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Detection-Free Multiobject Tracking by
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Abstract—This paper presents a conceptually simple but effec-
tive approach to track multiobject in videos without requiring
elaborate supervision (i.e., training object detectors or tem-
plates offline). Our framework performs a bi-layer inference
of spatio-temporal grouping to exploit rich appearance and
motion information in the observed sequence. First, we gener-
ate a robust middle-level video representation based on clustered
point tracks, namely video bundles. Each bundle encapsulates
a chunk of point tracks satisfying both spatial proximity and
temporal coherency. Taking the video bundles as vertices, we
build a spatio-temporal graph that incorporates both competi-
tive and compatible relations among vertices. The multiobject
tracking can be then phrased as a graph partition problem
under the Bayesian framework, and we solve it by developing a
reconfigurable belief propagation (BP) algorithm. This algorithm
improves the traditional BP method by allowing a converged solu-
tion to be reconfigured during optimization, so that the inference
can be reactivated once it gets stuck in local minima and thus
conduct more reliable results. In the experiments, we demonstrate
the superior performances of our approach on the challenging
benchmarks compared with other state-of-the-art methods.

Index Terms—Graphical inference, object tracking, spatio-
temporal analysis, video processing.

I. INTRODUCTION

V ISUAL object tracking has long been an active research
topic in computer vision, and impressive progresses are

made recently. One of the most popular approaches follows
the tracking-by-detection framework, where the object tracking
can be naturally specified as an online learning and detection

Manuscript received February 9, 2015; revised July 16, 2015; accepted
September 11, 2015. Date of publication September 29, 2015; date of current
version October 13, 2016. This work was supported in part by the National
Natural Science Foundation of China under Grant 61271093, in part by the
Guangdong Natural Science Foundation under Grant S2013050014548 and
Grant 2014A030313201, in part by the Program of Guangzhou Zhujiang
Star of Science and Technology under Grant 2013J2200067, and in part
by the Science and Technology Program of Guangzhou under Grant
1563000439. This paper was recommended by Associate Editor W. Hu.
(Corresponding author: Wangmeng Zuo.)

L. Lin, Y. Lu, and H. Cheng are with Sun Yat-Sen University,
Guangzhou 510006, China (e-mail: linliang@ieee.org; yylu1989@gmail.com;
chengh9@mail.sysu.edu.cn).

C. Li is with the School of Computer Science and Technology, Anhui
University, Hefei 230601, China (e-mail: lcl1314@foxmail.com).

W. Zuo is with the School of Computer Science and Technology,
Harbin Institute of Technology, Harbin 150001, China (e-mail:
cswmzuo@gmail.com).

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2015.2478515

task [1]–[4]. The standard procedure of applying these track-
ers mainly includes the following steps: 1) manually select the
desired object at the beginning and usually only one object is
specified; 2) train an object classifier by supervised learning;
and 3) localize the object in the rest video frames while updat-
ing the object classifier. Though very impressive results have
been achieved in current research, the problem of long-term
robust tracking in unconstrained environments still remains
open, particularly with the following scenarios.

1) Frequent partial occlusion and object deformation lower
the precision of detector.

2) The detection responses are possibly inconsistent in
time, resulting in the risk of tracking drift.

3) For some objects with large intraclass variance (e.g.,
sports players), the cost of training reliable detectors is
expensive.

In this paper, we present a detection-free tracking frame-
work that parses object trajectories in the observed video
sequence via spatio-temporal grouping without adopting object
detectors. Our framework infers multiple-object tracking with
two stages: 1) extract a batch of video bundles by encapsu-
lating dense point tracks to compose object trajectories and
2) associate identities of the bundles for trajectory parsing
by a reconfigurable belief propagation (RBP) algorithm. The
inference is conducted based on a set of deferred observations
(e.g., the entire video or a period of frames). Fig. 1 demon-
strates the advantages of our approach: some detection-guided
methods may not work as the human detections are unreliable,
while the satisfied results are produced by our approach.

The main insight of our bottom-up framework is to over-
segment the object trajectories as the intermediate-level rep-
resentation and then search for the optimal partition during
inference. As a result, the spatial partition and the temporal
tracking are jointly solved to handle the realistic challenges.

First, we adopted a kind of mid-level features, i.e., dense
point tracks, to represent the video sequence. Dense point
tracks have longer lifespans than pixel-based features such as
superpixels [1] and exploit long term motion difference. Based
on the well-known Gestalt principle of “common fate” [5],
motion is a salient factor and provides significant informa-
tion about moving object in videos. Studies with congenitally
blind people also show that they learn more easily from mov-
ing objects than static images. Based on the dense point tracks,
we extracted a set of video bundles, according to the similarity
of the tracks.
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Fig. 1. Example of detection-free human tracking on the complex scenario.
(a) Two frames from a sport video, where the human detections (denoted by
the red boxes) are unreliable due to the appearance variations and occlusions.
(b) Tracking results generated by our approach. The object IDs (denoted by
the numbers) are retained well during tracking and the human silhouettes are
basically preserved.

