
Geometric Scene Parsing with Hierarchical LSTM

Zhanglin Peng1, Ruimao Zhang1, Xiaodan Liang1, Xiaobai Liu2, Liang Lin1⇤

1Sun Yat-sen University, Guangzhou, China
2San Diego State University, U.S.

Abstract
This paper addresses the problem of geometric
scene parsing, i.e. simultaneously labeling ge-
ometric surfaces (e.g. sky, ground and vertical
plane) and determining the interaction relations
(e.g. layering, supporting, siding and affinity) be-
tween main regions. This problem is more chal-
lenging than the traditional semantic scene label-
ing, as recovering geometric structures necessar-
ily requires the rich and diverse contextual infor-
mation. To achieve these goals, we propose a
novel recurrent neural network model, named Hi-
erarchical Long Short-Term Memory (H-LSTM).
It contains two coupled sub-networks: the Pixel
LSTM (P-LSTM) and the Multi-scale Super-pixel
LSTM (MS-LSTM) for handling the surface label-
ing and relation prediction, respectively. The two
sub-networks provide complementary information
to each other to exploit hierarchical scene contexts,
and they are jointly optimized for boosting the per-
formance. Our extensive experiments show that
our model is capable of parsing scene geometric
structures and outperforming several state-of-the-
art methods by large margins. In addition, we show
promising 3D reconstruction results from the still
images based on the geometric parsing.

1 Introduction
Humans can naturally sense the geometric structures of a
scene by a single glance, while developing such a system
remains to be quite challenging in several intelligent appli-
cations such as robotics [Kanji, 2015] and automatic naviga-
tion [Nieuwenhuisen et al., 2010] . In this work, we inves-
tigate a novel learning-based approach for geometric scene
parsing, which is capable of simultaneously labeling geomet-
ric surfaces (e.g. sky, ground and vertical) and determines
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Figure 1: An illustration of our geometric scene parsing. Our
task aims to predict the pixel-wise geometric surface labeling
(first column) and the interaction relations between main re-
gions (second column). Then the parsing result is applied to
reconstruct a 3D model (third column).

the interaction relations (e.g. layering, supporting, siding and
affinity [Liu et al., 2014]) between main regions, and further
demonstrate its effectiveness in 3D reconstruction from a sin-
gle scene image. An example generated by our approach is
presented in Figure 1. In the literature of scene understand-
ing, most of the efforts are dedicated for pixel-wise seman-
tic labeling / segmentation [Long et al., 2015][Pinheiro and
Collobert, 2015]. Although impressive progresses have been
made, especially by the deep neural networks, these methods
may have limitations on handling the geometric scene parsing
due to the following challenges.

• The geometric regions in a scene often have diverse ap-
pearances and spatial configurations, e.g. the vertical
plane may include trees and buildings of different looks.
Labeling these regions generally requires fully exploit-
ing image cues from different aspects ranging from local
to global.

• In addition to region labeling, discovering the interaction
relations between the main regions is crucial for recover-
ing the scene structure in depth. The main difficulties for
the relation prediction lie in the ambiguity of multi-scale
region grouping and the fusion of hierarchical contextual
information.

To address these above issues, we develop a novel Hierar-
chical LSTM (H-LSTM) recurrent network that simultane-
ously parses a still image into a series of geometric regions

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3439



⋯⋯

⋯

⋯⋯

⋯

⋯
⋯
⋯

⋯

Convolutional Neural Network

MS-LSTMMS-LSTM

P-LSTM

MS-LSTM

P-LSTM P-LSTM⋯

⋯ supporting
layering
affinity

sky
vertical
ground

Multi-scale
Super-pixels

Figure 2: The proposed recurrent framework for geometric scene parsing. Each still image is first fed into several convolutional
layers. Then these feature maps are passed into the the stacked Pixel LSTM (P-LSTM) layers and Multi-scale Super-pixel
LSTM( MS-LSTM) to generate the geometric surface labeling of each pixel and interaction relations between regions, respec-
tively.

