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In recent years there has been growing interests in mining time series data. To overcome
the adverse influence of time shift, a number of effective elastic matching approaches such
as dynamic time warp (DTW), edit distance with real penalty (ERP), and time warp edit dis-
tance (TWED) have been developed based on the nearest neighbor classification (NNC)
framework, where the distance d(x, Ci) between a test sample x and one specific class Ci

is simply defined as the minimum distance between x and the training samples in this
class. In many applications, the sparse representation classifier (SRC) was applied by defin-
ing d(x, Ci) as the distance of x to a linear combination of the samples in class Ci, and it usu-
ally outperformed NNC in terms of classification accuracy. However, due to time shift, a
linear combination of several time series is generally meaningless and may result in poor
classification performance. In this paper, a family of Gaussian elastic matching kernels was
introduced to deal with the problems of time shift and nonlinear representation. In this
way, a linear combination of time series can be conducted in the implicit kernel space.
Then a kernel sparse representation learning framework for time series classification
was proposed. To improve computational efficiency and classification performance, both
unsupervised and supervised dictionary learning techniques were developed by extending
KSVD and label consistent KSVD algorithms. Experimental results showed that the pro-
posed methods generally outperformed state-of-the-arts methods in terms of classification
accuracy.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

A time series is a sequence of numerical values, typically measured at successive time instants spaced at uniform time
intervals. It can be used to describe the states of objects and reflect their variations along time tags. For example, an elec-
trocardiogram, which is widely used to analyze abnormal heart rhythms, is presented as a line graph, where the x-axis is
time and the y-axis stands for the average voltage measured by the electrodes. Time series are used in various applications
and can be easily acquired by the existing techniques. Clustering, classification, and mining of time series [9,24,30,38] have
been extensively studied in many applications, such as sign language recognition [27], trajectory-based activity recognition
[2], electrocardiography (ECG) based medical diagnosis [37], stock market time series categorization, and prediction [13,39].
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Similarity matching between time series is essential for time series classification [41]. There are two key problems in
computing the distance or similarity between time series: time warping and high dimensionality. Time warping is a general
phenomenon in time series, which creates huge challenges for automatic time series classification. For example, although
time series can be viewed as points in vector space, conventional Euclidean distance is very sensitive to time warping
and may fail in measuring similarity between time series. Dynamic time warping (DTW) was introduced to overcome the
limitation of Euclidean distance [3,48]. However, DTW is time consuming. To improve the efficiency of DTW, Keogh and
Ratanamahatana [21] proposed a lower bounding measure which significantly speeds up the calculation of DTW. To avoid
the excessive distortion of DTW, Vlachos et al. [40] suggested a constraint of the longest common subsequence (LCSS) by
assigning weights to different points. Chen et al. [7] introduced an edit distance on real sequence (EDR), which is robust
against the factors of noise, time warping, and scaling. Unfortunately, DTW, LCSS, and EDR are not distance metrics as they
do not satisfy the triangle inequality. Recently, Chen et al. [6] introduced a method called edit distance with real penalty
(ERP) and Marteau [34] proposed an alignment-based distance metric, called time warp edit distance (TWED). Both of them
satisfy the triangle inequality and are effective in measuring the dissimilarity between time series.

Using the existing distance measures, the nearest neighbor classification (NNC) framework is usually used for time series
classification. Let the vector y be the test sample and the sample matrix X = [X1, X2, . . ., XK] be the training data matrix, where
Xi = [xi,1, xi,1, . . ., xi,ni] is the sample matrix of class Ci, and xi,j denotes the jth training sample of class Ci. Given a distance mea-
sure d(x, y), NNC [11] defines the distance of y to class Ci, d(y, Ci), as the minimum distance of {d(y, xij) j j = 1, . . ., ni}, and then
y belongs to the class corresponding to the minimum of {d(y, Ci)j i = 1, . . ., K}, making the distance measure critical for NN-
based classification and clustering [11,21,28].

Despite its popularity, the high dimensionality of samples and the limited size of training sets degrade the performance of
NNC for time series classification. In recent years, a class of sparse representation based classifiers (SRC) [42,51] and collab-
orative representation based classifiers (CRC) [52] have been developed. SRC and CRC can achieve promising performance in
many applications, such as face recognition [42,52], image classification [14], and traffic sign recognition [29]. SRC and CRC
first assign a coefficient .aij for each training sample xij, and then define the distance of y to the ith class Ci as d(y,

CiÞ ¼ y �
P

jxijaij

��� ���, where k � k is some vector norm. When the size of the training set is limited, SRC and CRC can jointly

utilize all the training samples from class Ci to compute d(y, Ci), and usually achieve higher classification accuracy than con-
ventional NNC methods. Zhang et al. [52] provided some geometric explanations of the working mechanism of SRC/CRC. To
further enhance the discriminative ability and computational efficiency, researchers studied the dictionary learning problem
by learning a set of atoms from the training set in both the unsupervised [1,46] and the supervised [14,32,31,54,45,19]
manner.

