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Learning Compositional Shape Models of Multiple
Distance Metrics by Information Projection

Ping Luo, Liang Lin, and Xiaobai Liu

Abstract— This paper presents a novel compositional
contour-based shape model by incorporating multiple distance
metrics to account for varying shape distortions or deformations.
Our approach contains two key steps: 1) contour feature gen-
eration and 2) generative model pursuit. For each category,
we first densely sample an ensemble of local prototype contour
segments from a few positive shape examples and describe
each segment using three different types of distance metrics.
These metrics are diverse and complementary with each other
to capture various shape deformations. We regard the parame-
terized contour segment plus an additive residual ε as a basic
subspace, namely, ε-ball, in the sense that it represents local shape
variance under the certain distance metric. Using these ε-balls
as features, we then propose a generative learning algorithm to
pursue the compositional shape model, which greedily selects the
most representative features under the information projection
principle. In experiments, we evaluate our model on several
public challenging data sets, and demonstrate that the integration
of multiple shape distance metrics is capable of dealing various
shape deformations, articulations, and background clutter, hence
boosting system performance.

Index Terms— Compositional model, information projection,
object detection, shape analysis.

I. INTRODUCTION

A. Motivation and Overview

SHAPE detection is a great challenge, especially when
various shape deformations are presented, such as scale,

rotation, articulation, and distortion. Numerous methods have
been proposed for capturing shape deformations on binary
images such as [1]–[3] and achieved impressive results.
However, these techniques cannot be simply applied to
natural images because of the following two difficulties. First,
objects in real-world images often appear in different views
and poses, leading to large shape variance, e.g., distortions
and deformations. Fig. 1(a) and (b) shows a cross and its
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Fig. 1. Illustration of large shape variance. (a) and (e) Two shapes to be
matched to four candidate images, i.e., (b), (c), (f), and (g). This task is
difficult because shape deformation, occlusion, and background clutter are
induced in the images. (d) and (h) Edge maps of (c) and (g), respectively.

instance image. One needs to scale and twist the cross
in Fig. 1(a) while seeking its correspondence in Fig. 1(b).
Another example is to locate the Horse shape [Fig. 1(e)] in
Fig. 1(f). Second, object boundaries are usually incomplete
due to noises or occlusions. Two exemplars are shown in
Fig. 1(c) and (g), and their edge maps are in Fig. 1(d) and (h),
respectively, where the boundary of an object is broken into
contour segments or occluded.

In this paper, we present an effective compositional shape
model composed of local contour segments, which incorpo-
rates multiple types of shape distance metrics to cope with
the abovementioned challenges. To make different metrics
comparable with each other, we introduce a novel generative
learning algorithm that greedily selects the most representative
contour-based features to pursue the optimal shape model.
Our approach includes two key steps: 1) contour feature
generation and 2) generative shape model pursuit.

In the first step, a number of contour segments are extracted
from shape examples and represented with different distance
metrics. For each shape category, we first collect a small set
of typical shape examples, which are chosen to well cover
the variances (e.g., different views) of this object category
as shown at the left-hand side of Fig. 2(a). Then, for each
prototype shape, we extract a number of prototype contour
segments with different lengths. As shown in Fig. 2, we further
represent each contour segment with three types of shape
distance metrics, including procrustes distance [4], articulation
distance, and geodesic distance [5]. This is inspired by the
classical work of shape analysis [6], which shows that the
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Fig. 2. Illustration of shape modeling and detection with local contour segments. (a) We extract a number of contour segments from typical shape instances
for each category. (b) Extracted contour segments are spanned into subspaces, namely, ε-balls, by mapping them with different types of distance metrics.
These metrics are shown to well capture different types of shape deformations and variants. Then, we build shape models with the ε-balls, and some examples
of shape detection are also proposed.

arbitrary deformation of a contour can be decomposed
into three types: 1) the rigid (affine) transformation;
2) articulation; and 3) distortion (twist). The three distance
metrics we employed are shown by [4]–[8] well capturing the
abovementioned deformations, respectively. In the rest of this
paper, we call these prototype contour segments as proto-seg
for simplicity.

Intuitively, each proto-seg can be viewed as a point in
the metric space, where this point can be further spanned
into a subspace by introducing a statistical fluctuation
(i.e., residual) ε. As shown in Fig. 2(a), we define the subspace
centering at each proto-seg as an ε-ball, which represents the
shape variance by the proto-seg under a certain metric. Thus,
each ε-ball can be regarded as a feature or weak classifier that
decides whether a shape has a similar local variance compared
with it. The step of contour feature generation is capable of
discovering intrinsic local shape variance using different shape
distance metrics.

In the second step, the proposed compositional shape model
is trained by adaptively selecting ε-balls as local informative
features. In [9], feature selection is usually performed toward
a discriminative goal by minimizing the classification errors
over a set of labeled negative and positive samples. In contrast,
it is also desired to learn generative models [10]–[12] due to
the following facts.

1) Generative models are capable of explicitly capturing
the data variation and, thus, are more expressive than
discriminative models.

2) The models can be effectively visualized (synthesized)
for validation using the sampling processes.