and predicts the interaction relations among these regions.
The parsing results can be directly used to reconstruct the 3D
structure from a single image. As shown in Figure 2, the
proposed model collaboratively integrates the Pixel LSTM
(P-LSTM) [Liang et al., 2015] and Multi-scale Super-pixel
LSTM (MS-LSTM) sub-networks into a unified framework.
First, the P-LSTM sub-network produces the geometric sur-
face regions, where local contextual information from neigh-
boring positions is imposed on each pixel to better exploit the
spatial dependencies. Second, the MS-LSTM sub-network
generates the interaction relations for all adjacent surface re-
gions based on the multi-scale super-pixel representations.
Benefiting from the diverse levels of information captured by
hierarchical representations (i.e. pixels and multi-scale super-
pixels), the proposed H-LSTM can jointly optimize the two
tasks based on the hierarchical information, where different
levels of contexts are captured for better reasoning in local
area. Based on the shared basic convolutional layers, the pa-
rameters in P-LSTM and MS-LSTM sub-networks are jointly
updated during the back-propagation. Therefore, the pixel-
wise geometric surface prediction and the super-pixel-wise
relation categorization can mutually benefit from each other.

The proposed H-LSTM is primarily inspired by the success
of Long Short-Term Memory Networks (LSTM) [Graves et

al., 2007][Kalchbrenner et al., 2015] on the effective incor-
poration of long and short rang dependencies from the whole
image. Different from previous LSTM structure [Byeon et

al., 2014][Byeon et al., 2015] that simply operates on each
pixel, our H-LSTM exploits hierarchical information depen-
dencies from different levels of units such as pixels and multi-
scale super-pixels. The hidden cells are treated as the en-
hanced features and the memory cells can recurrently remem-
ber all previous contextual interactions for different levels of
representations from different layers.

Since the geometric surface labeling needs the fine predic-
tion results while the relation prediction cares more about
the coarse semantic layouts, we thus resort to the special-
ized P-LSTM and MS-LSTM to separately address these two
tasks. In terms of geometric surface labeling, the P-LSTM
is used to incorporate the information from neighboring pix-
els to guide the local prediction of each pixel, where the lo-
cal contextual information can be selectively remembered and
then guide the feature extraction in the later layer. In terms of

interaction relation prediction, the MS-LSTM effectively
reduces the information redundancy by the natural smoothed
regions and different levels of information can be hierarchi-
cally used to extract interaction relations in different layers.
Particularly, in each MS-LSTM layer, the super-pixel map
with a specific scale is used to extract the smoothed feature
representation. Then, the features of adjacent super-pixels
are fed into the LSTM units to exploit the spatial dependen-
cies. The super-pixel map with larger scale is used in the deep
layer to extract the higher-level contextual dependencies. Af-
ter passing through all of the hierarchical MS-LSTM layers,
the final interaction relation prediction can be obtained by the
final relation classifier based on the enhanced features bene-
fiting from the hierarchical LSTM units.

This paper makes the following contributions. (1) A novel
recurrent neural network model is proposed for geometric
scene parsing, which jointly optimizes the geometric surface
labeling and relation prediction. (2) Hierarchically modeling
image contexts with LSTM units over super-pixels is original
to the literature, which can be extended to similar tasks such
as human parsing. (3) Extensive experiments on three pub-
lic benchmarks demonstrate the superiority of H-LSTM over
other state-of-the-art geometric surface labeling approaches.
Moreover, we show promising 3D reconstruction results from
the still images based on the geometric parsing.

2 Related Work
Semantic Scene Labeling. Most of the existing works fo-
cused on the semantic region labeling problem [Krähenbühl
and Koltun, 2011][Socher et al., 2011][Long et al., 2015],
while the critical interaction relation prediction is often over-
looked. Based on the hand-crafted features and models, the
CRF inference [Ladicky et al., 2009][Krähenbühl and Koltun,
2011] refines the labeling results by considering the label
agreement between similar pixels. The fully convolutional
network (FCN) [Long et al., 2015] and its expansion [Chen
et al., 2015] have achieved great success on the semantic la-
beling. [Liu et al., 2015] incorporates the markov random
field (MRF) into deep networks for pixel-level labeling. Most
recently, the multi-dimensional LSTM [Byeon et al., 2015]
has also been employed to capture the local spatial dependen-
cies. However, our H-LSTM differs from these works in that
we train a unified network to collaboratively address the ge-
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ometric region labeling and relation prediction. The novel P-
LSTM and MS-LSTM can effectively capture the long-range
spatial dependencies benefiting from the hierarchical feature
representation on the pixels and multi-scale super-pixels.

