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Integrating Graph Partitioning and Matching for
Trajectory Analysis in Video Surveillance

Liang Lin, Yongyi Lu, Yan Pan, and Xiaowu Chen

Abstract— In order to track moving objects in long range
against occlusion, interruption, and background clutter, this
paper proposes a unified approach for global trajectory analysis.
Instead of the traditional frame-by-frame tracking, our method
recovers target trajectories based on a short sequence of video
frames, e.g., 15 frames. We initially calculate a foreground map at
each frame obtained from a state-of-the-art background model.
An attribute graph is then extracted from the foreground map,
where the graph vertices are image primitives represented by
the composite features. With this graph representation, we pose
trajectory analysis as a joint task of spatial graph partitioning
and temporal graph matching. The task can be formulated by
maximizing a posteriori under the Bayesian framework, in which
we integrate the spatio-temporal contexts and the appearance
models. The probabilistic inference is achieved by a data-driven
Markov chain Monte Carlo algorithm. Given a period of observed
frames, the algorithm simulates an ergodic and aperiodic Markov
chain, and it visits a sequence of solution states in the joint space
of spatial graph partitioning and temporal graph matching. In the
experiments, our method is tested on several challenging videos
from the public datasets of visual surveillance, and it outperforms
the state-of-the-art methods.

Index Terms— Graph partitioning and matching, multiple
object tracking, trajectory analysis, video surveillance.

I. INTRODUCTION

V IDEO object tracking is a fundamental problem in the
academic research of image/video processing and com-

puter vision, involving two key issues: (i) extracting objects
of interest from backgrounds and (ii) establishing correspon-
dences of objects over video frames. Trajectory parsing and
analysis for multiple targets is a further task upon target
tracking, and plays a critical role in the recently-arising intelli-
gence applications, such as robotics [1] and video surveillance
systems [2]–[4]. It is also an important support for higher
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level video retrieval and event analysis [5], [6]. The object
of this work is to study a unified approach for trajectory
analysis under the Bayesian framework. As Fig. 1 illustrates,
the input of our algorithm is a short sequence of observed
frames rather than a single frame, in which we localize the
multiple moving targets and track them with their identities
preserved; the global trajectories of targets for the whole video
can be parsed through the inference.

A. Related Work

In the literature, video object tracking has been intensively
studied and many effective methods have been proposed. For
single-target tracking, various object appearance models and
motion models are well exploited to estimate target state
(location, velocity, etc.) [4], [7]–[10]. Recently, a class of
techniques called “tracking by detection” has been shown to
provide promising results [11]–[15]. For multi-object tracking
(i.e. trajectory analysis), which our method addresses, we shall
identify multiple moving targets by associating correspon-
dences between observations and objects as well as estimating
the state of each target [16], [17].

In general, we roughly categorize the work of trajec-
tory analysis into two types: sequential inference based, and
deferred inference based, in terms of the number of input
frames for inference.

(I) Sequential inference based methods use the information
of the currently observed frame to predict the states of
moving targets and assign their target identities. The classi-
cal examples are particle filtering [4], [7], [18] and optical
flow [19]. Recently, Avidan [20] proposed a learning-based
tracker using the online Adaboost algorithm, which maintains
a discriminative detector to track targets in the current frame.
Babenko et al. [11] significantly improved the tracking per-
formance using Multiple Instance Learning (MIL). Despite
great success, these approaches may yield identity lossing (or
switching) and trajectory fragmentation in terms of mutual-
interaction, occlusion and spurious motion, because they make
online decisions while discarding global information.

(II) Deferred inference based methods, also referred as
global data association based tracking, are to identify each
observation with either a track ID or a false alarm in a short
period of time, e.g. 15 frames. The observations, namely,
moving blobs, can be obtained by using methods such as back-
ground subtraction. The first attempts on data association opti-
mization are Multiple Hypothesis Tracker [7], [12], [21], and
Joint Probabilistic Data Association Filters [22], which search
the hypothesis (the associations of observations and targets)
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(a) (c)(b)

Fig. 1. Illustration of the trajectory analysis. (a) Batch of successive video frames as the input of our method. (b) Results of multiple target tracking, where
the numbers around the tracking ellipses imply the identities of targets. (c) Global trajectories of the video in a 3-D perspective.

by assuming one-to-one mapping, i.e. one observation to one
target. Once this assumption is relaxed, e.g. a target consisting
of a set of observations, the search space of optimization
grows exponentially with the number of frames and targets. To
overcome this problem, many deterministic optimal algorithms
have been employed, such as Extended Dynamic Program-
ming [4], [23], [24], Quadratic Boolean Programming [25],
and Hierarchical Hungarian algorithm [26]. However, it is
still impractical to apply these methods for intelligence sur-
veillance systems, due to the following aspects [2], [3],
[27]. First, some approaches of trajectory analysis need good
initializations, e.g., manually annotating targets or assuming
no conglutination at the beginning frame. Second, due to
the ambiguity caused by the similar appearances of coupled
targets, it is difficult to stably maintain the correct identities of
targets with long term tracking. In the example in Fig. 2 (a), the
track IDs of targets are switched in the crowd scene [7]. Third,
the affinity model of a moving target, i.e. object representation,
is not discriminative with respect to complex surrounding
clutter, illumination and object scale changes, which often
leads to false tracking or the splitting of one target into several
pieces [12], [27], as the examples shown in Fig. 2 (b) and (c).

B. Method Overview

According to the literature review, the proposed approach
belongs to deferred inference based methods. The goal of
our approach is to parse trajectories of moving targets under
the Bayesian framework, in which searching for the optimal
trajectory solution is formulated as a problem of maximiz-
ing a posterior probability (MAP). We briefly introduce our
method in the following three aspects: a composite feature for
matching affinity of moving targets, a spatio-temporal graph
for representing the task of trajectory analysis, and an iterative
stochastic algorithm for global inference.

(I) In surveillance videos, particularly for some outdoor
scenes, it is a critical issue to robustly recover correspondences
over frames against illumination changes, drastic motion, etc.
A consensus from a recent image feature research [28] is that
a good image feature for tracking demands two properties:
(i) the discrimination, i.e. distinctive matching over frames,
and (ii) the robustness, i.e. geometric-invariance, and toler-
ance of non-rigid motion, etc. In fact, these two properties

(a)

(c)

(b)

Fig. 2. Typical challenges in trajectory analysis. (a) Due to the mutual inter-
action in the crowd scene, the track IDs of targets are switched. (b) Tracker
is distracted by the background clutter. (c) Tracked target is split into several
ones, due to illumination and object scale changes.

sometimes conflict with each other. For example, one may
increase the region size (scale) of a local feature and/or
the dimensionality of the descriptor, but a larger feature is
usually less robust in tracking with photometric and geometric
changes. In this paper, we propose a composite image feature
to represent moving targets. We employ two types of well-
known image features, SURF [29] and MSER [30], in the
composite features. Each composite feature is composed of a
feature region generated by MSER detector within a set of
SURF feature points. This scheme is similar with the Bundled
Feature [31] proposed by Sun et al. [31] for web image search,
but we define a different matching metric to adapt object
tracking.