In this paper, we propose a learning algorithm for generative
models, based on information projection principle [13], to
select ε-balls according to their information gains. We choose
for each category a number of positive samples and a number
of reference samples, to build the training set. Intuitively, an
ε-ball has a higher information gain if its feature statistics
is consistent within the training examples and is distinctive

from the statistics of reference examples. In the training stage,
our learning algorithm starts with an initial shape model
and proceeds to pursue a sequence of probability models
while gradually minimizing Kullback–Leibler (KL) divergence
between the current model and the previous learned model.
In the testing stage, given the learned shape model, we adopt
the sliding window approach to localize shapes in cluttered
edge maps.

To the best of our knowledge, the proposed approach is the
first attempt that fuses multiple types of shape distance metrics
by pursuing a generative model. Our approach is evaluated
on several challenging data sets, including the shape data set
with 20 animal classes [14], the ETHZ shape data set [9], the
UIUC-People [15], and one subset with 40 categories chosen
from the LHI database [16], and compared with other popular
methods. The results show that our approach can achieve or
advance the state of the art of shape detection.

B. Related Work

We first review the works of shape descriptors and shape
metrics, and then discuss the learning-based techniques for
constructing shape models.

1) Shape Descriptors and Distance Metrics: A 2-D shape is
typically represented by a set of landmarks, each indicating a
point with x and y coordinates sampled from shape boundary.
This raw representation, however, is sensitive to simple shape
deformations, such as affine transformation. To account for
these deformations, a variety of shape descriptors and distance
metrics have been proposed in the literature.

The shape boundary has been described by the Fourier
descriptor [17], skeletons [18], and moment-based fea-
tures [19]. Also, there are methods exploring the 2-D shape
space that assumes as a Riemannian manifold. For example,
Klassen et al. [20] presented a differential geometric shape
representation by employing the direction and curvature on
the shape boundary. As the above methods mainly capture
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global information of shape, the major limitation is that
they are sensitive to local changes. To address this problem,
some methods decomposed shape representations into local
contours [3], as local variances can be better captured. For
example, Hoffman and Richards [21] proposed to partition an
object shape into parts at negative curvature minima. A tree
structure was discussed in [2] to match shapes by recursively
decomposing contours.

Shape descriptors are often incorporated with the shape
distance metrics [22]–[24], to handle various shape
deformations. For example, early works such as the
polynomial approximation and its extensions [25] minimized
Euclidean distance between two point sets extracted along
the boundary. Another representative work is the procrustes
distance [4], which infers the scale factor and rotation matrix
between two shapes. The above methods were proved to be
insensitive to affine transformation. Nevertheless, the inner
distance [8] demonstrated its effectiveness in handling shape
matching against large articulation deformations. Moreover,
the methods [26], [27] based on thin plate spline have been
widely used as the nonrigid transformation model for shape
matching.

Motivated by the effectiveness of the existing shape distance
metrics, we target on utilizing them in a combinatorial and
general manner.

2) Shape Model Learning: To solve the category-level
shape classification and detection, which is also the focus
of this paper, one can learn a shape model for each shape
category. These methods often represent shapes as a loose
collection of local shape signatures (e.g., small regions,
edge pixels, or contour segments) that are described with a
certain distance metric. For example, Gu et al. [28] separate
the object shape into grid and organize the cells of grid
into a tree-structure model. The shape band model [29]
describes shape as a set of dense discrete points sampled
from edges and calculates the orientation of points as features.
More methods define shape model based on local contour
segments [3], [22], [30]–[33]. These shape models can
be trained by employing diverse learning techniques.
Shotton et al. [34] employ boosting to select contour
fragments, and a similar approach is discussed in [30].
SVM-based learning algorithms are also explored on this
task, such as [31], [32], and [35]–[37]. Zhu et al. [31]
further incorporate set-to-set matching into a discriminative
framework in which contour words and spatial layout can be
determined together to optimize classification performance.
Our approach is partially motivated by these methods, but the
main distinctions are as follows.

1) We adaptively incorporate multiple distance metrics on
local contour segments.

2) The proposed shape model is generative to explain
the shape variance rather than only discriminatively
selecting features.

The remainder of this paper is organized as follows.
We introduce the shape model in Section II and dis-
cuss the process of generating ε-balls for contour segments
in Section II-A. The shape distance metrics and the method
for shape detection are introduced in Sections III and IV,

Fig. 3. Contour-segment-based shape representation. (a) Contour (boundary)
of shape. (b) Shape (a) using contour segments with different lengths and
overlapping. For each contour segment, we encode its spatial configuration
with respect to the shape.

respectively. The experimental evaluations are reported
in Section V, and this paper is concluded with a summary
in Section VI.

II. SHAPE MODELING

Our method represents a shape S by a batch of contour
segments {c}, which are randomly sampled from shape
boundary. The segments are with varying lengths and allowed
to be overlapped with each other. As shown in Fig. 3,
we encode each contour segment by its spatial configuration
with respect to the shape. Each contour segment c is described
by a three-tuple {�, θu, θv}, where � is a set of uniformly
sampled points on it, and θu and θv are the angles of its
two end points with respect to the mass center of the
shape vcen.

