tions, we adopt the Iterative Fast Gradient Sign Method (I-
FGSM) (Kurakin, Goodfellow, and Bengio 2016) as Eq. (4):

fk+1
s∗ =fks∗ + ε · sign(β1∇fk

s∗
Lseg(P k

s∗, ys)

− β2∇fk
s∗
L2(fks∗, fs) + β3∇fk

s∗
Ladv(P k

s∗)),
(4)

where β1, β2 and β3 indicate the hyper-parameters to bal-
ance the gradients values from different attack objectives
and ε represents the magnitude of the overall perturbation.
We repeat this generating process for K iterations with
k ∈ {0, 1, · · · ,K − 1}. It is noteworthy that f0s∗ = fs.

However, this practice also raises some concerns when we
execute I-FGSM under the circumstance of multiple adver-
sarial attack objectives. Such concerns are attributed to the
significant gradient gaps among different attack objectives.
It is worth mentioning that, at each iteration, the final signs
of the accumulated gradients are indeed dominated by one
of the attack objectives. As illustrated in Figure 3, we plot

Figure 3: Gradient log-intensity tendencies with I-FGSM
method in generation procedure.

the gradient log-intensity of each attack objective by using
Eq. (4) to obtain adversarial features. In Figure 3, the gradi-
ents of Lseg and L2 alternatively surpasses the others over-
whelmingly with at least several orders of magnitude and
therefore determine the final signs. Furthermore, the gradi-
ent value of a specific attack objective fluctuates by varying
iterations and does not appear proportional tendency with its
counterparts, so that it is not trivial to balance the gradient
perturbations by simply adjusting the trade-off constants.

Our I-FGSPM. To this end, we propose the Iterative Fast
Gradient Sign Preposed Method (I-FGSPM) to fully exploit
the contributions of each individual attack objective. Rather
than placing the sign operator at the end of the overall gradi-
ent fusion which suffers from the gradient domination issue,
we instead put ahead the sign calculations of each adver-
sarial gradient and then balance these signed perturbations
with intensity ε. The procedure is formulated as Eq. (5) and
(6) for target and source perturbations respectively.

fk+1
t∗ = fkt∗ + ε1sign(∇fk

t∗
Ladv(P k

t∗))

− ε2sign(∇fk
t∗
L2(fkt∗, ft)),

(5)

fk+1
s∗ = fks∗ + ε1sign(∇fk

s∗
Ladv(P k

s∗))

− ε2sign(∇fk
s∗
L2(fks∗, fs))

+ ε3sign(∇fk
s∗
Lseg(P k

s∗, ys)).

(6)

Training with Adversarial Features
Now, we are equipped with adversarial features which can
reduce the domain gap and capture the vulnerability of the
classifier. To obtain a domain-invariant classifier F and a ro-
bust domain discriminator D, we should design proper con-
straints that can guide the learning process to utilize these
adversarial features to train F and D.

For this purpose, the solution appears straightforward for
the source domain since we still hold the strong supervision
ys for its adversarial features fs∗. On the contrary, when
it comes to the unlabeled target domain, we are supposed
to explore other supervision signals to satisfy the goal. Our
considerations are two folds. First, we follow the practice in
(Liu et al. 2019) that forces the classifier to make consistent
predictions for ft and ft∗ as follow:

Lcst(Pt, Pt∗) = E[‖Pt − Pt∗‖2]. (7)



Table 1: Results of adapting GTA5 to Cityscapes. The tail classes are highlighted in blue. The top and bottom parts correspond
to VGG-16 and ResNet-101 based model separately.
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mIoU
ASN (Tsai et al. 2018) 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

CLAN (Luo et al. 2019) 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6
Ours 88.4 34.2 77.6 23.7 18.3 24.8 24.9 12.4 80.7 30.4 68.6 48.9 17.9 80.8 27.0 27.2 6.2 19.1 10.2 38.0

Source Only 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
ASN (Tsai et al. 2018) 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