(II) Given the extracted composite features from the
observed frames, we can build up a spatial graph and a tempo-
ral graph to pose the problem of trajectory analysis as a joint
task of spatial graph partitioning and temporal graph matching.
In the spatial graph, each graph vertex is a detected composite
feature and each graph edge is defined by the appearance
and motion consistency of the two adjacent vertices. In the
temporal graph, each graph vertex implies one underlying
target consisting of a connected cluster of composite features,
and the graph edges denote the matching correspondences
between targets in consecutive frames. With these graph
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representations, the task of graph partitioning corresponds with
extracting and segmenting targets from background; the graph
matching task is equivalent to establishing the correspondences
of targets over frames. We can further formulate these tasks
by maximizing posterior probability under the Bayesian frame-
work. In addition, two types of scene contexts are integrated
as the informative prior, including: (i) target size prediction
using scene geometric information, inspired by the previous
work [2], [17], and (ii) target motion prior model by the path
statistics. These types of prior knowledge are very informative
to make the model robust and efficient. For example, with
two people walking close together with similar appearances,
our model tends to segment them into two individual targets
according to the prior term of target size prediction.

(III) It is a non-trivial optimization procedure to search for
the maximum of the posterior probability with our formula-
tion. There are many ambiguities caused by conglutinations,
occlusions, and similar appearances of targets and background
clutters in some crowded surveillance scenes. The searching
order or rule for an optimal solution is thus quite difficult
to design. In the perspective of energy minimization, there
exists quite a few local minimums, e.g., track ID switching,
in the search for energy minimums. Therefore, unlike the
deterministic or heuristic searching in the previous work of
trajectory inference [10], [23], we design a stochastic sampling
algorithm using the Markov chain Monte Carlo (MCMC)
mechanism [32] to explore the solution space. In literature,
some work [33] shows great results on solving spatio-temporal
data association by an MCMC-based algorithm. In our method,
we adopt an MCMC-based cluster sampling method, namely
Swendsen-Wang Cut [34], for optimal solution exploration.
The algorithm iterates between two types of MCMC dynamics
for the spatial graph partitioning and temporal graph matching
respectively.

Compared with some recently proposed approaches [16],
[33] which also adopt stochastic inference for trajectory
analysis, the major advantages of the proposed method are
as follows. 1) We adopt two types of MCMC dynamics to
iteratively solve the video object segmentation and tracking,
which are mutually conditional and closely coupled. This
algorithm is able to explore the global optimal solution and
eliminate the need for good initializations. 2) The proposed
composite feature provides a flexible and robust representation
against scene clutters and object geometric deformations in
tracking. 3) We apply our method to various challenging
surveillance videos from several public datasets and show that
it outperforms other approaches.

This paper is organized as follows. We first introduce the
problem representation and formulation in Section II and
Section III. Then Section IV presents the algorithm for tra-
jectory inference, and Section V describes the implementation
details and the system flow. A set of experiments and compar-
isons are proposed in Section VI, and the paper is concluded
with discussions in Section VII.

II. PROBLEM REPRESENTATION

Given an input video, we set the observed window spanned
over τ frames for each computation of trajectory analysis.

(a) (b)

Fig. 3. Composite feature bundling SURF points and MSER regions.
(a) Moving target tracked by black bounding box. (b) Moving target rep-
resented by composite features. Blue ellipses: MSER regions. Red crosses:
SURF points. Note that we discard the MSER regions with heavy overlap or
without SURF points included.

The observed window is moving with a step-size of η frames.
Using a state-of-the-art background modeling algorithm [35],
the image lattice �t , t = 1, . . . , τ of each frame is initially
partitioned into foreground and background domains �t =
�B

t ∪�F
t . The trajectory analysis takes the foreground domain

as the input, although the background subtraction is not
perfect, i.e. occurring false alarm regions. We then propose a
novel image feature, namely the composite feature, extracted
from the foreground domain, based on which a spatial graph
and a temporal graph are constructed. Each vertex in the spatial
graph is a composite feature and each vertex in the temporal
graph represents a segmented moving target. In the following,
we start by introducing the composite features, then define
the problem of trajectory analysis via graph representation,
and present the probabilistic formulation.

A. Composite Features

For representing moving objects, we propose a composite
image feature that bundles a region with several key points for
improving both discrimination and robustness. The proposed
composite feature involves two popular features: the point
feature SURF [29] and the region feature MSER [30]. The
SURF keypoint exploits scale-space extrema by determination
of Hessian matrix and employs integral image for rapid
computation. The MSER feature is defined by an extremal
property of its intensity function in the ellipse region and
on its outer boundary. Both of these two features are robust
against viewing angle, scale, and illumination changes. Some
extracted SURF points and MSER regions are shown in
Fig. 3(b).

Given a foreground image domain �F
t , we first detect the

point and region features, denoted by S = {si } and R = {r j }
respectively. We allow overlaps among the region features, and
discard those with large size, i.e. those containing others or
spanning half the size of the foreground domain. A composite
feature Z j is then defined as

Z j={r j , Sj={si : si ∝ r j , si ∈ S}}, r j ∈ R, Sj ⊂ S (1)

where si ∝ r j indicates that the point feature si exists inside
the region feature r j . The composite feature including no
SURF points will be removed automatically. In practice, the
number of SURF points in each composite feature is 5 ∼ 10.
A moving target represented by the composite features is
illustrated in Fig. 3.



LIN et al.: INTEGRATING GRAPH PARTITIONING AND MATCHING FOR TRAJECTORY ANALYSIS 4847

Fig. 4. Example of the measuring configuration consistency of two composite
features. Ellipse: MSER region. Red cross: SURF points. Black spots:
centroid of the feature. For the left composite feature, its relative order
for the configuration is {1, 2, 3, 4, 5}, and for the right, its relative order
is {1, 5, 3, 4, 2}. Thus, the configuration consistency of these two composite
features is: (1 + 0 + 1 + 1 + 0)/5 = 0.6.

The measuring energy E(Za, Zb) of two composite features
Za and Zb includes two terms: independence similarity and
configuration consistency.