Single View 3D Reconstruction. The 3D reconstruction
from the singe view image is an under explored task and only
a few researches have made some efforts on this task. Mobahi
et al. [Mobahi et al., 2011] reconstructed the urban structures
from the single view by transforming invariant low-rank tex-
tures. Without the explicit assumptions about the structure
of the scene, Saxena et al. [Saxena et al., 2009] trained the
MRF model to discover the depth cues as well as the rela-
tionships between different parts of the image in a fully su-
pervised manner. An attribute grammar model [Liu et al.,
2014] regarded super-pixels as its terminal nodes and applied
five production rules to generate the scene into a hierarchical
parse graph. Differed from the previous methods, the pro-
posed H-LSTM predicts the layout segmentation and the spa-
tial arrangement with a unified network architecture, and thus
can reconstruct the 3D scene from a still image directly.

3 Hierarchical LSTM
Overview. The geometric scene parsing aims to generate the
pixel-wise geometric surface labeling and relation prediction
for each image. As illustrated in Figure 2, the input image is
first passed through CNN to generate a set of feature maps.
Then the P-LSTM and MS-LSTM take these feature maps
as inputs in a shared mode, and their outputs are the geomet-
ric surface labeling and interaction relations between adjacent
regions respectively.
Notations. Each LSTM [Hochreiter and Schmidhuber, 1997]
unit in i-th layer receives the input x

i

from the previous state,
and determines the current state which is comprised of the
hidden cells h

i+1 2 Rd and the memory cells m
i+1 2 Rd,

where d is the dimension of the network output. Similar to
the work in [Graves et al., 2013], we apply gu,gf ,gv ,go to in-
dicate the input, forget, memory and output gate respectively.
Define Wu,W f ,W v ,W o as the corresponding recurrent gate
weights. Thus the hidden and memory cells for the current
state can be calculated by,

gu = �(Wu ⇤H
i

)

gf = �(W f ⇤H
i

)

go = �(W o ⇤H
i

)

gv = tanh(W v ⇤H
i

)

m
i+1 = gf �m

i

+ gu � gv

h
i+1 = tanh(go �m

i

)

(1)

where H
i

denotes the concatenation of input x
i

and previ-
ous state h

i

. � is a sigmoid function with the form �(t) =

1/(1 + e�t

), and � indicates the element-wise product. Fol-
lowing [Kalchbrenner et al., 2015], we can simplify the ex-
pression Eqn.(1) as,

(m
i+1,hi+1) = LSTM(H

i

,m
i

,W ) (2)

where W is the concatenation of four different kinds of re-
current gate weights.

3.1 P-LSTM for Geometric Surface Labeling
Following [Liang et al., 2015], we use the P-LSTM to prop-
agate the local information to each position and further dis-
cover the short-distance contextual interactions in pixel level.
For the feature representation of each position j, we extract
N = 8 spatial hidden cells from N local neighbor pixels and
one depth hidden cells from previous layer. Note that the
“depth” in a special position indicates the features produced
by the hidden cells at that position in the previous layer. Let
{hs

j,i,n

}N
n=1 indicate the set of hidden cells from neighbor-

ing positions to pixel j, which are calculated by the N spatial
LSTMs updated in i-th layer. And ht

j,i

denotes the hidden
cells computed by the i-th layer depth LSTM on the pixel j.
Then the input states of pixel j for the (i+1)-th layer LSTM
can be expressed by,

H
j,i

= [ hs

j,i,1 hs

j,i,2 ... hs

j,i,n

ht

j,i

]

T (3)

where H
j,i

2 R(N+1)⇥d. By the same token, let
{ms

j,i,n

}N
n=1 be the memory cells for all N spatial dimen-

sions of pixel j in the i-th layer and mt

j,i

be memory cell
for the depth dimension. Then the hidden cells and memory
cells of each position j in the (i + 1)-th layer for all N + 1

dimensions are calculated as,

(ms

j,i+1,n , ehs

j,i+1,n) = LSTM(H
j,i

, ms

j,i,n

, W s

i

)

n 2 {1, 2, ..., N};
(mt

j,i+1 , h
t

j,i+1) = LSTM(H
j,i

, mt

j,i

, W t

i

)

(4)

where W s

i

and W t

i

indicate the weights for spatial and depth
dimension in the i-th layer, respectively. Note that ehs

j,i+1,n
should be distinguished from hs

j,i+1,n by the directions of in-
formation propagation. ehs

j,i+1,n represents the hidden cells
position j to its n-th neighbor, which is used to generate
the input hidden cells of n-th neighbor position for the next
layer. In contrast, hs

j,i+1,n is the neighbor hidden cells fed
into Eqn.(3) to calculate the input state of pixel j.