The video bundle can be regarded as a intermediate-level
video representation of object trajectory, just like the super-
pixel in image segmentation. A video bundle comprises of
clustered dense point tracks that can be in different lengths
over consecutive frames, and one trajectory may include a
batch of bundles in the video. The video bundle advances in
the following aspects, compared with traditional region-based
representations [1], [6]. First, the point tracks are clustered
in terms of satisfying both spatial proximity and tempo-
ral coherency, so that the bundles are more robust against
noises and object conglutinations. Second, the aggregated
video bundle provides more reliable and more accurate knowl-
edge about the target location and appearance, compared to
each single point track. Also, the bundles, in the form of
spatio-temporal volumes, effectively reduce the complexity
during inference, i.e., without the need of extracting frame-
based correspondences in each step of tracking. Moreover,
object silhouettes can be basically preserved by the bun-
dles and we thus obtain fine-grained object trajectories from
the video.

Taking video bundles as graph vertices, we link each vertex
to its neighbors with an edge in 3-D coordinate to construct
an spatio-temporal graph. Building spatio-temporal graph upon
middle-level representations has been well explored in exist-
ing tracking methods [7], [8]. In this paper, the spatio-temporal
graph incorporates trajectory-level relations (the prior model)
and global consistency (the likelihood model), while the video
bundles capture only low-level cues with point tracks. The
edge can be either positive or negative, indicating the two ver-
tices either cooperatively or conflictingly belong to the same
trajectory. The negative (competitive) relations serve as impor-
tant complements to the positive (compatible) ones, both of
which should be satisfied with probabilities during inference.
We assign an edge to be positive or negative by examining the
moving directions of the two video bundles. Specifically, if two
video bundles have significantly different moving directions,
they are less likely to belong to the same object trajectory.

Fig. 2. Flow chart of our framework.

Then we pose the multiobject tracking as a graph partition
task under the Bayesian framework.

For the inference of graph partition, we present the RBP
algorithm to adapt the real challenges during tracking. In com-
puter vision, belief propagation (BP) algorithm and its exten-
sions are widely employed for graph-based inference [9], [10],
providing a general way to assign labels to graph vertices.
However, these algorithms sometimes may converge into
unsatisfied local minima. This problem might be more seri-
ous in tracking, as we tend to simultaneously capture spatial
and temporal information of objects and scenes. In this paper,
we improve the traditional BP algorithm by allowing the solu-
tion to be reconfigured during optimization. We verify the
converged solution using the constraint of intrabody vari-
ance and three complementary measures, and reactivate the
inference (i.e., to jump out from the local minima), by oper-
ating on current solution. In brief, our algorithm iteratively
performs with following two steps: 1) searching for a solu-
tion of graph partition by passing messages and updating
beliefs and 2) reconfiguring the graph partition by realizing
the merge-and-split operators on graph vertices, once the solu-
tion violates the constraint. The flow chart of our framework
is presented in Fig. 2.

To the best of our knowledge, this paper is the first to
explore the detection-free tracking by exploiting the mid-level
representation without relying on off-line trained classifiers.

II. RELATED WORK

Object tracking, in general, is a joint task of object seg-
mentation and temporal correspondence over video sequences.
Under the circumstances that reliable object models (e.g.,
detectors or templates) are invalid or limited, one can solve
object tracking as spatio-temporal pixel grouping (or associ-
ation) in the bottom-up manners [11], [12]. These methods
shared some techniques with those for object segmenta-
tion [13], [14]. For example, Wang et al. [1] utilized structural
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information captured by superpixels, and proposed to distin-
guish the targets and background with the mid-level cues.
In [2], a trajectory graph and a detection tracklet graph
were constructed to encode grouping affinities in space and
associations across time, respectively. Basharat et al. [15]
proposed to construct motion segments based on the spa-
tial and temporal analysis of interest point correspondence.
Fragkiadaki and Shi [12] and Brox and Malik [16] utilized
dense point tracks to represent object trajectories and demon-
strated very good results for capturing motion discontinuities
across object boundaries.

The key to success in multiobject tracking is the infer-
ence algorithm of data association. The main challenges lie
in various ambiguities during optimization caused by abrupt
object motion, nonrigid object structures, and changing appear-
ance patterns of both objects and scenes. Previous approaches
usually dealt with these problems by exploiting appearance
and/or motion cues from different perspectives [14], and the
graphical representations were widely adopted [8], [17]–[19].
Exemplar inference algorithms included linear program-
ming [20], dynamic programming [3], joint probabilistic data-
association filter [21]. Liu et al. [7] performed the stochastic
cluster sampling for parsing trajectory in a spatio-temporal
graph, but the algorithm is computationally expensive. Our
framework is partially motivated by these methods, and
advances them in two aspects. First, the representation of video
bundles tightly integrates the spatial and temporal information
to reduce the ambiguities of multiobject tacking. Second, the
proposed RBP algorithm is very robust and fast to conduct reli-
able results by incorporating both competitive and compatible
relations among moving objects.

In the experiments, we compare with both detection-free
tracking frameworks [12], [16], [22] and detection-based meth-
ods [2], [3] on public benchmarks, and our algorithm performs
favorably against all competing methods.