E(Za, Zb) = EI + λg EG (2)

where λg is a weighted parameter for the two terms.
(I) The independence similarity EI is based on the matching

distance of two region features. The energy of this term is
defined as,

EI (Za, Zb) = ‖h(ra) − h(rb)‖2 (3)

where h(·) is the descriptor for SURF feature.
(II) The configuration consistency EG performs a weak

geometric verification between two composite features. Let
{si ↔ s j , si ∈ Sa, s j ∈ Sb} denotes the set of matched
feature pairs of two composite features Za and Zb. This
set can be quickly calculated by matching SURF points in
a greedy manner: searching the best match for each point
in region of the corresponding composite feature. We define
their configuration consistency based on the relative order
with point matching. Given the centroid of region feature, the
relative order of inside points can be determined according to
their spatial distance to the centroid. As Fig. 4 illustrates, we
number the points in the left based on the spatial distance to
the centroid, i.e. 1, 2, 3, 4, 5; the numbers of points in the
right is propagated from the left points based on the matching
correspondence. And the consistency can be computed as

EG(Za, Zb) =
∑

si ↔s j
1(O(si ) = O(s j ))

|{si ↔ s j }| (4)

where O denotes the relative order of the points, 1(·) is the
indicator function, and |{si ↔ s j }| is the number of matched
point pairs. The unmatched point pairs are not taken into
account in the definition because the appearance dissimilarity
has been penalized by the first term EI in Eqn. 3. Specifically,
the cost by EI would be relatively large with respect to the
EG , if the numbers of points are discrepant (e.g., 5 v.s. 10).
Moreover, to make this consistency penalty smooth and gentle,
we can additionally apply the sigmoid function on the relative
order computation.

(a) (b)

(c) (d)

Fig. 5. Graph representation of trajectory analysis. (a) Input video sequence
I[t,t+τ ]. (b) Foreground mask for frame It . (c) Spatial attribute graph
of the currently observed frame It , where each graph vertex denotes a
composite feature of the foreground domain and has four bonds connecting
to neighboring vertices. The graph edges imply the motion and appearance
consistency between two adjacent vertices. The edges between the foreground
and background domains are turned off automatically. (d) Temporal attribute
graph with the vertices being the connected clusters of spatial graph vertices.
Each temporal graph vertex indicates an underlying target. The edges in the
temporal graph represent the matching correspondences over frames. Note
that the vertices in the bottom row in (d) indicate the unmatched regions and
have no temporal connections.

We observe that, unlike a single type of features, a com-
posite feature provides a flexible and stable representation
that captures the distinctive image primitives as well as the
geometric structure.

B. Trajectory Analysis via Graph Representation

Given the observed window, i.e. a period of frames I[0,τ ],
we extract the composite features {Zt,i , t = 0, . . . , τ } on the
foreground areas �F[0,τ ]. Then we obtain a set of spatial graphs
GS[0,τ ], where each composite feature is treated as the graph
vertex vt,i = Zt,i , t = 0, . . . τ .

The goal of trajectory analysis is to segment moving targets
and recover their correspondences in each frame. With the
graph representation, this problem is posed as a joint task of
graph partitioning and matching.

I. Spatial graph partitioning is to segment targets over
a time span τ . As illustrated in Fig. 5 (b), we represent the
partition of the observed frames as �[0,τ ]

�[0,τ ] = {πt ; t = 0, 1, 2, . . . , τ }
πt = {Ut,i ; i = 0, 1, 2, . . . , Kt } (5)

where Kt is the target number at time t , and Ut,0 indicates
the false alarm regions, i.e. not target regions but proposed as
the foreground. Each moving target Ut,i at time t is described
by a bounding box

Ut,i = {xt,i , yt,i , wt,i , ht,i }, i = 1, 2, . . . , Kt (6)

where (xt,i , yt,i ) denotes the target center and (wt,i , ht,i )
denotes the width and height. The initial foreground domain
�F

t consists of the target image domains �F
t,i and false alarm

domains �F
t,0

�F
t =

Kt⋃

i=1

�F
t,i

⋃
�F

t,0. (7)
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We solve the foreground partitioning �t with a spatial
graph representation (as shown in Fig. 5(c)), defined over the
foreground image lattice with nearest 4 neighbor connections,
GS

t = (V S
t , E S

t ), where V S
t is the set of graph vertices and

E S
t is the set of link edges connecting neighboring graph

vertices. Each spatial graph vertex vS
t,i = (Zt,i , lt,i ) ∈ V S

t
includes one composite feature Zt,i and the corresponding
label lt,i = [0, Kt ], indicating the vertex belongs to certain
target or false alarm. Therefore, each target Ut,i at time t
corresponds to a set of connected graph vertices V S

t,i ⊂ V S
t .

We solve the task of graph partitioning by turning off edges,
i.e., generating disjoint subgraphs, which will be introduced
in Section IV-A.

II. Temporal graph matching is recovering the correspon-
dences of targets over time span τ . We represent a set of
matching matrices by �[0,τ ]

�[0,τ ] = {φt ; t = 1, 2, . . . , τ − 1} (8)

φt (Ut,i ) = Ut+1,i

⋃
{∅}

where each matrix φt describes a mapping relation from the
t-th frame to the (t + 1)-th frame. A target matching to ∅
indicates that it is occluded or moving out at the current
frame (i.e. being “killed”), while a target with no matches in
previous frames indicates that it is newly appearing (i.e. being
“born”).

As illustrated in Fig. 5 (d), a temporal graph GT =
(V T , ET ) is defined for moving targets. Each temporal graph
vertex vT

t,i = (Ut,i , lt,i ) ∈ V T includes a moving target Ut,i

and its matching label lt,i at time t . Each edge indicates the
matching relation of two vertices between adjacent frames,
as et,i = {< va, vb >: va, vb ∈ V T , < va, vb >∈ E S

t }.
Since we have performed partitioning on the spatial graph, we
can reasonably assume one-to-one mapping between temporal
nodes. Note that unmatched nodes are allowed to stand alone,
caused by false alarm regions from the background subtrac-
tion. In Fig. 5(d), the blobs with different colors represent
the temporal graph nodes and the dotted ones indicate the
unmatched regions.

Therefore, for the problem of trajectory completion, we
define the following solution representation W from the
observed I[0,τ ] as

W[0,τ ] = {K[0,τ ],�[0,τ ],�[0,τ ]} (9)

where K[0,τ ] denotes the foreground target number in time
span τ , �[0,τ ] denotes the partition result for each frame,
and �[0,τ ] denotes the matching correspondences of moving
targets between adjacent frames in the form of matrix mapping
from one target to another.