At the beginning, we first extract for each category a
number of contour segments, namely, proto-segs {κ}, from
the prototype shape examples, which are selected as the means
after applying k-means algorithm on all the positive examples.
Thus, the prototype examples are the representatives of the
shape category, as shown in the left-hand side of Fig. 2(a).
We then describe each proto-seg κ with three shape dis-
tances corresponding to the various shape deformations. In the
three metric spaces, each parameterized proto-seg κ is further
spanned into a number of subspaces, namely, ε-balls, as
follows:

�w(κ) = {c|Dw(c, κ) < ε} (1)

where w ∈ {′p′,′a′,′g′} indicates the type of shape distance
metrics, i.e., procrustes distance, articulation distance, and
geodesic distance, as shown in Fig. 2(a). Each ε-ball can be
viewed as an equivalent class bounded by residual ε, in which
all the contour segments {c} are transformation invariant with
respect to κ .

One ε-ball can be transformed to a binary feature
(weak classifier) with the response of feature (output of the
classifier) defined as

r(S; κ, ε) =
{

1, Dw(c, κ) < ε, ∃c ∈ S s.t. θc ≈ θκ

0, otherwise
(2)

where θc ≈ θκ indicates that two contour segments,
c and κ , have similar positions related to the shapes.
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Fig. 4. In the step of feature evolution, all the proto-segs are mapped to the
metric space. And we grow three ε-balls for each proto-seg. The three ε’s are
determined by the ball containing 0.1%, 0.3%, and 0.5% of total proto-segs.

Intuitively, (2) shows that a shape S can be predicted as
positive if there exists a contour segment c in S such that,
compared with the proto-seg κ , both c and κ have simi-
lar positions and are similar under the distance metric w.
Unlike the discriminative boundaries in many previous works
[32], [38] that output +1 and −1, the proposed features have
zero responses to a shape S not falling into them.

A. Feature Evolution

To describe ε-balls with the distance metrics, the residual ε
needs to be further determined. We introduce an empirical
procedure called feature evolution for this step. For each
proto-seg κ in a certain metric space, i.e., w ∈ {′p′,′a′,′g′},
we generate three ε-balls, i.e., to compute ε1, ε2, and ε3,
which are determined as follows. First, we map all the
proto-segs in the metric space, where each of them can be
considered as a point, as the dots shown in Fig. 4. Second,
for a proto-seg (green line), we grow the ε starting from an
initially small value, and then the ε-ball may cover more
neighbors when the ε increases. Three ε’s are determined by
the ball containing 0.1%, 0.3%, and 0.5% of total proto-segs.
The above values of the percentages are small enough so
that each ε-ball contains a very small number of neighbors
to maintain its discriminativeness. Moreover, these values are
chosen empirically and are fixed through all the experiments,
including both the data sets with binary images and edge maps.

To achieve a compact feature representation, we prune those
redundant ε-balls with high relevance, i.e., covering similar
neighbors. We define the correlation of two arbitrary ε-balls
as

corr(�(κi ) | �(κ j )) = |�(κi) ∩ �(κ j )|
|�(κ j )| . (3)

Note that (3) is a nonsymmetric measure. For example,
if �(κ2) ⊂ �(κ1), then corr(�(κ1) | �(κ2)) = 1 and
corr(�(κ2) | �(κ1)) < 1. We prune any ε-ball �(κi)
with corr(�(κi) | �(κ j )) > γ , where γ is empirically
set as 0.8 in all our experiments. Intuitively, our approach
prefers the ε-balls with smaller sizes because they are more
discriminative.

B. Model Pursuit via Information Projection

In this section, we introduce our learning algorithm that
pursues the generative shape model with the ε-balls. For each

shape category, given a training set {(S1, l1), . . . , (SN , lN )},
where l ∈ {1, 0} denotes the label of example: 1 indicates the
positive example and 0 the reference example chosen from all
the other categories. Recall that we use k-means on the positive
examples to obtain the prototype shapes. To further group
positive samples into different views, we adopt a hierarchical
clustering method with the average linkage on the previous
results of k-means. For most of the data sets used in this
paper, grouping the samples into three to five views is enough.
More implementation details are discussed in Section V. In the
following, we mainly describe the learning procedure.

Let f (S) denote the underlying probability distribution or
target model for each shape category, from where the positive
examples are sampled, and let q(S) be an initial model or refer-
ence model, which is characterized by the reference examples.
Our objective is to learn a series of models pk(S) that approach
f (S) from q(S) by greedily choosing and matching features,
i.e., the responses of ε-balls as introduced in (2). Intuitively,
given a set of ε-balls as features {ri },1 at each iteration of
our algorithm, we first choose a feature r that best separates
the positives and the reference examples, and then compute
the weight of this feature by solving E pk [r ] = E f [r ], which
means that the kth pursued model pk(S) should have the same
empirical expectation on feature r with respect to the target
model f (S).

In addition, we introduce the information projection
principle [10], [39], which ensures the convergence of our
learning process.