In the field of time series classification, however, little attention has been given to the SRC/CRC based approaches. One
possible reason may be that SRC/CRC operate in linear space while d(y, Ci) is computed based on the Euclidean distance.
But for time series classification, Euclidean distance is sensitive to time warping and may achieve poor classification perfor-
mance. Moreover, dictionary learning of time series is another challenging task. Recently, kernel SRC [15,53,47] and kernel
dictionary learning [35,36] approaches have been proposed, which makes it possible to overcome the difficulties of applying
SRC to time series classification.

In this paper, the application of sparse representation based classifiers to time series classification was investigated. First,
by introducing a family of Gaussian elastic matching kernels, time series were embedded into an implicit reproducing kernel
Hilbert space, which allowed the use of kernel SRC for time series classification. Second, based on Gaussian elastic matching
kernels, the kernel KSVD algorithm for unsupervised dictionary learning of time series was used, making kernel SRC compu-
tationally efficient and scalable. Third, by incorporating class label information, a kernel version of the label consistent KSVD
method (Kernel LC-KSVD) was proposed to further improve the discriminative capability of the learned dictionary. Finally,
experimental results showed that, compared with NNC, significant improvement can be obtained by using the proposed ker-
nel sparse representation based approaches. Moreover, the proposed kernel LC-KSVD method is more efficient because of the
enhancement of the computational efficiency.

The remainder of the paper is organized as follows. In Section 2, a brief survey of the related work such as SRC and KSVD is
provided. In Section 3, several Gaussian elastic matching kernels are introduced, and then kernel SRC is used for time series
classification. In Section 4, the kernel KSVD algorithm is used for unsupervised dictionary learning, and then a kernel LC-
KSVD method for supervised dictionary learning is proposed. In Section 4, the experimental results of the proposed methods
are presented. Finally, Section 5 gives some concluding remarks.
2. Related work

2.1. Sparse representation-based classification

Denote y as the test sample and X = [X1, X2, . . ., XK] as the training data matrix, where Xi = [xi,1, xi,2, . . ., xi,ni] is the sample
matrix of class Ci, xi,j is the jth training sample from class Ci, and ni stands for the total number of training samples of class Ci.
Motivated by the compressed sensing theory [4,5,10], Wright et al. [42] proposed a sparse representation based classifier
(SRC), where the test sample y is approximated by a linear combination of training samples from all classes with the l1-norm
sparsity regularization:
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ðâÞ ¼ arg mina y � Xak k2
2 þ k ak k1

n o
; ð1Þ
where a = [a1; . . ., ai; . . .; aK] and ai is the coding vector associated with Xi. With the resolved â, SRC assigns the class label of
y by
LabelðyÞ ¼ arg mini dðy;CiÞ ¼ y� Xiâik k2

� �
: ð2Þ
Wright et al. used second-order cone programming or LASSO to solve this l1-minimization problem [42]. Recently, Yang
et al. [44] conducted a comparative study on several l1-minimization solvers: the augmented Lagrangian method (ALM),
interior-point method, fast gradient based methods, and homotopy. In addition to the l1-norm regularizer, other forms of
sparsity regularization [52,18,43,49] such as l2-norm [52] and group sparsity [18] were studied for sparse representation
based classification.

To capture the nonlinear similarity between samples, the kernel sparse representation method was developed [15,53,47].
Given the nonlinear mapping function U(x), the inner product in the implicit reproducing kernel Hilbert space (RKHS) can be
defined by
Kðx; yÞ ¼ UðxÞ;UðyÞh i: ð3Þ
Let Ui = [U(xi,1), U(xi,2), . . ., U(xi,ni)] and U = [U1, U2, . . ., UK]. Kernel SRC was proposed to solve the following l1-minimiza-
tion problem:
ðâÞ ¼ arg mina UðyÞ �Uak k2
2 þ kkak1

n o
: ð4Þ
By introducing the kernel matrix K =UTU and kernel vector k =UTU(y), the problem in Eq. (4) becomes
ðâÞ ¼ arg mina aT Kaþ 2kTaþ kkak1

n o
; ð5Þ
which can then be solved by the l1-minimization solvers.
2.2. Dictionary learning