Equivalently, the solution configuration of trajectory com-
pletion can also be represented by N motion trajectories, also
called “cables” in [36]

W[0,τ ] = {N, Ci ; i = 0, 1, . . . N} (10)

where C0 represents the false alarm regions, and other cable
represents the trajectory of a foreground moving target,
respectively. This representation makes it simple to define the

motion models

Ci = (ti,b,ti,d ,{Ut,i ; t ∈ [ti,b, ti,d ]}); i = 1, . . . , N, (11)

C0 = {Ut,0; t = 0, 1, . . . , τ } (12)

where ti,b and ti,d denotes the birth time and death time of
the trajectory Ci , respectively.

Therefore, in the probabilistic formulation in Section III, we
shall be able to switch between the two notations above.

III. PROBABILISTIC FORMULATION

Based on the definition of solution W , we can formulate
the inference problem in a Bayesian framework, and the
optimal solution W∗ can be solved by maximizing a posterior
probability

W∗[0,τ ] = arg max
W

p(W[0,τ ]|I[0,τ ]) (13)

= arg max
W

p(I[0,τ ]|W[0,τ ]; β)p(W[0,τ ]|θ)

where β and θ are the parameters for the likelihood and prior
models respectively.

A. Prior Model

We define prior model p(W[0,τ ]|θ) on scene contexts,
which provide informative guidance for graph partitioning and
matching, as

p(W[0,τ ]|θ) = p(�[0,τ ]) · p(�[0,τ ]). (14)

Note that each probability term is assumed to be independent,
since they can be calculated irrelatively.

I. Partition prior p(�[0,τ ]) We assume each frame is
separately segmented and define the prior as

p(�[0,τ ]) =
τ∏

t=0

p(πt) =
τ∏

t=0

Kt∏

i=0

p(Ut,i). (15)

Instead of using the Potts model as a partition prior in previous
work [37], we predict the target location and size according
to the scene surface property and information of camera
calibration.

According to the research of using geometric context [17],
the object size in the image plane is correlated with the phys-
ical size (in the real world) according to the scene geometric
information, i.e. the camera parameters and the ground plane.
The scene geometry can be roughly estimated in an interactive
manner in a surveillance system according to a recent work [2].
We can then employ the informative prior of target size in the
image plane, if the tracked targets belong to a specific object
category. In other words, the prior distribution of target size is
conditional on the target location in the image. In this work,
considering the requirement of real-time processing, it is not
practical to integrate the target recognition in the trajectory
analysis, and we thus make the assumption that the semantic
label of targets is specified in a certain scene. In fact, this
assumption is reasonable, e.g., the indoor surveillance systems
usually aim at about people while the outdoor systems usually
track vehicles.
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(a)

(b)

Fig. 6. Location-size constraint. (a) Target size in the surveillance image can
be directly estimated according to the homography between the image plane
and the ground plane. (b) Example of predicting vehicle sizes in the image
as prior information.

Fig. 6 (a) illustrates the location-size prediction with scene
geometry. Let B and C denote the top and the bottom of
car, A the intersection of the car and the horizon line in
the image plane, and D the vertical vanishing point. Besides,
let h p denote the car height and hc the camera height. The
expected size of an observed vehicle on the ground plane can
be predicted by simply following the cross ratio theorem

BC

B A
/

DC

D A
= h p

hc − h p
. (16)

Therefore we can obtain the target size distribution with
respect to the target location fc(h, w|x, y). Suppose the loca-
tion of target Ut,i is (xt,i , yt,i ) and the partition prior can be
thus written as

p(Ut,i ) ∝ fc(h, w|x = xt,i , y = yt,i). (17)

An example of predicting sizes of vehicles in the surveillance
scene is presented in Fig. 6 (b), where we sample vehicle sizes
from fc(h, w|x, y).

II. Matching prior on trajectory p(�[0,τ ]) For simplicity,
we use the cable representation to define this prior model,
which includes two terms: (i) the birth, death, length (lifespan)
of the cable, and (ii) trajectory shape of the cable. Thus, we
have the matching prior factorized to obtain the following
probability terms

p(�[0,τ ]) =
N∏

i=0

p(Ci ) (18)

p(Ci ) = p(ti,b, ti,d )p(�i ,R) (19)

where Ci represents the i -th target trajectory. The first term
p(ti,b, ti,d ) gives the prior distribution of birth/death on the
global trajectory as shown in Fig. 7(a). �i denotes the tra-
jectory shape, i.e. the curve of the trajectory. The second
term p(�i ,R) is a global motion prior based on a path
model R, which consists of a set of reference trajectories {�},
as shown in Fig. 7(b). We can learn these reference trajectories

(a) (b)

Fig. 7. Statistical path model for defining the matching prior on trajectory.
(a) Statistical birth and death positions of moving targets in the scene.
(b) Reference trajectories in the scene.

by clustering in a supervised way according to the method
reported by Wang et al [36]. Then the motion prior is in the
form of a mixture model plus a robust statistic, as

p(�i ,R) ∝ exp{− min
� j∈R


(�i , � j ) + ε} (20)

where the function 
(·) denotes the geometrical distance [38]
between the shapes of two trajectories, and ε is a tuning
parameter for robustness.

B. Likelihood Model

The likelihood model p(I[0,τ ]|W[0,τ ]; β) includes the two
following aspects: (i) the region appearances fitting with the
background model, and (ii) the appearance consistency of the
trajectories.

p(I[0,τ ]|W[0,τ ]; β) =
τ∏

t=0

p(�F
t |πt ,B) (21)

·
N∏

i=1

p(�(Ci )|Ci )

where �F
t denotes the image domain of the foreground and

B the background model proposed by [35]. �(Ci ) indicates
the image domain covered by trajectory Ci , i.e. the moving
target Ui over t frames. The appearance consistency of the tra-
jectories p(�(Ci )|Ci ) is equivalent to the matching similarity
between targets over frames, as

p(�(Ci )|Ci ) =
ti,d −1∏

t=ti,b

p(�F
t+1,i |�F

t,i) (22)

where �F
t+1,i and �F

t,i denote the image domains of adjacent
targets. The target matching can be further calculated by
measuring the composite features of the targets

p(�F
t+1,i |�F

t,i) ∝ exp
− ∑

Zi ∈Ut,i , Z j ∈Ut+1,i
E(Zi , Z j )

|Ut,i | (23)

where E(vi , v j ) is the distance metrics between two composite
features, as defined in Eqn.2. |Ut,i | denotes the total number
of extracted features in the target.
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IV. INFERENCE ALGORITHM

Given the spatial and temporal graph representations, the
problem of trajectory recovery is posed as two coupled tasks of
spatial graph partitioning �[0,τ ] and temporal graph matching
�[0,τ ]. In this section, we discuss a stochastic sampling
algorithm to jointly solve the two tasks.