Proposition 1: The pursued models pk−1(S) and pk(S) and
the target model f (S) satisfy the following equation:
KL( f (S)‖pk−1(S)) − KL( f (S)‖pk(S))

= KL(pk(S)‖pk−1(S)) > 0 (4)

where KL(· ‖ ·) denotes the Kullback–Leibler divergence.
Equation (4) shows that the procedure converges when the
information gain, the right-hand side of (4), approaches
zero. To this end, we devise an algorithm iterating between
two steps, namely, MaxMin-KL. In the Max-KL step, we
maximize KL(pk(S)‖pk−1(S)) to select the most informative
feature r that can best tell the difference between
E f [r ] = E pk [r ] and Eq [r ] = E pk−1 [r ]. Notice that at
the kth iteration, the current shape model f (S) is approx-
imated by fk(S), and the reference model is by the latest
model pk−1(S). In the Min-KL step, we minimize
KL(pk(S)‖pk−1(S)) to solve the feature’s weight.

From the above discussions, our shape model can be
expressed as the following Gibbs distribution form:

pk(S) = p1(S)

K∏
k=1

1

Zk
exp{λkrk(S)} (5)

where p1(S) = q(S) and Zk is a normalizing term that is
estimated by Zk = Eq [exp{λkrk(S)}]. λk is the feature’s
weight and thus is found by E f [rk] = E pk [rk].

Here, we discuss the MaxMin-KL iterations in more detail
for solving rk and λk in (5). Note that the number of iterations

1We simplify the notation of r(S; κ, ε) as r .
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can be estimated by the classification rate on a validation set
in practice.

1) Max-KL: This step is to optimize the following problem:
r∗

k = arg max{rk } KL(pk(S)‖pk−1(S)) (6)

= arg max{rk } λk E f [rk] − log Zk . (7)

Following [10], (6) can be approximated by:
arg max{rk } λk E f [rk] − log Zk ∼= arg max{rk } E f [rk] − Eq [rk]

(8)

which encourages a feature in the target model but not in
the reference model. We simply calculate the empirical
expectations by the mean response values as

E f [rk] = 1

N+
v

N+
v∑

i=1

rk(Si ) (9)

Eq [rk] = 1

N−
N−∑
i=1

rk(Si ). (10)

Here, N+
v represents the number of positive examples

in the same view as the ε-ball rk and N− denotes the
number of reference examples.

2) Min-KL: After the selection of a feature rk , this step
is to compute its corresponding Zk and λk so that the
constraint E f [rk] = E pk [rk] is satisfied. We conclude
that

Zk = eλk Eq [rk] + 1 − Eq [rk] (11)

λk = log
E f [rk](1 − Eq [rk])
(1 − E f [rk])Eq[rk] . (12)

A proof is given in the Appendix. For the extreme case
that E f [rk] = Eq [rk], which means feature rk is not
informative at all, then λk becomes zero. Otherwise, if
E f [rk] > Eq [rk], then rk has positive weight.

We summarize the sketch of learning shape models
in Algorithm 1.

1) Extension: The proposed algorithm is simple and fast,
because the values of E f [rk] and Eq [rk] only need to be
computed once for each feature rk on the training examples.
A possible way to improve the feature selection is that at
each step, we update E f [ri ] and Eq [ri ] for all the other
features {ri\k}, except the selected one rk , at each iteration
by the correlation introduced in Section II-A as

E f [ri ] = 1

N+
v

(1 − corr(rk |ri ))

N+
v∑

j=1

ri (S j ) (13)

Eq [ri ] = 1

N− (1 − corr(rk |ri ))

N−∑
j=1

ri (S j ). (14)

This tends to select the features that are uncorrelated and
discriminative. Section V demonstrates the effectiveness of
such an extension.

Algorithm 1: Learning Compositional Shape Model
Input: A set of training examples,

T = {(S1, l1), ..., (SN , lN )}, where l ∈ {1, 0}
denotes the positive and reference example
respectively.

1. Prototype selection: apply k-means (k = 15∼30)
on T, the “prototype” shapes are selected as the means,
as shown in the beginning of section II.
2. Feature generation: extract a set of proto-segs, {κ},
from the “prototype” shapes, and map them into three
distance matrices as in section III.
3. Feature evolution: specify the subspaces of each κ by
determining the radiuses ε1, ε2, ε3, as in section II-A.

3.1: Pose each subspace as a binary feature as Equ. (2).
3.2: Prune the highly correlated features by Equ. (3).

Loop k=1 to K
Max-KL: select rk by Equ. (8) and (9); update

E f [ri ], Eq [ri ] for the other features ri by Equ. (13).
Min-KL: calculate λk , Zk by Equ. (11).

Output: A probability shape model defined in Equ. (5).

2) Discussion: The shape model can be synthesized from
the distribution of (5) by the Hamiltonian Monte Carlo [40],
where a key step is to compute the gradient of the energy
function

K∑
k=1

λk∂rk(c), c ∈ S (15)

where c is the contour segment corresponding to the
kth feature and is represented by the different distance metrics
Dw(c, κ), which are extensively discussed in Section III. For
computation simplicity, we assume that rk(c) is a classifier
predicted soft score

rk(c) = max(0, ε − Dw(c, κ)). (16)

Then, by the sampling process, we can obtain the value of c
under the certain distance metric Dw.

For model visualization, we search for the contour segment
from all positive shapes that has a similar value with c in the
corresponding feature space. In this way, we simply find the
contour segments related with all the features of the model,
and thus obtain the synthesized the shape. Some illustrative
examples will be presented in the experiments. The detailed
method of model synthesis goes beyond our scope, and we
refer to [10] and [11] for the theoretical background.