CLAN (Luo et al. 2019) 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
AdvEnt(Vu et al. 2019) 89.9 36.5 81.6 29.2 25.2 28.5 32.3 22.4 83.9 34.0 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8
ASN + Weighted CE 82.8 42.4 77.1 22.6 21.8 28.3 35.9 27.4 80.2 25.0 77.2 58.1 26.3 59.4 25.7 32.7 3.6 29.0 31.4 41.4

ASN + Lovász 88.0 28.6 80.7 23.6 14.8 25.9 33.3 19.6 82.8 31.1 74.9 58.1 24.6 72.6 34.2 31.2 0.0 24.9 36.4 41.3
Ours 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9

Noted that this action does not guarantee the discrimina-
tive and reductive information for specific tasks. Instead, as
the perturbations intend to confuse the classifier, the predic-
tion maps of adversarial features are empirically subject to
have more uncertainty with increasing entropy. To address
this issue, we draw on the idea of the entropy minimiza-
tion technique (Springenberg 2015; Long et al. 2018) as
Eq (8) to provide extra supervision, which can be viewed as
a soft-assignment variant of the pseudo-label cross entropy
loss (Vu et al. 2019).

Lent(P ) = E[
−1

log(C)

C∑
c=1

P (h,w,c) logP (h,w,c)]. (8)

Finally, by combining the objectives in (3), (7) and (8), we
are capable of obtaining robust and discriminative classifier
F as follow, where α1, α2 and α3 are trade-off factors:

min
F
Lcls = Lseg(Ps∗, ys) + Lseg(Ps, ys) + α1Lcst(Pt, Pt∗)

+ α2Lent(Pt) + α3Lent(Pt∗).
(9)

In addition, we conduct a similar procedure to defense
against domain-related perturbations, which forces the dis-
criminator D to assign the same domain labels for the mu-
tated features with respect to their original ones. Further-
more, it is beneficial for the discriminator to contiguously
generate perturbations that extrapolate the features towards
more domain-invariant regions and then bridge the domain
discrepancy more effectively.

Experiments
Dataset
We evaluate our method along with several state-of-the-
art algorithms on two challenging synthesized-2-real UDA
benchmarks, i.e., GTA5 → Cityscapes and SYNTHIA →
Cityscapes. Cityscapes is a real-world image dataset, con-
sisting of 2,975 images for training and 500 images for val-
idation. GTA5 contains 24,966 synthesized frames captured
from the video game. We use the 19 classes of GTA5 in com-
mon with the Cityscapes for adaptation. SYNTHIA is a syn-
thetic urban scenes dataset with 9,400 images. Similar to Vu
et al. (2019), We train our model with 16 common classes

Figure 4: Category distribution on GTA5→ Cityscapes.

in both SYNTHIA and Cityscapes, and evaluate the perfor-
mance on 13-class subsets.

Implementations details
We use PyTorch for implementation. Similar to Tsai et
al. (2018), we utilize the DeepLab-v2 (Chen et al. 2017a)
as our backbone segmentation network. We employ Atrous
Spatial Pyramid Pooling (ASPP) as classifier followed by
an up-sampling layer with softmax output. For domain dis-
criminator D, we use the one in DCGAN (Radford, Metz,
and Chintala 2015) but exclude batch normalization lay-
ers. Our experiments are based on two different network
architectures: VGG-16 (Simonyan and Zisserman 2014)
and ResNet-101 (He et al. 2016). During training, we use
SGD (Bottou 2010) for G and C with momentum 0.9,
learning rate 2.5 × 10−4 and weight decay 10−4. We use
Adam (Kingma and Ba 2014) with learning rate 10−4 to op-
timize D. And we follow the polynomial annealing proce-
dure (Chen et al. 2017a) to schedule the learning rate. When
generating adversarial features, the iteration K of I-FGSPM
is set to 3. Note that we set the ε1, ε2 and ε3 in Eq. (5) and
(6) as 0.01, 0.002 and 0.011 separately. α1, α2 and α3 are
0.2, 0.002 and 0.0005 separately.