SRC can be viewed as a sparse coding problem, where the dictionary is defined as the entire set of training samples such
as D = X. However, if the number of the training samples is large, the time of sparse coding rapidly increases. To improve the
scalability and discriminative ability of SRC, dictionary learning was investigated to seek an appropriate and concise dictio-
nary for classification. Dictionary learning approaches can be grouped into two categories: unsupervised and supervised dic-
tionary learning. In unsupervised dictionary learning, the target is to find a compact dictionary, where each sample can be
sparsely coded by the dictionary. FOCUSS [25], MOD [12], and KSVD [1] are several representative unsupervised methods,
where the dictionary D is obtained by solving an optimization problem such as:
D;Að Þ ¼ arg min
D;A

X � DAk k2
F s:t 8i; aik k0 6 T0; ð6Þ
where ai denotes the ith column of A, k � k0 denotes the l0-norm which counts the number of non-zero elements of a vector,
and k � kF denotes the Frobenius norm. Dictionary learning is a non-convex optimization problem, and most algorithms learn
the dictionary D by iterating between updating A and updating D.

Supervised dictionary learning aims to learn a discriminative dictionary from the training set X by incorporating the class
label information. Several supervised dictionary learning approaches such as discriminative KSVD [54], task-driven dictio-
nary learning [31], Fisher discrimination dictionary learning [45], and label-consistent KSVD (LC-KSVD) [19,20] have been
proposed. The loss function of supervised dictionary learning generally includes both a reconstruction term and a discrim-
ination term. For example, the loss function of LC-KSVD is defined as
D;W;B;Að Þ ¼ arg min
D;W;B;A

X � DAk k2
F þ a Q � BAk k2

F þ b H �WAk k2
F s:t 8i; aik k0 6 T0; ð7Þ
where W is the classification parameters, A is the discriminative sparse codes of the input samples X, a and b control the
relative contribution of the two discrimination terms, and the matrices Q and H are defined based on the class label infor-
mation. The model in Eq. (7) can be reformulated as
D;W ;B;Að Þ ¼ arg min
D;W;B;A

Xffiffiffi
a
p

Qffiffiffi
b
p

H

0B@
1CA� Dffiffiffi

a
p

Bffiffiffi
b
p

W

0B@
1CAA

�������
�������

2

F

s:t 8i; aik k0 6 T0; ð8Þ
and can be efficiently solved using the existing K-SVD solver. Please refer to [19,20] for more details on LC-KSVD.
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3. SRC with the Gaussian elastic matching kernel

Although time series can be simply represented as a 1D vector, the conventional SRC in Eq. (1) usually cannot achieve
satisfactory classification performance due to the property of time warping and high dimensionality of the data. Motivated
by the success of elastic matching methods, the Gaussian RBF kernel can be generalized into a class of Gaussian elastic
matching kernel. Then, a SRC with Gaussian elastic matching kernel method for time series classification is suggested.

3.1. Gaussian elastic matching kernel

Given two samples x and y, the Gaussian RBF kernel is defined as
Kðx; yÞ ¼ exp � x� yk k2

r2

 !
; ð9Þ
where r is the hyper-parameter of the Gaussian RBF kernel, kx � yk2 is the square of the Euclidean distance between x and y.
Motivated by the success of elastic matching methods, a class of Gaussian elastic matching kernels was produced by substi-
tuting the Euclidean distance with the elastic distance measures such as DTW, ERP, and TWED.

3.1.1. Gaussian DTW kernel
Dynamic time warping (DTW) [3,21] is widely applied in time series classification and clustering. Given two time series

x = [x1, x2, . . ., xm] and y = [y1, y2, . . ., yn], where xi(yi) denotes the ith element of the time series x(y), the DTW distance
between x and y is recursively defined as
ddtw xm
1 ; y

n
1

� �
¼ xm � ynj j þmin

ddtw xm�1
1 ; yn

1

� �
ddtw xm�1

1 ; yn�1
1

� �
ddtw xm

1 ; y
n�1
1

� �
8>>><>>>: ; ð10Þ
where xq
p ¼ ðxp; xpþ1; . . . ; xqÞ denotes the subsequences of x. By replacing the Euclidean distance in the Gaussian RBF kernel

with the DTW distance, the Gaussian DTW kernel is defined as
Kdtwðx; yÞ ¼ exp � ddtwðx; yÞ2

r2

 !
: ð11Þ
The Gaussian DTW kernel had been studied in the support vector machine framework, but inconsistent classification perfor-
mance was reported, partially because the Gaussian DTW kernel is not a positive semi-definite (PSD) kernel [38,16,17].