In particular, the P-LSTM sub-network is built upon the
modified VGG-16 model [Simonyan and Zisserman, 2015].
We remove the last two fully-connected layers in VGG-16,
and replace with two fully-convolutional layers to obtain the
convolutional feature maps for the input image. Then the con-
volutional feature maps are fed into the transition layer [Liang
et al., 2015] to produce hidden cells and memory cells of each
position in advance, and make sure the number of the input
states for the first P-LSTM layer is equal to that of following
P-LSTM layer. Then the hidden cells and memory cells are
passed through five stacked P-LSTM layers. By this way, the
receptive field of each position can be considerably increased
to sense a much larger contextual region. Note that the in-
termediate hidden cells generated by P-LSTM layer are also
taken as the input to the corresponding Super-pixel LSTM
layer for relation prediction. Please check more details of this
part in Sec. 3.2. At last, several 1 ⇥ 1 feed-forward convolu-
tional filters are applied to generate confidence maps for each
geometric surface. The final label of each pixel is returned by
a softmax classifier with the form,

y
j

= softmax(F( h
j

;W
label

)) (5)
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Figure 3: An illustration of super-pixel maps with different
scales. In each scale, the orange super-pixel is the one under
the current operation, and the blue ones are adjacent super-
pixels, which propagate the neighboring information to the
orange one. More contextual information can be captured by
the larger-scale super-pixels.

where y
j

is the predicted geometric surface probability of the
j-th pixel, and W

label

denotes the network parameter. F(·) is
a transformation function.

3.2 MS-LSTM for Interaction Relation Prediction
The Multi-scale Super-pixel LSTM (MS-LSTM) is used
to explore high-level interaction relation between pair-wise
super-pixels, and predict the functional boundaries between
geometric surfaces. The hidden cells of j-th position in i-
th MS-LSTM layer are the concatenation of hidden cells
ht

j,i

2 Rd from previous layer (same as the depth dimen-
sion in P-LSTM) and hr

j,i

2 Rd from the corresponding P-
LSTM layer. For simplicity, we rewrite the enhanced hidden
cells as ~

j,i

= [ ht

j,i

, hr

j,i

]. In each MS-LSTM layer, an
over-segmentation algorithm [Liu et al., 2011b] is employed
to produce the super-pixel map Si with a specific scale c

i

.
To obtain the compact feature representation for each super-
pixel, we use Log-Sum-Exp(LSE) [Boyd and Vandenberghe,
2004], a convex approximation of the max function to fuse
the hidden cells of pixels in the same super-pixel,

h⇤,i

=

1

⇡
log

2

4 1

Q⇤

X

j2⇤

exp(⇡~
j,i

)

3

5 (6)

where h⇤,i

2 R2d denotes the hidden cells of the super-pixel
⇤ in the i-th super-pixel layer, ~

j,i

denotes the enhance hid-
den cells of the j-th position, Q⇤ is the total number of pixels
in ⇤ , and ⇡ is a hyper-parameter to control smoothness. With
higher value of ⇡, the function tends to preserve the max value
for each dimension in the hidden cells, while with lower value
the function behaves like an averaging function.

Similar to the Eqn.(3), let {h⇤,i,k

}K⇤
k=1 indicate the set of

hidden cells from K⇤ adjacent super-pixels of ⇤. Then the
input states of super-pixel ⇤ for the (i + 1)-th MS-LSTM
layer can be computed by,

H⇤,i

= [

1

K⇤

X

k

h⇤,i,k

h⇤,i

]

T (7)

where H⇤,i

2 R4d. The hidden cells and memory cells of
super-pixel ⇤ in the (i+ 1)-th layer can be calculated by,

(m⇤,i+1 , h⇤,i+1) = LSTM(H⇤,i

, m⇤,i

, W
0

i

) (8)

where W
0

i

denotes the concatenation gate weights of i-th MS-
LSTM layer. m⇤,i

is the average value of the memory cells

of each position in super-pixel ⇤. Note that the dimension
of h⇤.i+1 in Eqn.(8) is d, which is equal to the output hid-
den cells from the P-LSTM. In the (i+1)-th layer, the values
of h⇤,i+1 and m⇤,i+1 can be directly assigned to the hid-
den cells and memory cells of each position in super-pixel
⇤. Then the new hidden states can be accordingly learned by
applying MS-LSTM layer on the super-pixel map with larger
scale.