Result Analysis
We compare our model with several state-of-the-art domain
adaptation methods on semantic segmentation performance



Table 2: Results of adapting SYNTHIA to Cityscapes. The tail classes are highlighted in blue.
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mIoU13

ASN (Tsai et al. 2018) 78.9 29.2 75.5 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 37.6
CLAN (Luo et al. 2019) 80.4 30.7 74.7 1.4 8.0 77.1 79.0 46.5 8.9 73.8 18.2 2.2 9.9 39.3

Ours 82.9 31.4 72.1 10.4 9.7 75.0 76.3 48.5 15.5 70.3 11.3 1.2 29.4 41.1
Source Only 55.6 23.8 74.6 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 38.6

ASN (Tsai et al. 2018) 79.2 37.2 78.8 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 45.9
CLAN (Luo et al. 2019) 81.3 37.0 80.1 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8
AdvEnt (Vu et al. 2019) 87.0 44.1 79.7 4.8 7.2 80.1 83.6 56.4 23.7 72.7 32.6 12.8 33.7 47.6

ASN + Weighted CE 74.9 37.6 78.1 10.5 10.2 76.8 78.3 35.3 20.1 63.2 31.2 19.5 43.3 44.5
ASN + Lovász 77.3 40.0 78.3 14.4 13.7 74.7 83.5 55.7 20.9 70.2 23.6 19.3 40.5 47.1

Ours 86.4 41.3 79.3 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 53.1

in terms of mIoU. Table 1 shows that our ResNet-101 based
model brings +9.3% gain compared to source only model
on GTA5 → Cityscapes. Besides, our method also outper-
forms state-of-the-arts over +1.4% and +2.1% in mIoU on
VGG-16 and ResNet-101 separately. To further illustrate
the effectiveness of our method on tail classes, we show
the marginal category distributions counted in 19 common
classes on GTA5 and Cityscapes datasets in Figure 4, and
highlight the tail classes with blue in Table 1. For exam-
ple, the category “bike” accounts for only 0.01% ratio in the
GTA5 category distribution, and the ResNet-101 based ad-
versarial alignment methods suffer from a huge performance
degradation compared to the source only model. Specifi-
cally, AdvEnt can deliver a +7.2% performance improve-
ment on average, but the category “bike” itself suffers 12.7%
performance degradation. On the contrary, our approach can
still improve the performance of the “bike” category by ben-
efiting from the pointwise perturbation strategy. In fact, our
framework can achieve the best performance at the majority
of tail categories, showing the effectiveness of our algorithm
in mitigating the category-conditional shift.

Table 2 provides the comparative performance on SYN-
THIA → Cityscapes. SYNTHIA has significantly different
layouts as well as viewpoints compared to Cityscapes, and
less training samples than GTA5. Hence, models trained in
SYNTHIA might suffer from serious domain shift when
generalized into Cityscapes. It is noteworthy that our ad-
versarial perturbation framework generates hard examples
that strongly resist adaptation, thus our model can efficiently
improve performance in the difficult task by considering
these augmented features. As a result, our method signif-
icantly outperforms the state-of-the-art methods by +1.8%
and +5.5% in mIoU based on VGG-16 and ResNet-101 sep-
arately. Specifically, even when compared to CLAN method,
which aims at aligning category-level joint distribution, our
framework still achieves higher performance on tail classes.
Some qualitative results are presented in Figure 6.

Furthermore, we re-implement ASN with some category
balancing mechanisms (e.g., weighted cross entropy and
Lovász-Softmax loss) based on ResNet-101 for fair compar-
ison. As shown in Table 1 and 2, we show that only ASN
+ Lovász brings +1.2% gain in SYNTHIA → Cityscapes,
while others even suffer from performance degradation. As

Figure 5: Category distribution on SYNTHIA→Cityscapes.

shown in Figure 4 and 5, marginal category distributions are
varying across domains, and thus re-weighting mechanisms
can not guarantee adaptability on the target domain.