3.1.2. Gaussian ERP kernel
The edit distance with real penalty (ERP) [6] is a combination of the l1 norm and the edit distance, which is a distance

metric robust against time shifts. Given two time series x = [x1, x2, . . ., xm] and y = [y1, y2, . . ., yn], the ERP distance is recur-
sively defined as,
derp xm
1 ; y

n
1

� �
¼

Pm
i¼1jxi � gj; if n ¼ 0

min

derp xm�1
1 ; yn

1

� �
þ jxm � gj

derp xm�1
1 ; yn�1

1

� �
þ jxm � ynj

derp xm
1 ; y

n�1
1

� �
þ jyn � gj

8>>><>>>: ; otherwise;

Pn
i¼1jyi � gj; if m ¼ 0

8>>>>>>>>>><>>>>>>>>>>:
ð12Þ
where g stands for the constant with the default value 0 [6]. Similarly, the Gaussian ERP kernel [50] is defined as
Kerpðx; yÞ ¼ exp � derpðx; yÞ2

r2

 !
: ð13Þ
3.1.3. Gaussian TWED kernel
Marteau proposed the time warp edit distance (TWED) [34] by considering the time stamp factors of time series and

applying the point pattern matching procedure [33] (PPM) to address time warping. TWED is also a distance metric. By tak-
ing into account time stamps, the time series are represented by x = [(x1, tx1), (x2, tx2), . . ., (xm, txm)] and y = [(y1, ty1), (y2, ty2),
. . ., (yn, tyn)], where txi(tyi) stands for the time stamp of element xi(yi). For any time series with txi < txj and "i < j, the TWED
distance between x and y is recursively defined as
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dtwed xm
1 ; y

n
1

� �
¼min

dtwed xm�1
1 ; yn

1

� �
þ xm � xm�1j j þ c txm � txm�1

�� ��þ k

dtwed xm�1
1 ; yn�1

1

� �
þ xm � ynj j þ c txm � tyn

�� ��þ xm�1 � yn�1j j þ c txm�1 � tyn�1

�� ��
dtwed xm

1 ; y
n�1
1

� �
þ yn � yn�1j j þ c tyn

� tyn�1

�� ��þ k

8><>: ; ð14Þ
where c and k are two non-negative constants. By substituting the Euclidean distance in the Gaussian RBF kernel with the
TWED distance, the Gaussian TWED kernel [50] is defined as
Ktwedðx; yÞ ¼ exp �dtwedðx; yÞ2

r2

 !
: ð15Þ
3.2. Kernel SRC based time series classification

Denote y as the test sample and X = [X1, X2, . . ., XK] as the training data matrix, where Xi = [xi,1, xi,1, . . ., xi,ni], i = 1, 2, . . ., K, is
the sample matrix of class Ci, ni stands for the number of training samples in class Ci, and xi,j denotes the jth training time
series of class Ci. The kernel function is defined as K(x, y) = hU(x), U(y)i, where U(x) stands for the corresponding nonlinear
mapping function of x. In kernel SRC, the dictionary is defined as U = [U1, U2, . . ., UK], where Ui = [U(xi,1), U(xi,2), . . .,
U(xi,ni)]. Given a test sample y, the following kernel sparse representation model for time series classification was used:
âð Þ ¼ arg min
a

UðyÞ �Uak k2
2

n o
; s:t: kak0 6 T0; ð16Þ
where â ¼ â1; â2; . . . ; âK½ �T is the optimal solution. After obtaining â, SRC assigns the class label of y by using the following
rule
LabelðyÞ ¼ arg mini UðyÞ �Uiâik k2

� �
: ð17Þ
By introducing the kernel matrix K = UTU and kernel vector k = UTU(y), the kernel orthogonal matching pursuit (OMP) algo-
rithm [36] was modified to solve the kernel sparse representation model in Eq. (16). Let âs be the current estimate of â, and Is

be the set of indices of selected atoms. The residue rs is defined as
rs ¼ UðyÞ �Uâs: ð18Þ
The first step of kernel OMP is the projection of the residual to each of the remaining atoms,
si ¼ rs;UðxiÞh i ¼ Kðy; xiÞ �
X
j2Is

Kðxj; xiÞaj; i R Is: ð19Þ
Let
imax ¼ arg max sij j: ð20Þ
The kernel OMP simply updates the set of indices Is+1 = Is [ imax, and updates âsþ1 by
âsþ1 ¼ K�1
sþ1ksþ1; ð21Þ
where Ks+1 is the sub-matrix of K based on the index set Is+1, and ks+1 is the sub-vector of k based on the index set Is+1. Finally,
the kernel OMP algorithm for kernel sparse representation is summarized in Algorithm 1.