III. DISTANCE METRICS OF CONTOUR SEGMENTS

In this section, we introduce three distance metrics com-
bined in the procedure of shape model pursuit, including pro-
crustes distance, articulation distance, and geodesic distance.

A. Procrustes Distance Metric

The procrustes distance is defined as the sum of the squared
distances over features of corresponding points on contours
c and κ

Dp(c, κ) = ‖c − κ‖2 (17)
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Fig. 5. Illustrations of different shape distance metrics for capturing deformations. (a) Rigid transformation between two bones. (b) Bijection correspondence
between two contour segments using procrustes analysis. (c) and (d) Articulated transformation and distortion (twist) between two shapes, respectively.

where c and κ are the feature vectors of c and κ , obtained by
concatenating the shape descriptors extracted from every key
point on the contour. Therefore, the problem becomes how
to search the point correspondences between two contours,
which is not trivial because different contours have differ-
ent lengths, rotations, and scales. We adopt the procrustes
matching method [4], which first translates and scales both
contours to the origin and unit lengths, and then estimate
a rotation matrix that makes these two contours having the
largest overlap, which is to minimize the following problem:

min
α,�,β

1

N

N∑
n=1

‖κn − (α�cn + β)‖2
2 (18)

where α is a scaling parameter, β ∈ R
2 is a 2-D translation

vector, and � ∈ R
2×2 is a 2-by-2 rotation matrix.

Equation (18) has a simple closed form expression as follows:

Dp(c, κ) =
(
κ ∗ κ − κ∗cc∗κ

c∗c

)
N

(19)

in which we represent each point as a complex number,
(xn, yn) = xn + iyn , and κ and c ∈ C

N are two vectors
of these complex numbers. One example of this metric is
shown in Fig. 5(a), showing the rigid transformation between
two bones, and Fig. 5(b) shows the bijection correspondences
of two contour segments. After we retrieved the correspon-
dences between the contours, we can extract features on the
key points and compute (17). In the following, we consider
the angle matrix [37] and shape context [41] as the features,
which are both rotation, translation, and scaling invariant.

1) Angle Matrix: This contour descriptor calculates the
angle of every two points on the contour with respect to a
reference point. Specifically, we compute a matrix M with
all the diagonal values equaled to zeros and every entry mij ,
i �= j , defined by the angle between a line connecting the
points (xi , yi ) and (x j , y j ) and a line from (x j , y j ) to the
reference point, which is chosen as the center of the bounding
box of the contour.

2) Shape Context: The shape context histogram is also
extracted from each point on the contour. In our implemen-
tation, we use two bins for spacial distance and six bins for
orientation from 0 to 2π . Thus, the feature vector of each point
is 2 × 6 = 12.

B. Articulation Distance Metric

In order to address the articulation problem shown
in Fig. 5(c), we devise the articulation distance metric by

combining three geometrical shape descriptors. This distance
metric is defined similarly as (17), but employs different
features that are articulation invariant. Here, c and κ denote
two 6-D feature vectors computed using the following
three shape descriptors on the corresponding contour
segments.

1) Inner Distance Between the End Points: This descriptor
computes the inner distance between the end points u, v of a
contour segment, as shown in the red dashed line in Fig. 5(c).
Following [8], we first build an undirected graph with the
points of the contour segment as its nodes, and then apply
the shortest route algorithm, e.g., Bellman–Ford, over this
graph to compute the shortest length between two points.

2) Relative Angles: As shown in Fig. 5(c), the relative
angles are θuv and θvu and are both stable under articulation,
θuv ≈ θu′v ′ and θvu ≈ θv ′u′ .

3) Articulated-Invariant Curve Signature: Let d in and deu

denote two matrices, whose elements are the inner distances
and Euclidean distances between each pair of points on a
contour segment, respectively. Given a set of points � of a
contour segment and d in

� ∈ R
|�|×|�|, which is a matrix of inner

distances based on �, this descriptor finds a set of transformed
points �′ so that deu

�′ equals d in
� in an element-wise manner.

We adopt multidimensional scaling to find �′ by minimizing
the following equation:

�′∗ = arg min
�′

|�|∑
i

|�|∑
j

(
d in
�(i, j) − deu

�′(i, j)
)2

d in
�(i, j)2

(20)

which can be minimized using the scaling by maximizing a
convex function (SAMCOF) algorithm [42]. More details can
be found in [5].

Based on �′, our articulated-invariant curve signature is
defined to be a triple, which includes the distances between
〈u′, v ′〉, 〈u′, v ′

cen〉, and 〈v ′
cen, v

′〉, where u′, v ′ ∈ �′ and v ′
cen is

the center of �′.

C. Geodesic Distance Metric

Our motivation for this descriptor comes from [5] using
geodesic distances for 3-D surface comparison. In 3-D space,
the geodesic distance between any pair of points on a surface
is defined as the length of the shortest path on the surface
between them. In 2-D space, if two 2-D shapes to be matched
have an identical view and a similar size, the counterpart of
the geodesic distance in 2-D is the distance between a pair
of points along the contour as shown in Fig. 5(d). Thus,
Dg(c, κ) is defined as the Euclidean distance between the
contour length of c and the length of the proto-seg κ .
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Fig. 6. Illustration for shape detection by our model. (a) Proto-seg. We detect
object contours from the edge map inside a ribbon of each proto-seg. (b) Idea
of moving the ribbon around its eight neighbors. (c) Example of evaluating
proto-seg in an image.