The reasons of using stochastic scheme rather than other
deterministic optimization methods, e.g. Belief Propagation,
or Graph-cuts, are as follow. (1) It is difficult to design
fast searching rules due to the unpredictable variance and
ambiguity of tracked targets. (2) The probabilistic formulation
is a non-convex representation. (3) We usually cannot obtain
the reliable initialization for trajectory analysis.

The proposed stochastic inference algorithm, designed
under the Metropolis-Hasting mechanism [32], is able to
efficiently seek the optimal solution W[0,τ ] from the posterior
probability p(W[0,τ ]|I[0,τ ]) as defined in Eqn. 13

W∗[0,τ ] ∼ p(W[0,τ ]|I[0,τ ]). (24)

We simulate a ergodic and aperiodic Markov chain in which
the algorithm visits a sequence of states in the joint space of
{�[0,τ ],�[0,τ ]} over the time span τ . Specifically, the sampling
process iterates between two types of Markov chain Monte
Carlo (MCMC) dynamics and infers the graph partitioning
�[0,τ ] and graph matching �[0,τ ] respectively. There are two
components working in the iterative manner as follows:

1) Fixing the current state of graph matching �[0,τ ], we
perform cluster sampling to explore the new solutions
of graph partition �[0,τ ].

2) Fixing the current state of graph partition �[0,τ ], we
update the graph matching state �[0,τ ] by changing the
matching relations of objects in the trajectories.

In both two components, each sampling is achieved by
realizing a reversible jump (i.e. operator) between any two
successive states to explore new solutions, for either graph
partitioning or graph matching. The acceptance of a new
state is decided based on a Metropolis-Hastings [32] decision
to guarantee the convergence of the inference algorithm. In
general, given two successive states A and B for either
partitioning or matching, the acceptance rate is defined as:

α(A → B) = min

(

1,
Q(B → A)p(B)

Q(A → B)p(A)

)

, (25)

where p(A) and p(B) are the posterior probability of W[0,τ ]
defined in Eqn. 13. Q(B → A) is the proposal probability
to drive the state transition from B to A and conversely,
Q(A → B) is the proposal probability from state A to B .

How to design the proposal probability for driving the
solution state transition is a non-trivial task that was addressed
by a branch of works in literature [33], [34], [37]. Recently, a
MCMC-based cluster sampling algorithm, namely “Swendsen-
Wang Cut”(SWC), is proposed for image segmentation, which
is able to simplify the calculation of the ratio of proposal
probability Q(B→A)

Q(A→B) in graphical models. We refer to [34] for
the theoretical background.

In the following, we will discuss, respectively, the cluster
sampling algorithm for graph partitioning and graph matching.

A. Sampling for Spatial Graph Partitioning

Given a spatial graph GS
t extracted in the observed frame

It , t ∈ [0, τ ], we utilize the SWC sampling for the graph
partition inference. The algorithm achieves a reversible jump
between two states in the solution space including the follow-
ing two steps.

Step 1. We generate a connected cluster by probabilistically
turning off the edge links in the graph.

In the spatial graph GS
t = (V S

t , E S
t ), suppose that V S

t is the
set of graph vertices specifying the composite features and E S

t
is the set of edges connecting neighboring graph vertices, as
shown in Fig. 5(c). For notation simplicity, we omit the time
stamp t and the superscript S in the algorithm description.
For any edge e ∈ E S , we introduce an auxiliary random
variable μe = {on|off}, i.e. the connecting variable, which
indicates whether the edge is turned on or off. The edge turn-
on probability qe is defined according to the similarity of the
two connected vertices,

qe = p(μe = on|va, vb) (26)

where va and vb are two graph vertices connected by the
edge e. We collect some discriminative appearance and motion
features (like the color, orientation gradient, and optical flow),
which form a compact histogram F , i.e. each histogram bin
indicates a specific feature dimension. For the image domain
of the vertex, we describe colors by Luv metrics and pool
over into 32 bins; the orientation gradients are quantized
with 48 bins, and the optical flows with 9 bins. For an edge
e =< va, vb >, the turn-on probability qe of two adjacent
vertices can be thus defined with their appearance and motion
consistency, as

qe = q(ue = on|F(va), F(vb)) ∝ (27)

exp

(

−K(F(va)‖F(vb)) + K(F(vb)‖F(va))

Te

)

where K(·) is the Kullback-Leibler divergence between any
two histograms and Te is a constant temperature factor. Hence
each edge is turned off with probability 1 − qe (as shown in
Fig. 8). It is worth mentioning that the turn-on probabilities
of edges are calculated during the graph extraction before the
sampling iteration.

For an arbitrary edge e, we then sample the connecting
variable μe following the Bernoulli probability,

μe ∼ Bernoulli(qe). (28)

Thus, graph vertices connected together by “on” edges form
a connected cluster (denoted by CC for simplicity), in which
all vertices will share the same label in partitioning. Usually
vertices in a CC have similar appearance and thus most likely
belong to the same object. Fig. 8 illustrates a CC generated
from different partition states. Note the edge between different
objects (different colored nodes) are turned off determinis-
tically. Compared to other graph partition algorithm (e.g.,
Graph-cuts [39]) that turns off the edges by analytically finding
the maximum flow over edges, the sampling method enables
us to search for more possible solutions of graph partition.
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(a) (c)(b)

Fig. 8. Three typical solution states in spatial graph. At each stage of
sampling for spatial graph partitioning, a connected cluster, CC , is generated
by turning edges off and are then re-labeled for new solution states. (a) One
state with a generated CC . (b) and (c) States by re-labeling the CC .

Therefore, the ratio of proposal probability Q(B→A)
Q(A→B) in

Eqn. 25 can be re-factorized as generating and labeling the
connected cluster, as

Q(B → A)

Q(A → B)
= q(CC B |B)q(L(CC B))

q(CC A|A)q(L(CC A))
, (29)

q(CC B |B)

q(CC A|A)
=

∑
e∈CB

(1 − qe)
∑

e∈CA
(1 − qe)

(30)

where CC A and CC B denote the connected cluster generated
on state A and B , respectively. CA denotes the set of edges
that are turned off on state A, and similarly CB is the turned-
off edge set on B . Then we discuss the labeling of connected
component in the next step.

Step 2. We explore for a new solution of graph partitioning
by labeling the generated CC . In practice, a few (e.g. 2 ∼ 5)
CCs will be generated and we select one of them randomly.