In particular, the MS-LSTM layers share the convolutional
feature maps with the P-LSTM. In total, five stacked MS-
LSTM layers are applied to extract hierarchical feature rep-
resentations with different scales of contextual dependencies.
Therefore, five super-pixel maps with different scales (i.e. 16,
32, 48, 64 and 128) are extract by the over-segmentation algo-
rithm. Note that the scale in here refers to the average number
of pixels in each super-pixel. Thus these multi-scale super-
pixel maps are employed by different MS-LSTM layers, and
the hidden cells for each layer are enhanced by the output
of the corresponding P-LSTM layer. After passing though
these hierarchical MS-LSTM layers, the local inference of
each super-pixel can be influenced by different degrees of
context, which enables the model simultaneously taking the
local semantic information into account. Finally, the relation
prediction of adjacent super-pixels is optimized as,

z{⇤,⇤0} = softmax(F([ h⇤ h⇤0
];W

0

relation

)) (9)

where z{⇤,⇤0} is the predicted relation probability vector be-
tween super-pixel ⇤ and ⇤

0, and W
0

relation

denotes the net-
work parameters. F(·) is a transformation function.

3.3 Model Optimization
The total loss of H-LSTM is the sum of losses of two tasks:
geometric surface labeling loss J

C

by P-LSTM and relation
prediction loss J

R

by MS-LSTM. Given U training images
with {(I1, bY1, bZ1), ..., (IU , bYU

, bZ
U

)}, where bY indicates the
groundtruth geometric surfaces for all pixels for image I ,and
bZ denotes the groundtruth relation labels for all of adjacent
super-pixel pairs in different scales. The overall loss function
is as follows,

J (W ) =

1

U

UX

i=1

(J
C

(W
P

; I
i

, bY
i

) + J
R

(W
S

; I
i

, bZ
i

)) (10)

where W
P

and W
S

indicate the parameters of P-LSTM and
MS-LSTM, respectively, and W denotes all of the parameters
with the form W = {W

P

,W
S

,W
CNN

}. W
CNN

is the pa-
rameters of Convolution Neural Network. We apply the back
propagation algorithm to update all the parameters. J

C

(·)
is the standard pixel-wise cross-entropy loss. J

R

(·) is the
cross-entropy loss for all super-pixels under all scales. Each
MS-LSTM layer with a specific scale of the super-pixel map
can output the final interaction relation prediction. Note that
J
R

(·) is the sum of losses after all MS-LSTM layers.

4 Application to 3D Reconstruction
In this work, we apply our geometric scene parsing results for
single-view 3D reconstruction. The predicted geometric sur-
faces and their relations are used to ”cut and fold” the image
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into a pop-up model [Hoiem et al., 2005]. This process con-
tains two main steps: (1) restoring the 3D spatial structure
based on the interaction relations between adjacent super-
pixels, (2) constructing the positions of the specific planes
using projective geometry and texture mapping from the la-
belled image onto the planes. In practice, we first find the
ground-vertical boundary according to the predicted support-
ing relations and estimate the horizon position as the bench-
mark of 3D structure. Then the algorithm uses the different
kinds of predicted relations to generate the polylines and folds
the space along these polylines. The algorithm also cuts the
ground-sky and vertical-sky boundaries according to the lay-
ering relations. At last, the geometric surface is projected
onto the above 3D structures to reconstruct the 3D model.