Given one test sample for the first class in the Face (Four) dataset, by applying the Gaussian ERP kernel, Fig. 1 shows the
coding coefficients of kernel SRC on 24 training samples and the distance to each class. It can be seen that the coding coef-
ficients corresponding to the first class are relatively significant, and the distance to the first class is 0.0577, which is much
Fig. 1. Kernel sparse representation of time series.
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smaller than those to the other classes. From Fig. 1, most coefficients of the other classes are zeros (compared to the first
class, coefficients from other classes are much smaller), which indicates the effectiveness of kernel SRC.

Algorithm 1. Kernel OMP for kernel sparse representation

Input: time series y, training set X, T0

Output: â
1. Initialize s = 0, I0 = ;, â0 ¼ 0
2. While s < T0

3. si ¼ Kðy; xiÞ �
P

j2Is
Kðxj;xiÞaj; i R Is

4. imax = arg maxjsij
5. Update the index set: Is+1 = Is [ imax

6. âsþ1 ¼ K�1
sþ1ksþ1

7. s = s + 1
8. End while
9. âðIsðjÞÞ ¼ âsðjÞ for "j 2 Is, and otherwise zero.
3.3. Discussion

Because of time distortion, conventional sparse representation performed in the Euclidean space cannot work well for
time series classification. Considering the success of elastic matching methods such as DTW, ERP, and TWED, a class of
Gaussian elastic matching kernel was introduced. Based on the Gaussian elastic matching kernel, a kernel SRC model
together with a kernel OMP algorithm was proposed. By substituting the Euclidean distance with the elastic distance mea-
sures, the Gaussian elastic matching kernel utilized kernel SRC to suppress the adverse influence of time drift.

It should be noted that the Gaussian elastic matching kernel cannot be guaranteed to be a positive definite symmetric
(PDS) kernel. Empirical studies by Lei and Sun showed that the Gaussian DTW kernel is not PDS acceptable to support vector
machine [26]. Experimental results showed that in some cases SVM with the Gaussian DTW kernel even performed poorer
than SVM with the Gaussian RBF kernel or NNC with DTW. Fortunately, as shown in our previous studies [50], the Gaussian
elastic matching kernel based on elastic metric (ERP or TWED) generally satisfied the PDS property. Moreover, even the
Gaussian elastic matching kernel is not PDS, the proposed modification methods [8] can make the non-PDS kernel acceptable
to kernel SRC. In practice, first whether K or Ks are PDS is checked. If K or Ks is not PDS, then non-PDS K or Ks is replaced with
the proper PDS matrices by using the spectrum clip method [8].

4. Unsupervised and supervised dictionary learning of time series

Dictionary learning makes the SRC model in Eq. (16) applicable to a large scale training set, and enhances the discrimi-
nation of the dictionary. In this section, first a kernel KSVD with Gaussian elastic matching kernel for unsupervised dictionary
learning is introduced, and then a kernel LC-KSVD method for supervised dictionary learning is proposed.

4.1. Kernel KSVD for unsupervised dictionary learning

In the sparse representation model in Eq. (16), the dictionary is simply the whole set of training samples. In this subsec-
tion, the kernel KSVD algorithm [35] is used to learn a more representative dictionary. Given the training set X of n samples,
the goal of kernel KSVD is to learn a dictionary U(D) of m atoms by solving the following optimal problem,
D;Að Þ ¼ arg minD;A UðXÞ �UðDÞAk k2
F

n o
; s:t: aik k0 6 T0; ð22Þ
where ai is the ith column of matrix A. To make the model easy to solve, it is assumed that the dictionary atom is represented
by a linear combination of the training samples such as U(D) = U(X)B, where B is the n �m atom representation dictionary.
Thus, the kernel KSVD model is reformulated as
B;Að Þ ¼ arg minD;A UðXÞ �UðXÞBAk k2
F

n o
; s:t: aik k0 6 T0: ð23Þ
The proposed kernel dictionary learning method [35] is used to learn the dictionary by iterating between the updating of the
coding coefficients A and the updating of the dictionary B.

4.1.1. Updating A via kernel OMP
Given the atom representation dictionary B,A is updated by solving n independent sparse coding problems,
aið Þ ¼ arg minD;A UðxiÞ �UðXÞBaik k2
2

n o
; s:t: aik k0 6 T0: ð24Þ
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Let âs be the current estimate of â and Is be the set of indices of selected atoms. The residue rs is defined as
rs ¼ UðyÞ �UBâs: ð25Þ
The first step of KOMP is the projection of the residual to each of the remaining atoms,
si ¼ rs;UðXÞbih i ¼ kT bi � aT
S BT Kbi; i R Is: ð26Þ
Let
imax ¼ arg max sij j: ð27Þ
The kernel OMP simply updates the set of indices Is+1 = Is [ imax, and constructs the sub-matrix Ks+1. If Ks+1 is not semi-posi-
tive definite, a semi-positive definite approximation is used by solving the following problem,
eK sþ1 ¼ arg minK�0 K � K sþ1k k2

F : ð28Þ
According to Chen et al. [8], eK sþ1 can be easily obtained using the spectrum clipping operator. Based on eK sþ1; âsþ1 is updated
by,
âsþ1 ¼ eK�1
sþ1ksþ1; ð29Þ
where ks+1 is the sub-vector of k based on the index set Is+1. This procedure is repeated until T0 atoms are selected.