Assume that the current partition state is � =
{U0, U2, . . . , UK } where U0 denotes the background regions
and Ui , i ∈ [1, K ] a segmented object. Note that the CC may
include the vertices from multiple targets. Then we can assign
the CC a label from 0 to K to update the partition state by
three types of reversible jumps.

1) Split-and-merge The CC is extracted from one object
and merged into another one. The jump between the
state (a) and (b) is an example as shown in Fig. 8. This
jump is self-reversible.

2) Split The selected CC is assigned a new label, that is,
a new object is created. In Fig. 8, from state (a) or (b)
to state (c) is a “birth” jump.

3) Merge The whole object is selected as a CC and merged
into another object, as from state (c) to state (a) or (b)
in Fig. 8. The split jump and merge jump are mutual
reversible.

These jumps can be defined in the same form as

{L(v) = i, v ∈ CC, i ∈ [1, K ]}
� {L(v) = i ′, v ∈ CC, i ′ ∈ [1, K ]} (31)

where L(v j ) indicates the label of vertex v.

B. Sampling for Temporal Graph Matching

Graph matching sampling in the temporal graph is similar
with sampling in the spatial graph. Note that the temporal
sampling may cause state changing in the spatial graph, since
each segmented object in the spatial graph is a node in the
temporal graph, as shown in Fig. 5(d).

(a) (b)

(c) (e)(d)

Fig. 9. Illustration of inference in the temporal graph. (a) Connected
cluster is generated by probabilistically turning off the edge connection.
(b)–(e) Solution state transition by different reversible jumps.

Similarly, we first need to construct the temporal graph
GT = (V T , ET ) within the observed period [0, τ ], and calcu-
late the turn-on probabilities of edges eT ∈ ET between arbi-
trary neighboring vertices. Recall that each vertex vT ∈ V T

indicates a moving target represented by a bounding box as
shown in Eqn. 6. We can thus use some simple appearance
features on the image domains of vertices to define the turn-
on probability, just similar with the definition in the spatial
graph shown in Eqn. 27.

In the inference for graph matching, we first randomly select
one trajectory Ci at the current solution state, which is a bit
different compared with the inference in the spatial graph.
And we generate a sub-trajectory as the connected cluster
CC by probabilistically turning off the edge connections, as
illustrated in Fig. 9(a). The 4 types of reversible jumps are
then performed to update the solution state. Fig. 9 illustrates
the transition of solution states.

1) Birth Assigning a new color for the selected CC , that
is, to create a new cable (trajectory), as illustrated in
Fig. 9(d).

2) Merge The selected CC is merged into another cable,
as shown in Fig. 9(e). In practice, we merge the CC
with neighboring cables.

3) Death Setting the selected CC as background (false
alarm), as shown in Fig. 9(c).

4) Swap This is an important operator in temporal sam-
pling. Given a selected CC , we swap it with another sub-
cable in the same time span. Fig. 9(b) is the succedent
state of the current state in Fig. 9(a) caused by the this
operator.

Assume that N trajectories are traced in the observed period on
the current state and each vertex v in the trajectory represents
a moving target. The birth, death, and swap jumps can be
defined in the same form as

{L(v) = i, v ∈ CC, i ∈ [0, N]}
� {L(v) = i ′, v ∈ CC, i ′ ∈ [0, N]} (32)

where L(v) represents the label of v. The implementation for
the swap jump is a bit different, since we need to select another
sub-cable, as

{L(v) ↔ L(v ′), v ∈ CC, v ′ ∈ CC ′}
� {L(v ′) ↔ L(v), v ′ ∈ CC ′, v ∈ CC} (33)

where L(v) ↔ L(v ′) represents to swap labels of the two
vertices.
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We summarize the sketch of the proposed method in
Algorithm 1, and introduce the detailed implementation in
Section V.

C. Discussion of Convergence

The joint space of {�[0,τ ],�[0,τ ]} over the time span τ
is so large that it is prohibitive to search it exhaustively.
For example, consider a case that there are K spatial graph
vertexes and N trajectories (moving targets) in average. The
solution space has in the order of O((K N)K ). In statistics, we
can simplify the maximum searching for joint probability by
using the conditional probability, if the prior is assumed to be
weak. This inspires us to design the algorithm to iteratively
sample the conditional probabilities, p(�[0,τ ]|�[0,τ ]) and
p(�[0,τ ]|�[0,τ ]), respectively, with the two MCMC dynamics.
The joint solution space is then separated into two relatively
simple spaces.

For either solution space of spatial graph partitioning or
temporal graph matching, the Markov chain is ergodic via
performing the reversible jumps, based on the Metropolis-
Hasting mechanism [32]. As the space is finite, all states
can be visited following the observation that there is a non-
zero probability for any node to be chosen into the connected
component and assigned a label by activating the jumps. Then
the Markov chain can move from a state to any other state
with non-zero probability in finite steps.

In our method, we have to limit the number of sampling
steps for efficiency consideration, as described in Algorithm 1.
Then the global convergence is no longer guaranteed and
the algorithm might obtain a local minimum. Nevertheless,
we find the experimental results satisfactory due to the fol-
lowing reasons. First, the integration of informative prior
models, e.g., p(�[0,τ ]), effectively accelerates the inference
by fast rejecting false positive proposals. Second, the cluster
sampling is much more efficient than traditional simpling
methods. The process of generating the connected cluster
is the key to efficiency improvement, in which the dis-
criminative appearance and motion features are collected for
generating effective proposals. Moreover, the cluster sampling
enlarges the space that the stochastic process can possibly
visit, and avoids often getting stuck in local minimums. An
empirical study of inference convergence will be introduced
in Section VI.

V. IMPLEMENTATION

In this section, we apply our method to a video surveil-
lance system which also involves a background modeling
module [35], and carry out the experiments with comparisons
to the state-of-the-art approaches.

We start by introducing the parameter settings in our exper-
iments. We set the value of the observed time span τ = 15
frames, and we set the observed window moving forward with
a step-size of η = 4 frames. The other related parameters for
our approach are introduced as follows.

For the composite feature definition (in Section II), the his-
togram of local orientations h(·) consists of 72 quantized bins
and each bin indicates a small range of orientation angles, i.e.

Algorithm 1: Sketch of Trajectory Analysis
Input: A period of observed frames [0, τ ], and [τ − 3, τ ]

frames are newly input.
Output: The trajectory analysis solution W[0,τ ].
1. Construct graphs on new frames.

(1) Calculate an initial foreground map by the
background subtraction.

(2) Extract the composite features by SURF and
MSER detectors.