5 Experiment
5.1 Experiment Settings
Datasets. We validate the effectiveness of the proposed
H-LSTM on three public datasets, including SIFT-Flow
dataset [Liu et al., 2011a], LM+SUN dataset [Tighe and
Lazebnik, 2013] and Geometric Context dataset [Hoiem et

al., 2007]. The SIFT-Flow consists of 2,488 training images
and 200 testing images. The LM+SUN contains 45,676 im-
ages (21,182 indoor images and 24,494 outdoor images). Fol-
lowing [Tighe and Lazebnik, 2013], we apply 45,176 images
as training data and 500 images as test ones. For these two
datasets, three geometric surface classes (i.e. sky, ground and
vertical) are considered for the evaluation. The Geometric
Context dataset includes 300 outdoor images, where 50 im-
ages are used for training and the rest for testing as [Liu et al.,
2014]. Except for the three main geometric surface classes as
used in the previous two datasets, Geometric Context dataset
also labels the five subclasses: left, center, right, porous, and
solid for vertical class. For all of three datasets, four inter-
action relation labels (i.e. layering, supporting, siding and
affinity) are defined and evaluated in our experiments.
Evaluation Metrics. Following [Long et al., 2015], we use
the pixel accuracy and mean accuracy metrics as the standard
evaluation criteria for the geometric surface labeling. The
pixel accuracy assesses the classification accuracy of pixels
over the entire dataset while the mean accuracy calculates the
mean accuracy for all categories. To evaluate the performance
of relation prediction, the average precision metric is adopted.
Implementation Details. In our experiment, we keep the
original size 256⇥ 256 of the input image for the SIFT-Flow
dataset. The scale of input image is fixed as 321 ⇥ 321 for
LM+SUN and Geometric Context datasets. During the train-
ing phase, the learning rates of transition layer, P-LSTM lay-
ers and MS-LSTM layers are initialized as 0.001 and that of
pre-training CNN model is initialized as 0.0001. The dimen-
sion of hidden cells and memory cells, which is correspond-
ing to the symbol d in Sec. 3, is set as 64 in both P-LSTM and
MS-LSTM.

5.2 Performance Comparisons
Geometric Surface Labeling. We compare the proposed H-
LSTM with three recent state-of-the-art approaches, includ-
ing Superparsing [Tighe and Lazebnik, 2013], FCN [Long

Method Sky Ground Vertical Mean Acc.
Superparsing - - - 89.2

FCN 96.4 93.1 91.8 93.8
DeepLab 96.1 93.8 93.4 94.4

Ours 96.4 95.1 93.1 94.9

Table 1: Comparison of geometric surface labeling per-
formance with three state-of-the-art methods on SIFT-Flow
dataset.

Method Sky Ground Vertical Mean Acc.
Superparsing - - - 86.8

FCN 81.8 83.5 94.1 86.4
DeepLab 76.2 72.8 94.6 81.2

Ours 83.9 83.6 94.1 87.2

Table 2: Comparison of geometric surface labeling perfor-
mance with three state-of-the-art methods over LM+SUN
dataset.

et al., 2015] and DeepLab [Chen et al., 2015] on the SIFT-
Flow and LM+SUN datasets. Figure 4 gives the the compar-
ison results on the pixel accuracy. Table 1 and Table 2 show
the performance of our H-LSTM and comparisons with three
state-of-the-art methods on the per-class accuracy. It can be
observed that the proposed H-LSTM can significantly outper-
form three baselines in terms of both metrics. For the Geo-
metric Context dataset, the model is fine-tuned based on the
trained model on LM+SUN due to the small size of train-
ing data. We compare our results with those reported in
[Hoiem et al., 2008], [Tighe and Lazebnik, 2013] and [Liu
et al., 2014]. Table 3 reports the pixel accuracy on three
main classes and five subclasses. Our H-LSTM can outper-
form the three baselines over 3.8% and 2.8% when evaluating
on three main classes and five subclasses, respectively. This
superior performance achieved by H-LSTM on three pub-
lic datasets demonstrates that incorporating the coupled P-
LSTM and MS-LSTM in a unified network is very effective
in capturing the complex contextual patterns within images
that are critical to exploit the diverse surface structures.
Interaction Relation Prediction. The MS-LSTM sub-
network can predict the interaction relation results for two
adjacent super-pixels. Note that we use five MS-LSTM lay-
ers and five scales of super-pixel maps are sequentially em-
ployed, including 128, 64, 48, 32, 16 super-pixels in five lay-
ers. The H-LSTM outputs the interaction relation prediction
results after each MS-LSTM layer to enable the deep super-

Method Subclasses Main classes
Hoiem et al. 68.8 89.0
Superparsing 73.7 88.2

Liu et al. 76.3 -
Ours 80.1 91.8

Table 3: Comparison of geometric surface labeling perfor-
mance with three state-of-the-arts methods in terms of mean
accuracy on Geometric Context dataset.
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Figure 4: Geometric surface labeling results (Pixel-wise Ac-
curacy) on SIFT-Flow and LM+SUN datasets.