4.1.2. Dictionary updating
In the dictionary update phase, first the spectrum clipping operator on K is used to obtain a PDS approximation eK . Denot-

ing bk by the kth column of B and aj the jth row of A, the error matrix Ek is computed as
Ek ¼ I �
X
j–k

bjaj

 !
: ð30Þ
Let xk be the group of examples that use the kth atom and Xk be an n � jxkjmatrix with Xk(xk(i), i) = 1 and zero elsewhere.

The column reduced error matrix is then obtained by ER
k ¼ EkXk. By applying SVD to ðER

kÞ
T eK ER

k ,
ER
k

	 
T eK ER
k ¼ VKVT ; ð31Þ
ak is updated by
ak ¼ k1ð Þ�1=2ER
kv1; ð32Þ
where k1 is the first eigenvalue and v1 is the first eigenvector. This procedure is repeated until all the m atoms are updated.

4.2. Kernel label consistent K-SVD for supervised dictionary learning

To further enforce the compactness and discrimination of the dictionary, a kernel label consistent KSVD (LC-KSVD) algo-
rithm is proposed. Using the Gaussian elastic matching kernel, the loss function of kernel LC-KSVD is defined as
< D;W ;U;A >¼ arg min
D;W ;U;A

UðXÞ �UðDÞAk k2
2 þ a Q � UAk k2

2 þ b H �WAk k2
2; aik k0 6 T0; ð33Þ
The first term is the standard dictionary learning model. In the second term, Q = [q1, q2, . . ., qn], n is the number of training
samples in X, and qi is a discriminative sparse code corresponding to the ith training sample. If the training sample xi shares
the same label with dictionary atom U(dj), the jth element of qi will be one and otherwise zero. In the third item, H = [h1, h2,
. . ., hn], where hi is a label vector corresponding to xi. If xi belongs to the kth class, the kth element of hi will be one and other-
wise zero. Also, a and b are two non-negative parameters, and U and W are two transformation matrices to be learned.

The kernel LC-KSVD model can be equivalently formulated as
< D;W;U;A >¼ arg min
D;W ;U;A

UðXÞffiffiffi
a
p

Qffiffiffi
b
p

H

0B@
1CA� UðDÞffiffiffi

a
p

Uffiffiffi
b
p

W

0B@
1CAA

�������
�������; aik k0 6 T0: ð34Þ
By introducing an implicit mapping
W

xiffiffiffi
a
p

qiffiffiffi
b
p

hi

0B@
1CA ¼ UðxiÞffiffiffi

a
p

qiffiffiffi
b
p

hi

0B@
1CA; ð35Þ
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the corresponding kernel function is defined as
Table 1
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. The kernel LC-KSVD model can then be formulated as,
< B;A >¼ arg min
B;A

U0ðZÞ �U0ðZÞBAk k2
F s:t: aik k0 6 T;8i; ð37Þ
which can be solved by using the kernel KSVD algorithm introduced in Section 4.1. Once B is obtained, U and W can be
acquired via U = QB,W = HB, respectively.

In the classification stage, given the test sample y, first the sparse representation problem is solved by
âð Þ ¼ arg mina UðyÞ �UðXÞBak k2
2

n o
; s:t: ak k0 6 T0; ð38Þ
and then y is classified based on the following rule:
j ¼ arg maxj l ¼Wâf g; ð39Þ
where l is the K � 1 class label vector.

5. Experimental results

In this section, a series of experiments were conducted to assess the proposed methods using the UCR time series datasets
[22,23] from two aspects: classification error rate and computational cost. Sixteen data sets were used in the experiments,
four of which were two-class tasks and the rest were multi-class problems. Each dataset consists of a training subset and a
test subset. Table 1 provides a brief summary of the datasets.