(3) Construct the initial spatial graphs on each frame
with each composite feature being a vertex.

(4) Construct the initial temporal graph.
2. Perform the sampling algorithm with the new frames
[τ − 3, τ ].

(1) For each frame t ∈ [τ − 3, τ ], loop for 80
sampling iterations.

(i) Perform sampling for spatial graph partitioning
on frame t .

(ii) Accept the new partition state according to the
acceptance rate in Eqn. 25.

(2) Sample the temporal graph matching with frames
[τ − 4, τ ] in 100 iterations.

(i) Perform sampling for temporal graph matching.
(ii) Accept the new matching state according to the

acceptance rate in Eqn. 25.
3. Perform the sampling algorithm within the global
observed period [0, τ ].

Loop for 100 Rounds
(1) Randomly select 3 ∼ 5 frames in [0, τ ], and for

each frame t loop for 40 sampling iterations.
(i) Perform sampling for spatial graph partitioning

on frame t .
(ii) Accept the new partition state according to the

acceptance rate in Eqn. 25.
(2) Sample the temporal graph matching with frames

[0, τ ] in 100 iterations.
(i) Perform sampling for temporal graph matching.
(ii) Accept the new matching state according to the

acceptance rate in Eqn. 25.
4. Output the final solution of trajectory analysis W[0,τ ].

5 degrees. The weighted parameter λg for measuring similarity
of composite features is empirically set as λg = 0.25.

For the introduced prior models (in Section III), we train
them in an initial stage for each specific surveillance scene.
The partition prior p(�[0,τ ]), i.e. the location-size prediction
for tracked targets, is obtained by estimating the extrinsic
camera parameters using an interactive calibration toolkit [2],
where we need to label a few parallel lines and tracked
targets to calculate the vanishing points. Note that we make
an assumption that the camera is fixed with only one degree
of freedom, namely its height hc. For the matching prior
on trajectory p(�[0,τ ]), we set the tuning parameter for
robustness ε = 0.135. The geometrical distance of two
trajectories 
 is normalized into [0, 1]. It is worth men-
tioning that we are allowed to disable these prior models
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by setting them uniform, although they are very effective in
applications.

Given a period of observed frames [0, τ ], we extract com-
posite features on the newly arriving frames, i.e. 4 frames for
each sliding window, where we construct the spatial graphs
and a temporal graph. Note that the initial temporal graph con-
sists of composite features also, since temporarily no moving
target is segmented in the new frames. In the following, the
sampling procedure includes two stages: sampling in the new
frames [τ − 3, τ ] and sampling in the whole observed period
[0, τ ].

(I) In the first stage, spatial graph partitioning is performed
and the number of sampling iterations at each frame is
bounded at 80; vertices (composite features) are grouped
to indicate potential moving targets due to their consistent
appearances and motions. And then we sample the temporal
graph matching with frames [τ − 4, τ ], where the (τ − 4)-th
frame should be taken into account, since we need to extract
correspondences between the previous frames and the new
frames. We set iteration number of the temporal matching
sampling as 100.

(II) In the second stage, the spatial graph partitioning and
temporal graph matching are performed iteratively in a loop.
The loop is set as 100 rounds, and each round includes two
sampling iterations. (1) First, a small number (i.e. 3 ∼ 5) of
frames in [0, τ ] are first randomly selected for graph partition
sampling, and the number of sampling iterations at each frame
is bounded at 40. (2) Then we perform matching sampling in
the observed period [0, τ ] for 100 iterations.

VI. EXPERIMENTS

We use three public video databases, TRECVID08 [40],
PETS [41], and LHI [6], to evaluate our method and compare
with other state-of-the-arts approaches. These databases are
very challenging for the multi-target tracking task, including
scenarios with severe occlusions, scale changes or complex
background structure. A number of video clips from these
databases are selected for testing, i.e., 10 videos from LHI,
8 from PETS and 8 from TRECVID. We manually annotate
the bounding boxes of targets in the videos as the ground-truth.
In our method, the types (semantic labels) of tracking targets
are provided, which serve as the prior information. The videos
selected from the TRECVID and PETS are all indoor scenes
and the moving targets are all pedestrians; the videos in LHI
are captured from outdoor traffic surveillance, and we thus
track the moving vehicles as the targets. Table I summarizes
the number of frames as well as the number of targets in the
testing videos.

All the testing videos are with the frame rate of 15 fps
and the frame size of 352 × 288 pixels. The experiments are
carried out on a high-performance workstation with Core Duo
3.0 GHZ CPU and 8 GB memory. The computational effi-
ciency for all steps (as described in Algorithm 1) in our system
is summarized as follows. On average, the step of constructing
graphs on new frames costs 80 ∼ 100 ms; it costs 300 ∼ 450
ms to perform sampling on new frames, including spatial graph
partitioning and temporal graph matching; sampling within the

TABLE I

TESTING SEQUENCES FROM PUBLIC VIDEO DATABASES

Database No. of frames No. of targets

TRECVID 8972 389

PETS 7409 194

LHI 15213 436

TABLE II

EVALUATION METRICS

Metric Definition
Recall Frame-based correctly matched targets / total

ground-truth targets.
Precision Frame-based correctly matched targets / total output

targets.

FA/Frm Frame-based number of false alarms per frame.

SwitchIDS The number of times that the track IDs of two targets
switch.

global observed period costs around 600 ∼ 800ms. Recall that
the algorithm processes 4 newly arriving frames at a time,
i.e., the observed window is moving with a step-size of
4 frames. Thus, our system is capable of processing 3 ∼
5 frames per second on average. In practice, we can enhance
the efficiency by reducing the numbers of sampling iterations.

A few representative results of trajectory analysis are pro-
posed in Fig. 10. Most of the video clips are very challenging
due to the crowded objects, scale changes, severe occlusions
and low resolution.

In order to quantitatively evaluate the performance, we
introduce several object-level benchmark metrics, including
Recall, Precision, FA/Frm, and SwitchIDS, as shown in
Table II, which are also adopted in [8], [14]. In the litera-
ture, some other performance measures have been proposed
such as Multiple Object Tracking Precision and Accuracy
(MOTA) [26], [42]. These measures are less evident as they try
to integrate multiple factors into one scalar valued measure,
despite giving an overall picture of the performance. We write
a program to match the results with the ground-truth based on
these metrics automatically.

We compare our method with the recently proposed
approaches for similar scenarios [25], [26], [42].