IV. MODEL-BASED SHAPE DETECTION

The shape model in (5) can be transformed into a shape
detector as

H (S) = log
pK (S)

q(S)
=

K∑
k=1

(λkrk(S) − log Zk). (21)

We then detect shapes by introducing a threshold γ (γ = 0 in
our implementation) over H (S). In particular, if H (S) ≥ γ ,
the shape S is predicted to be positive; otherwise,
H (S) ≤ γ .

To detect shapes at different scales, we adopt the coarse-
to-fine sliding window approach [38]. Given a window, the
shape model is used as a deformable template to match shape
in an image, which is to evaluate (2) for each chosen rk . Recall
that we encode the spatial configuration, i.e., �u,�v, vcen

2

for each proto-seg, as described in Section III. Thus, we only
need to evaluate the proto-seg in a specific location, rather
than in every location of the window. Furthermore, since the
object boundary in cluttered edge map is usually broken and
surrounded by noise, we can match the proto-seg within a
small region.

There are three steps to match each proto-seg.
1) We detect curves in the image inside a ribbon of κ ,

illustrated as a region in Fig. 6(a).
2) The ribbon is moved around eight positions to detect

curves, as shown in Fig. 6(b).
3) The value of rk is determined by the curve that has a

minimum distance with the proto-seg.

V. EXPERIMENTS

We apply our approach in the following tasks: 1) shape
classification using binary images; 2) shape detection from
cluttered edge maps; and 3) shape-based image categorization.
In addition, we justify the generation ability of our model by
the synthesis experiments.

2vcen of the shape is estimated by the center of the window.

Fig. 7. Few binary images of shapes from the data set with 20 animal classes
proposed in [14] are shown in the first two rows. Last five rows are several
data of the data set with 40 image categories chosen from LHI database [16].
The last row shows some label maps.

A. Experiment I: Shape Classification
We first evaluate our approach on a challenging data set

proposed in [14], which includes 20 categories, 100 binary
images of each category, with totally 2000 animal shapes.
A few examples are shown in the first two rows of Fig. 7,
in which the large intraclass variances of this data set
are demonstrated. This data set contains more examples on
each shape category than the well-known MPEG-7 shape
database [43] that has 20 images for each of 70 categories,
and thus it is more suitable for testing learning based method.

Preprocessing: We uniformly sample 200 points for each
shape, translate it to zero (the origin of coordinate), and
then rescale it to 256 × 256 with its aspect ratio preserved.
One of the challenges of this data set is that rotation is induced
by hand on each example to increase its difficulty. However,
this rotation can be reduced by estimating the first principle
component of each shape using PCA, which is similar to
compute the eigenvectors of the covariance matrix of the data.
The only difference is that our space is in two dimensions,
where each point represents a 2-D landmark on the shape
contour, rather than an example in the high-dimensional space.
Thus, we can align all the shapes using their first principle
components.

In our method, 50 shapes for each category are selected
for training and the other 50 are for testing. We first apply
k-means to pick up 10 prototype shapes as introduced
in Section III. Then, we extract 80 proto-segs with their
lengths in the range of [80, 120] points. Thus, there are
80 × 3 metrics × 3 epsilons × 10 prototype shapes =
7200 features. After feature pruning in Section II-A, we
finally obtain about 6000 features. In addition, for each shape
category, we randomly select 10 shapes from the training
set of the other categories as the reference examples.
At the beginning of the training step, we cluster the positive
training examples into four views. Moreover, the MPEG-7
database [43] is adopted as the validation set to tune the
number of features K in our model. The average value of
K is 300 on 20 categories in this experiment.

We compare with the class segment [1], inner
distance+shape context (IDSC) [8], curvature scale
space (CSS) [23], Fourier descriptor [17], contour segment +
skeleton (CS + SP) [14], bag of contour (BC) [44], and
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TABLE I

AVERAGED CLASSIFICATION ACCURACY ON THE ANIMAL DATA SET [14]

TABLE II

CLASSIFICATION RATES OF DIFFERENT COMBINATIONS OF THE PARAMETERS. THE COMBINATION IS DENOTED IN THE FORM AS

(THE NUMBER OF PROTOTYPE SHAPES)−(THE NUMBER OF VIEWS)−(THE NUMBER OF FEATURES K IN THE MODEL)

local and global features [45]. The implementations of
IDSC,3 CSS,4 CS + SP,5 and BC6 are publicly available.
We implement the class segment method and Fourier
descriptor with MATLAB. All these methods adopt the same
preprocessing step if necessary as discussed above. Table I
shows the average accuracies. The accuracies of our approach
without and with extension (Section II) are 83.0% and 88.2%,
respectively, both of which outperform all other baseline
methods. In the rest of the experiments, we report only the
results of our method with extension.