Ablation Study
Different Attack Methods. A basic problem of our frame-
work is how to generate proper perturbations. We com-
pare several attack methods widely used in adversarial
attack community and their modified sign-preposed ver-
sions. Specifically, we compare our proposed I-FGSPM
with I-FGSM and modified sign-preposed version of
FGSM (Goodfellow, Shlens, and Szegedy 2014) as well as
Momentum I-FGSM (MI-FGSM) (Dong et al. 2018). Fur-
thermore, we also provide a “None” version without any at-
tacks. As illustrated in Table 3, ResNet-101 based adversar-
ial attack methods bring obvious gain against “None” ver-
sion. With sign-preposed operation, our I-FGSPM achieves
+1.3% improvement compared to I-FGSM. FGSPM is the
non-iterative version of our I-FGSPM and achieves com-
parable performance against I-FGSPM. Note that though
MI-FGSM achieves remarkable results in adversarial at-
tacks area, its sign-preposed version MI-FGSPM might ex-
cessively enlarge the divergence between original features
with adversarial features, and causes performance degrada-
tion when employed by our framework.

Different perturbing layers. One natural question is
whether it is better to perturb the input or the hidden layers
of model. Szegedy et al. (2013) reported that adversarial per-
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Figure 6: Qualitative results of UDA segmentation for SYNTHIA→ Cityscapes. Along with each target image and its corre-
sponding ground truth, we present the results of source only model (without adaptation), ASN and ours respectively.

Table 3: Evaluation on different attack methods.
Attack Method mIoU13 (SYNTHIA)

None 44.8
I-FGSM 51.8
FGSPM 52.9

MI-FGSPM 52.2
I-FGSPM (Ours) 53.1

Table 4: Evaluation on different perturbing layers.
Layer mIoU13 (SYNTHIA)

Pixel-level 50.4
After layer1 45.0
After layer2 49.8
After layer3 50.6

After layer4 (Ours) 53.1

turbations yield the best regularization when applied to the
hidden layers. Our experiments with ResNet-101 shown in
Table 4 also verify that perturbing in feature-level achieves
the best result. These might boil down to that the activation
of hidden units can be unbounded and very large when per-
turbing the hidden layers (Goodfellow, Shlens, and Szegedy
2014). We also find that perturbing deeper hidden layers can
further benefit our framework.

Component Analysis. We study how each component
affects overall performance in terms of mIoU based on
ResNet-101. As shown in the top part of Table 5, starting
with source only model trained with Lovász-Softmax, we
notice that the effect of Lovász-Softmax loss varies across
different UDA tasks, which might depend on how differ-
ent the marginal distributions across two domains are. En-

Table 5: Ablation studies of each component. “S” represents
our strategy as discussed in step 1 while “ASN” indicates
that our network weights are pre-trained by ASN in step 1.
Base Perturbation Lovász Entropy mIoU (GTA5) mIoU13 (SYN)

S 36.6 38.6
S

√
35.0 41.3

S
√

41.8 42.5
S

√ √
38.5 44.8

S
√

41.7 45.7
S

√ √
44.6 49.9

S
√ √

43.6 47.0
S

√ √ √
45.9 53.1

ASN 41.4 45.9
ASN

√ √
42.3 47.4

ASN
√ √ √

45.2 52.9

tropy minimization strategy can bring improvement on both
benchmarks but lead to strong class biases, which has been
verified in AdvEnt (Vu et al. 2019), while our overall model
not only significantly lifts mIoU, but also remarkably allevi-
ates category biases specially for tail classes.

As illustrated in the bottom part of Table 5, we consider
our basic training strategy in step 1 as a component, and re-
place it with ASN. By cooperating with our perturbations
strategy, ours + ASN brings +3.8% and +7.0% gain, while
ASN + Lovàsz + Entropy only gets +0.9% and +1.5% im-
provement against ASN on GTA5 to Cityscapes and SYN-
THIA to Cityscapes separately. A possible reason is that
ASN can shape the feature extractor biased towards the head
classes and miss representations from tail classes.



Conclusion
In this paper, we reveal that adversarial alignment based
segmentation DA might be dominated by head classes and
fail to capture the adaptability of different categories evenly.
To address this issue, we proposed a novel framework that
iteratively exploits our improved I-FGSPM to extrapolate
the perturbed features towards more domain-invariant re-
gions and defenses against them via an adversarial train-
ing procedure. The virtues of our method lie in not only
the adaptability of model but that it circumvents the inter-
vention among different categories. Extensive experiments
have verified that our approach significantly outperforms the
state-of-the-arts, especially for the hard tail classes.
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