The number of
MS-LSTM layers SIFT-Flow LM+SUN G-Context

H-LSTM 1 85.8 89.1 87.8
H-LSTM 2 89.8 94.7 90.6
H-LSTM 3 90.3 95.6 89.8
H-LSTM 4 90.4 96.7 90.7
H-LSTM 91.2 95.8 90.8

Table 4: Comparisons of interaction relation prediction
results (Average Precision) by using different number of
MS-LSTM layers on three datasets. “H-LSTM 1”, “H-
LSTM 2”, “H-LSTM 3”, “H-LSTM 4” represent the results
using 1,2,3,4 MS-LSTM layers, respectively.

vision for better feature learning. Table 4 shows the average
precision after passing different number of MS-LSTM layers.
The improvements can be observed on most of datasets by
gradually using more MS-LSTM layers. It verifies well the
effectiveness of exploiting more discriminative feature rep-
resentation based on the hierarchical multi-scale super-pixel
LSTM. The hierarchical MS-LSTM enables the model to si-
multaneously capture the global geometric structure informa-
tion by increasingly sensing the larger contextual region and
also keep track of local fine details by remembering the local
interaction of small super-pixels.

5.3 Ablative Study
We further evaluate different architecture variants to ver-
ify the effectiveness of the important components in our H-
LSTM, presented in Table 5.
Comparison with convolutional layers. To strictly evaluate
the effectiveness of using the proposed P-LSTM layer, we re-
port the performance of purely using convolutional layers, i.e.
“convolution”. To make fair comparison with P-LSTM layer,
we utilize five convolutional layers, each of which contains
576 = 64 ⇥ 9 convolutional filters with size 3 ⇥ 3, because
nine LSTMs are used in a P-LSTM layer and each of them has
64 hidden cell outputs. Compared with “H-LSTM (ours)”,
“convolution” decreases the pixel accuracy. It demonstrates
the superiority of using P-LSTM layers to harness complex
long-distances dependencies over convolutional layers.
Multi-task learning. Note that we jointly optimize the geo-
metric surface labeling and relation prediction task within a
unified network. We demonstrate the effectiveness of multi-
task learning by comparing our H-LSTM with the version that
only predicts the geometric surface labeling, i.e. “P-LSTM”.
The supervision information for interaction relation and MS-

Model settings SIFT-Flow LM+SUN
Convolution 94.66 89.92

P-LSTM 94.68 90.13
P-LSTM + S-LSTM 95.24 91.06

H-LSTM (ours) 95.41 91.34

Table 5: Performance comparisons with different variants of
our method in terms of pixel accuracy.

Figure 5: Some results of single-view 3D reconstruction. The
first column is the original image. The second column is the
geometric surface labeling result and the last two columns are
the reconstruction results from two different views.

LSTM networks are discarded in “P-LSTM”. The large per-
formance decrease speaks well that these two tasks can mutu-
ally benefit from each other and help learn more meaningful
and discriminative features.
Comparison with single scale of super-pixel map. We
also validate the advantage of using multi-scale super-pixel
representation in the MS-LSTM sub-network on interaction
relation prediction. “S-LSTM” shows the results of using
the same scale of super-pixels (i.e. 48 super-pixels) in each
S-LSTM layer. The improvement of “H-LSTM” over “P-
LSTM+S-LSTM” demonstrates that the richer contextual de-
pendencies can be captured by using hierarchical multi-scale
feature learning.

5.4 Application to 3D Reconstruction
Our main geometric class labels and interaction relation pre-
diction over regions are sufficient to reconstruct scaled 3D
models of many scenes. Figure 5 shows some scene images
and the reconstructed 3D scenes generated based on our ge-
ometric parsing results. Besides the obvious graphic appli-
cations, e.g. creating virtual walkthroughs, we believe that
extra valuable information could be provided by such models
to other artificial intelligence applications.

6 Conclusion
In this paper, we have proposed a multi-scale and context-
aware scene paring model via recurrent Long Short-Term
Memory neural network. Our approach have demonstrated a
new state-of-the-art on the problem of geometric scene pars-
ing, and also impressive results on 3D reconstruction from
still images.
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