In Table II, we also evaluate our approach regarding
different combinations of the parameters, including the number
of prototype shapes, the number of views, and the number of
features K in the model. We repeated the experiment 10 times
and reported the mean and variance of the accuracies. There
are several interesting results. First, the overall classification
rates decreased when reducing the number of views, because
the selected proto-segs cannot capture the intraclass variances.
For example, a proto-seg appears in all positives (with view
variance) may lead to the largest information gain, if there
is only one view. This proto-seg may not be discriminative
among views. However, the accuracy becomes saturate
when the number of views is larger than five, because the
number of training samples for each view is limited. Second,
decreasing the number of prototype shapes hurts the results,
e.g., accuracy of 5-4-300 drops 27% compared with 10-4-300.
However, increasing it does not help much since the size of
the positive training examples becomes small. Therefore, one
may need to balance the ratio between prototype shapes and
positive training samples. Finally, adding more features to the
shape model tends to overfit the training data.

B. Experiment II: Shape Detection

We evaluate our method on two data sets: 1) the ETHZ
image data set [9] containing 255 images with their probability
edge maps and 2) the UIUC-People data set [15] containing

3IDSC: http://www.dabi.temple.edu/~hbling/code_data.htm
4CSS: http://www.mathworks.com/matlabcentral/
5CS + SP: https://sites.google.com/site/xiangbai/
6BC: https://bitbucket.org/xinggangw/bcf

Fig. 8. Some selected results on the ETHZ data set [9] with the detected
bounding boxes and contours plotted in green and yellow, respectively.

593 images, which are very challenging due to large shape
variations caused by different views and human poses.

Preprocessing: On the ETHZ data set, we select four classes
(i.e., Bottles, Giraffes, Mugs, and Swans). For each class,
we randomly partition the images into half for training and
half for testing. In the training stage, the binary images
(label maps) are manually annotated.

As the number of samples for each category is small, we
select 30 shapes from the LHI database [16] as prototype
shapes. Then, about 100 proto-segs with their lengths in the
range of [30, 120] are extracted on each prototype shape. Note
that we use a larger range in ETHZ than the range in MPEG-7
shape database. Since the images in ETHZ data set include
clutterred backgrounds, the detected contours are probably
broken. Large range enables the pursuit of discriminative short
contours. There are more than 104 features after the feature
pruning. The maximum number of the selected features K
is set to be 500 in the model pursuit. On the UIUC-People
data set, we use 346 images for training and 247 for testing,
following the same splitting standard in [15] and [46].
We randomly select 50 prototype instances from the training
set, from which we extract the proto-segs. The other setting is
the same as on the ETHZ data set. In these experiments, our
method takes only about 5–10 min to learn the shape models,
on a PC with 4-G RAM, Intel Core i5 CPU 3.3 GHz.
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Fig. 9. Comparison of PR curves for four classes on ETHZ [9].

TABLE III

PRECISIONS ARE COMPARED WITH [9], [29], [30], [32], [35], [36], [47], AND [48] AT THE SAME RECALL RATES

In the testing stage, we obtain edge maps of the testing
images by Canny detector, and then scan detection windows
with different scales as in [38]. Furthermore, the shape
matching algorithm described in Section IV is applied in
each sliding window. The radius α in Fig. 6 is set as 15, and
the radius β in Fig. 6 is 10. It takes about 15 s to process an
image on a PC as above.

Fig. 8 shows some representative results on this data set
with the detected bounding boxes shown in green and localized
curves in yellow by our system. We compare our result with
shape prior [47], shape band [29], clustering lines [30],
KAS [9], fan model [48], AND–OR tree (AOT) model [35],
and the discriminative shape model [36], using the
precision–recall (PR) curves. All the above methods are
learning-based methods except shape band. Furthermore,
shape prior, clustering lines, fan model, and our method are the
generative learning methods, while AOT and discriminative
shape model adopt discriminative learning. The results are
summarized in Fig. 9. We also report precisions of the above
methods at the same recall rates in Table III, where the first
and the second best performing methods are highlighted.
Table III shows that the discriminative methods work better
than generative methods in some complex scenarios, such as
Giraffes and Swans. Our model, however, achieves compara-
tively good results in all the four categories by incorporating
multiple shape metrics. Our approach outperformed all
existing works when the recall rate is high, e.g., 97%, where
the accuracies of most of the methods drop significantly.

On the UIUC-People data set, we also demonstrate
very promising results compared with other state-of-
the-art methods, and Table IV reports the quantitative
detection accuracies generated by our method and the
competing approaches [46], [49], [50]. It is worth mentioning

TABLE IV

DETECTION ACCURACIES ON THE UIUC-PEOPLE DATA SET [15]

Fig. 10. We show some selected results on the LHI database [16] and
demonstrate that the shape detectors are robust to various deformations,
background clutter, and occlusion.

that [49] relies on complicated appearance features and a
manually annotated model structure and [46] requires a good
initialization for model training.

C. Experiment III: Shape-Based Image Categorization

We further evaluate our method on a image data set with
40 categories selected from the LHI database [16], which
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Fig. 11. Top 20 most informative features of Horse (left) and Mouse (right) are visualized. Different colors indicate three distance metrics. From these
results, we conclude that horses are more likely to perform articulation and mice are usually distorted, which matches our intuition very well. Moreover, we
find that articulation mostly occurs on four limbs, while distortion happens more often on the back and tail of animals. The shape models consisting of ε-balls
can be viewed as the implicit deformable templates that include different local shape variances.