5.1. Classification results and analysis

Using the classification error rate as the performance indicator, the proposed methods were compared with the state-of-
the-art algorithms based on the nearest neighbor classifier, including NNC with Euclidean (1NN-ED), NNC with DTW (1NN-
DTW), NNC with ERP (1NN-ERP), and NNC with TWED (1NN-TWED). The proposed methods were grouped into three cate-
gories. The first one was based on the kernel SRC model where the dictionary is the entire set of the training samples, and
three kernel SRC methods, SRC with Gaussian DTW kernel (SRC-DTW), SRC with Gaussian ERP kernel (SRC-ERP), and SRC
with TWED kernel (SRC-TWED) were evaluated. The second category was based on kernel KSVD, where the dictionary is
learned using the kernel KSVD algorithm in the unsupervised way, and three KSVD approaches, kernel KSVD with Gaussian
DTW kernel (KSVD-DTW), kernel KSVD with Gaussian ERP kernel (KSVD-ERP), and kernel KSVD with Gaussian TWED kernel
(KSVD-TWED) were evaluated. The third category was based on the kernel label consistent KSVD algorithm, where the dic-
tionary is learned in the supervised manner, and three kernel LC-KSVD approaches, LC-KSVD with Gaussian DTW kernel (LC-
KSVD-DTW), LC-KSVD with Gaussian ERP kernel (LC-KSVD-ERP), and LC-KSVD with Gaussian TWED kernel (LC-KSVD-TWED)
tes of the UCR time series datasets.

sets Class Length Instances

Training Test

c 37 176 390 391
5 470 30 30
3 128 30 900

e 2 286 28 28
00 2 96 100 100

(All) 14 131 560 1690
(Four) 4 350 24 88

7 463 175 175
-point 2 150 50 150
ting2 2 637 60 61
ting7 7 319 70 73

oil 4 570 30 30
dish leaf 15 128 500 625
hetic control 6 60 300 300
e 4 275 100 100
patterns 4 128 1000 4000



Table 2
Classification error rates obtained by the conventional 1NN classifier with different distance measures and the sparse representation methods with different
Gaussian elastic kernels.

1NN-
ED

1NN-
DTW

1NN-
ERP

1NN-
TWED

SRC-
DTW

SRC-
ERP

SRC-
TWED

KSVD-
DTW

KSVD-
ERP

KSVD-
TWED

LC-KSVD
-DTW

LC-
KSVD -
ERP

LC-
KSVD-
TWED

Adiac 0.389 0.396 0.378 0.376 0.412 0.376 0.373 0.412 0.332 0.284 0.427 0.402 0.409
Beef 0.467 0.500 0.500 0.533 0.433 0.400 0.333 0.300 0.233 0.300 0.300 0.300 0.300
CBF 0.148 0.003 0.003 0.007 0 0.003 0 0 0.004 0 0 0.002 0.002
Coffee 0.250 0.179 0.250 0.214 0.036 0.036 0 0.036 0 0 0 0.036 0
ECG200 0.120 0.230 0.130 0.100 0.170 0.130 0.080 0.180 0.120 0.070 0.150 0.100 0.080
Face(All) 0.286 0.192 0.202 0.189 0.240 0.196 0.191 0.217 0.164 0.127 0.225 0.199 0.205
Face(Four) 0.216 0.170 0.102 0.034 0.125 0.045 0.034 0.114 0.080 0.034 0.148 0.080 0.034
FISH 0.217 0.167 0.120 0.057 0.131 0.120 0.057 0.189 0.126 0.057 0.171 0.103 0.057
Gun-point 0.087 0.093 0.040 0.013 0.090 0.033 0.007 0.073 0.007 0.007 0.073 0.007 0.013
Lighting2 0.246 0.131 0.148 0.131 0.164 0.164 0.131 0.230 0.180 0.131 0.180 0.115 0.115
Lighting7 0.425 0.274 0.301 0.247 0.233 0.301 0.205 0.205 0.178 0.178 0.205 0.192 0.192
Olive oil 0.133 0.133 0.167 0.167 0.167 0.133 0.133 0.133 0.133 0.100 0.133 0.133 0.100
Swedish leaf 0.213 0.210 0.120 0.104 0.210 0.100 0.099 0.150 0.075 0.090 0.194 0.101 0.094
Synthetic_control 0.120 0.007 0.036 0.023 0.013 0.023 0.007 0.010 0.007 0.007 0.013 0.010 0.010
Trace 0.240 0 0.170 0.050 0.010 0.120 0 0.010 0.070 0.010 0 0.110 0.020
Two patterns 0.090 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2. Comparison between the kernel KSVD model and the kernel SRC model. In each sub-graph, the x axis stands for the error rates generated by the
kernel KSVD model with a certain Gaussian kernel (DTW, ERP, TWED respectively), and the y axis represents the error rates formed by the kernel SRC model
with the same kernel shown on the xaxis. The straight line has a slope of 1.0, so a dot on the line means the identical error rate calculated by the two
methods on the same data set, a dot above (or below) the line means the KSVD model performs better (or weaker) than the SRC model on that data set.