Table III, Table IV, and Table V show the quantitative
results of our results with the results proposed by Zhao
et al. [42], and Huang et al. [26]. The method by Zhao
et al. [42] tracks pedestrians with a model-based approach to
interpret the image observations by multiple partially occluded
human hypotheses, and thus we only apply this method on
the TRECVID and PETS databases for human tracking. The
results show that our method achieves the best performance,
greater Recall, greater Precision, fewer FA/Frm, and fewer
SwitchIDs. To illustrate the benefits of using informative priors
in trajectory analysis, we also report the system performances
in the setting of disabling the prior components. The analysis
of these experiments are presented as follows.

1) Using deferred frames for global inference, i.e. an
observed window, is very helpful, which provides us
with more information to handle occlusions and mutual
interactions.
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Fig. 10. Several representative tracking results on public datasets.

TABLE III

RESULTS ON VIDEOS FROM THE TRECVID DATABASE

Methods Recall Precision FA/Frm SwitchIDS
Zhao et al. [42] 76.2% 72.7% 1.31 12

Huang et al. [26] 69.1% 63.1% 1.82 13

Leibe et al. [25] 78.9% 69.4% 2.01 9

The proposed 83.3% 79.4% 0.72 7

Without priors 81.3% 78.2% 1.10 8

2) The prior components, e.g. the location-size prediction,
gives very important cues for segmenting conglutinated
targets; they effectively reduce the false alarms.

3) The matching prior on trajectory, birth, death, lifespan of
the cable, and shape of the cable, are strong constraints
particularly for tracking vehicles in the traffic surveil-
lance scene, since the motions of vehicles are usually
regular in a certain scene.

4) In the PETS dataset, many pedestrians have very sim-
ilar appearances (e.g. in black coats) or motions (e.g.
walking together), despite which the iterative sampling
algorithm is shown to effectively reduce the number of
SwitchIDs.

In addition, we propose a novel benchmark metric to
evaluate the trajectory-level performance, namely Average
Tracing Rate (ATR), which is defined as the ratio of the
traced trajectory length with respect to the ground-truth. The
horizontal axis of ATR represents the coverage rate of the
traced trajectory compared to the ground-truth of the testing
videos; the vertical axis represents the proportion of trajectory
length. The ATR for a result of trajectory analysis is in the

TABLE IV

RESULTS ON VIDEOS FROM THE PETs DATABASE

Methods Recall Precision FA/Frm SwitchIDS
Zhao et al. [42] 82.4% 79.7% 0.92 18

Huang et al. [26] 71.1% 68.5% 1.98 14

Leibe et al. [25] 79.1% 73.1% 1.38 16

The proposed 87.7% 82.9% 0.82 8

Without priors 86.2% 79.8% 1.21 9

TABLE V

RESULTS ON VIDEOS FROM THE LHI DATABASE

Methods Recall Precision FA/Frm SwitchIDS
Huang et al. [26] 73.2% 72.6% 1.27 14

Leibe et al. [25] 79.7% 73.4% 1.51 10

The proposed 91.3% 86.1% 0.84 7

Without priors 90.8% 82.1% 1.07 9

form of a spot-curve for a discretized level of evaluation.
This metric is very intuitive and straightforward to visualize
the consistency of the tracking trajectories. In Fig. 11, we
propose the ATR curves of our method on the three datasets.
In this evaluation, we compare with two other MCMC-based
stochastic approaches for trajectory analysis, MCMC Data
Association (MCMC) by Yu et al. [33] and Trajectory Parsing
by Liu et al. [16].

To further analyze the algorithm convergence, we present
an empirical study on visualizing the output energy in infer-
ence. Here the output energy, − log(p(W[0,τ ]|I[0,τ ])), is the
logarithm of posterior probability within an observed period
[0, τ ]. In Fig. 12(a), for an arbitrary period, we compare with
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(a)

(b)

Fig. 11. Curves of average tracing rate (ATR) for our trajectory analysis
result and comparisons. The horizontal axis of ATR represents the coverage
rate of the traced trajectory compared to the ground-truth. The vertical axis
represents the proportion of trajectory length. In this evaluation, we compare
our method with two other MCMC-based approaches: MCMC data association
(MCMCDA) [33] and trajectory parsing [16]. (a) Curves tested on the PETS
dataset. (b) Curves on the LHI dataset.

Gibbs sampling for the trajectory analysis. For comparison,
we replace the cluster sampling method at each step by the
traditional Gibbs sampler [43] in the algorithm. We observe
that the cluster sampling converges significantly faster. More-
over, we investigate the output energies with respect to the two
important parameters in our system, the observed period length
τ and the forward step-size η. This experiment is also carried
out within a period of observed frames. We first fix η = 4
and discretely increase τ by 5 scales: τ = 15, 20, 25, 30, 35.
That is, we increase the length of period and deal with more
video frames in inference. Then we increase η = 4, 6, 8, 10, 12
with fixed τ = 15, to gradually reduce the overlap with
the previous inference. The empirical results are reported in
Fig. 12(b), where the horizontal axis represents the scale for
either parameter.

VII. CONCLUSION

The objective of this paper is to track multiple video targets
and recover their trajectories, against occlusion, interruption,
and background clutter. Compared with the previous methods
in literature, the main contributions of this paper are as follows.
First, we propose a novel unified framework of trajectory
analysis to together solve spatial graph partitioning and tem-
poral graph matching. Second, a robust composite feature

(a)

(b)

Fig. 12. Empirical study of algorithm convergence. (a) Visualization of the
energies (the vertical axis) of every ten iterations (the horizontal axis), i.e.,
− log(p(W[0,τ ]|I[0,τ ])), within an observed period [0, τ ]. Red curve: energies
for our algorithm. Green curve: energies for traditional Gibbs sampler.
(b) Output converged energies with different parameters, the observed period
length τ , and the forward step-size η. Blue curve: converged energies with
fixed η = 4 and increased τ : τ = 15, 20, 25, 30, and 35. Red curve: converged
energies fixed τ = 15 and increased η: η = 4, 6, 8, 10, and 12.

bundling the MSER feature and SURF feature is presented for
the affinity model of moving targets, against scale transition
and non-rigid motion. Third, we design a stochastic sampling
algorithm to iteratively solve the spatial graph partition and
temporal graph matching. This algorithm is designed under
the Metropolis-Hastings method without the need for good
initializations.

We have applied our method in an intelligence video
system and found satisfactory performance. In experiments,
our method is tested on several challenging videos from
the public video databases of visual surveillance, including
TRECVID, PETS, and LHI, and it outperforms the state-of-
the-art methods.

In future work, it is important to integrate object recog-
nition [44] into the trajectory analysis, which will lead to
a more general solution for video surveillance applications.
In addition, we plan to study the parallel implement for the
MCMC-based inference to further improve the computation
efficiency.
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