Fig. 12. Several synthesized examples from the learned shape models.

is publicly available.7 Each category has 90 images with
3600 images in total. Some shapes and label maps are shown
in Fig. 7. For each image, we obtain its edge map by
the contour detection algorithm [51]. Our task is to detect
and classify shapes from the edge maps. Due to the heavy
occlusion, shading, and surrounding clutter, this task is more
complicate. For example, the animal faces in Fig. 7 are hardly
distinguished.

Preprocessing: For each shape category, we separate the
images into half for training and half for testing. Then,
15 positive examples are chosen as the prototype shapes.
We finally group the positives into five views. The additional
settings are similar to Experiment II.

We compare our result with generative model [52], active
skeleton [53], fan model [48], AOT model [35], and BC [44].
The experiment is conducted using the publicly available
code of the above methods. Our approach obtained an
overall classification rate as 88.5%, which outperforms the
77.2% of active skeleton [53], 81.4% of generative model [52],
82.1% of BC [44], 83.4% of fan model [48], and
86.1% of AOT [35]. Fig. 10 shows several selected results
on this data set.

D. Experiment IV: Model Visualization

In this experiment, we visualize the learned shape models
and showed that which types of features are effective with
regard to different categories. We use two categories, Horse
and Mouse, from the data in Experiment III. As shown
in Fig. 11, we sample top 20 informative features using
the strategy discussed in Section II. Features with different

7http://www.imageparsing.com/FreeDataOutline.html

distance metrics are denoted by different colors, green for
procrustes metric �p , orange for articulation metric �a , and
purple for geodesic metric �g . The results show that horses
are more likely to perform articulation and mice are usually
distorted, which matches our intuitive observation very well.
Moreover, we also present some illustrative examples that are
synthesized from the learned shape models in Fig. 12. These
results well demonstrate one of the advantages of our model,
i.e., the synthesis results make our model very intuitive and
understandable, compared with the traditional discriminative
classifiers.

VI. CONCLUSION

This paper incorporated three types of shape distance
metrics to learn compositional shape models. Our model
utilized parameterized contour segments to form the implicit
deformable templates, which account for different shape vari-
ances. Extensive experiments demonstrated that our method
significantly improved the shape classification and detection
results on several public data sets.

The proposed algorithm is very general. Different shape
descriptors and distance metrics can be adaptively incorporated
into our framework. Also, the model pursuit algorithm can
evaluate the informativeness of shape distance metrics for each
shape category.

Our future work will focus on three aspects.
1) We intend to develop more expressive structure for

contour-based shape modeling, e.g., AND–OR graph
model.

2) Our shape matching algorithm in Section IV that
evaluates one proto-seg at a time can be made
parallelized. In this case, our algorithm can be
generalized to a large-scale problem.
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3) We will explore more applications, such as recognizing
sketches drawn by the artists, shape retrieval, and shape-
based image retrieval. To this end, we may study more
effective shape distance metrics into our framework.

APPENDIX

Proof of (11) and (12): After the selection of the most
informative feature rk in the kth Max-KL step, we find
the corresponding λk and Zk by satisfying the constraint
E f [rk] = E pk [rk], where E f [rk] is approximated by the
positive training examples. The proof follows the notations
in Algorithm 1 as below:

E pk [rk] =
∑
∀S∈T

pk(S)rk (22)

=
∑
∀S∈T

pk−1(S)
1

Zk
exp{λkrk}rk (23)

= 1

Zk

∑
{S|Dw(S)≥ε}

pk−1(S) exp{λkrk}rk (24)

+ 1

Zk

∑
{S|Dw(S)<ε}

pk−1(S) exp{λkrk}rk

= 1

Zk
exp{λk}E pk−1 [rk]. (25)

For any shape S, if Dw(S) ≥ ε8, then rk = 0; otherwise,
rk = 1. Therefore, (24) can be written as (25). Moreover,
following (5), Zk = Eq [exp{λkrk}], which has the following
form if we apply the same trick:

Zk = Eq [exp{λkrk}] (26)

=
∑
∀S∈T

pk−1(S) exp{λkrk} (27)

=
∑

{S|Dw(S)≥ε}
pk−1(S) exp{λkrk} (28)

+
∑

{S|Dw(S)<ε}
pk−1(S) exp{λkrk}

=
∑

{S|Dw(S)≥ε}
pk−1(S) (29)

+
∑

{S|Dw(S)<ε}
pk−1(S) exp{λk}

= exp{λk}E pk−1 [rk] + 1 − E pk−1 [rk]. (30)

Note that we approximate Eq [rk] using E pk−1 [rk] at the
kth step as in Section II, that is why (26) can be expanded
as (27).

Let E f [rk] = E pk [rk] and combine (25) with (30)

λk = log
E f [rk](1 − Eq [rk])
(1 − E f [rk])Eq [rk] (31)

Zk = exp{λk}Eq [rk] + 1 − Eq [rk]. (32)

8We simplify the notation Dw(c, κ) for the selected feature rk as Dw(S).
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