Fig. 3. Comparison between the kernel LC-KSVD model and the kernel SRC model. In each sub-graph, the x axis stands for the error rates generated by the
kernel LC-KSVD model with a certain Gaussian kernel (DTW, ERP, TWED respectively), the y axis represents the error rates formed by the kernel SRC model
with the same kernel shown on the xaxis. The straight line has a slope of 1.0, so a dot on the line means the identical error rate calculated by the two
methods on the same data set, a dot above (or below) the line means the LC-KSVD model performs better (or weaker) than the SRC model on that data set.
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were evaluated. The codes of the proposed methods are available at: https://github.com/voidman2009/Kernel-Sparse-
Representation/tree/master/KernelKSVD%20for%20time%20series.

Table 2 lists the classification error rates of all the methods on these 16 data sets. Generally, the proposed sparse
representation based classification methods were superior to the state-of-the-art nearest neighbor classifiers. For example,
SRC-ERP can achieve lower error rates than 1NN-ERP on 14 data sets. Only on the CBF dataset, 1NN-ERP was 0.001 lower
than SRC-ERP. For all the 16 data sets, KSVD-TWED always obtained a lower or equal error rate than 1NN-TWED. It is



Fig. 4. Running time of kernel SRC, kernel KSVD, and kernel LC-KSVD on the 16 data sets (the Gaussian TWED kernel is used as an example).
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interesting to point out that compared with ERP and TWED, the improvement of SRC-DTW against 1NN-DTW is relatively
weak, which may be explained in that ERP and TWED are distance metrics while DTW is not.

In addition, based on the experimental results, kernel LC-KSVD and kernel KSVD can to some extent achieve better per-
formance than kernel SRC. For example, LC-KSVD-ERP and KSVD-ERP achieved lower classification accuracy than SRC-ERP
only on 3 and 4 data sets, respectively. KSVD-TWED showed weakness only on Trace by 0.01 lower than SRC-TWED, but
the results generated by LC-KSVD-TWED and SRC-TWED were roughly the same. In order to give a clearer comparison,
the performances of these 3 categories of methods were analyzed.

From Fig. 2, it can be seen that KSVD-DTW performs a little better than SRC-DTW. KSVD-ERP is more effectively than SRC-
ERP. The KSVD-TWED outperforms SRC-TWED because there is hardly any dot below the line. From Fig. 3, for the Gaussian
DTW kernel and the Gaussian ERP kernel, the kernel LC-KSVD model is superior to the kernel SRC model. However, LC-KSVD-
TWED and SRC-TWED (the right sub-graph) present similar performance since most of the dots in this sub-graph are close to
the straight line.
5.2. Running time

In this section, using the Gaussian TWED kernel, the running time of kernel SRC, kernel KSVD, and kernel LC-KSVD were
compared. Fig. 4 shows the running time of these three methods on the 16 data sets. In the classification stage, the proce-
dures of kernel SRC and kernel KSVD are similar. If the size of the dictionary of kernel SRC is the same as that of kernel KSVD,
the computational cost of these two methods would be roughly the same. In the training stage, the number of atoms was set
be the same as the number of training samples. From Fig. 4, it can be seen that the difference of running time of kernel SRC
and kernel KSVD is insignificant. In kernel LC-KSVD, the number of atoms was set much lower than the size of the training
set, and the classification rule was simpler than those of kernel SRC and kernel KSVD. Thus, the running time of kernel LC-
KSVD was much less than the other methods. Taking both the classification accuracy and running time into account, kernel
LC-KSVD is a suitable choice for time series classification.
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6. Conclusion

In this paper, the applications of kernel sparse representation based classifiers for time series classification were studied.
The introduction of a class of Gaussian elastic matching kernels, the Gaussian DTW kernel, the Gaussian ERP kernel, and the
Gaussian TWED kernel, makes it possible to utilize SRC while suppressing the influence of time drift. Both the kernel sparse
representation and dictionary learning methods were investigated, and three kernel sparse representation based classifiers,
including kernel SRC, kernel KSVD, and kernel LC-KSVD were proposed. Experimental results on the UCR time series datasets
showed that the proposed methods can achieve much lower error rates than the state-of-the-art nearest neighbor classifiers,
1NN-DTW, 1NN-ERP, and 1NN-TWED. Moreover, the running time of kernel LC-KSVD was much less than kernel SRC and
kernel KSVD. In the future, we will study the construction of elastic PDS kernels and will develop more appropriate discrim-
inative dictionary learning algorithms for time series classification.
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