The rest of this paper is organized as follows. We introduce
the representations of our approach in Section III, and discuss
the formulation and inference procedure in Sections IV and V,
respectively. The experiments and comparisons are presented
in Section VI, and finally comes the conclusion in Section VII.

III. VIDEO BUNDLE REPRESENTATION

We first introduce the video bundle representation and the
problem formulation under the spatio-temporal graph.

A. Video Bundle

We first define a point track τi to be a sequence of points

τi = {
pi,k : k ∈ [

ti,b, ti,e
]}

(1)

where pi,k indicates the spatial coordinate of τi at frame k, ti,b
and ti,e the birth and death time of τi, respectively.

We obtain point tracks from deferred video sequences using
the approach in [23], which tracks points densely with large
displacement optical flow. The obtained point tracks are hence
dense in space and have various lifespans. Note that [23] pro-
duces spatially-denser tracks than conventional sparse point

Fig. 3. Illustration of the point tracks and affinity measure. (a) Foreground
point tracks in a particular frame, with the (b) point track affinity matrix
visualized. (c) Long track τ1 (yellow dashed line) and a short track τ2 (green
dashed line) are exhibit among video sequence. (d) Corresponding points in
frame 23. We can learn that their neighbors cover different parts of the object
due to motion differences. Direct clustering to objects may introduce noise.

trackers [24], resulting in denser coverage of the moving
targets.

The obtained track set contains point tracks generated
from both foreground and background. Since the point tracks
are considerably dense (∼104), taking all of them belong-
ing to foreground and background into consideration results
in a high-computational complexity. Moreover, clustering
background as well as foreground point tracks simultane-
ously requires post processing to merge background clusters
together. In our framework, however, we only concentrate on
the moving targets in foreground. We remove tracks belong-
ing to background using a recently proposed method [12],
i.e., motion saliency on point tracks. The nonsalient ones are
treated as background tracks and discarded without further
consideration in our tracking framework. In motion seg-
mentation scenario, the point tracks assigned to background
automatically form the background cluster. Fig. 3(a) shows an
example of our extracted foreground point tracks in a single
frame.

We further group point tracks based on an affinity matrix A.
Each element Aij in the affinity matrix A measures the simi-
larity between two tracks τi and τj. We define the similarity
following two aspects: 1) geometric location and 2) velocity

Aij ∝ e
−Dtw(τi,τj) · ∑k∈Oij

‖vi,k−vj,k‖2
/ |Oij| (2)
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where Oij denotes the temporal overlapped frames of τi and τj,
vi,k = pi,k+3−pi,k indicates the velocity for the kth temporally-
overlapped point of τi aggregated over 3 frames. Dtw(·) is the
dynamic time warping (DTW) distance [25] which measures
the aligned geometric distance between two tracks. Given two
tracks τi and τj, DTW seeks the warping path γ with minimum
cost to align all points in each track

Dtw
(
τi, τj

) = min
1

|γ |
√∑

γk

∥∥pi,ki − pj,kj

∥∥2 (3)

where γk = (pi,ki , pj,kj) denotes the kth aligned point pair in
the warping path, |γ | the total number of aligned point pairs.
For detailed explanations (see [25]). DTW is more appropri-
ate than traditional distance measure for trajectory clustering
as it not only measures position difference, but also shape
similarity of the point tracks by finding a time warping, while
traditional distance simply performs one-to-one mapping. Note
DTW can be used to compare various life-spans sequences
which are well-aligned or have shift variance. Nevertheless,
it can be replaced by traditional Euclidean distance like [16]
does. Fig. 3(b) shows the visualized result of the obtained
affinity matrix.

Given the affinity matrix A, we adopt normalized cut, a
common and important technique utilized in data clustering
and image/video segmentation [16], [26], to group point tracks.
Compared with traditional clustering methods such as k-means
and the hierarchical clustering algorithm [27], normalized cut
is more suitable for our graph partitioning problem. The video
bundle is an intermediate-level video representation of object
trajectory without directly associating with semantic meaning,
just like superpixels in image segmentation. The normalized
cut algorithm has good property of robustness against random
noisy caused by low-level features. In our implementation,
we observe this algorithm can capture well both dissimilarity
within the bundles of different objects and similarity within
the bundles of the same objects.

However, segmenting object in a bottom-up manner directly
using normalized cut often fails to provide meaningful results
due to drastic motion differences within a target or tiny motion
differences between two targets. By the very nature of an artic-
ulated object, some parts are more steady such as the torso and
the head. These parts exhibit smooth motion and are usually
covered by point tracks which propagate their affinity further
and have longer lifespan than others. Other parts like the limbs
exhibit drastic motion and are more likely to be covered by
the short point tracks. See Fig. 3(c) for reference. Fig. 3(d)
visualizes the point track affinity graph with a long track and
a short track, respectively. It shows that the long track τ1 has
large number of affinitive neighbors due to its long lifespan,
while short track τ2 is less reliable and has smaller num-
ber of neighbors due to large displacement and occlusion of
the limb.

Considering the above-mentioned characteristics of the
articulated object, clustering all point tracks at once to object
via normalized cut would introduce noisy affinity both inside
and between objects due to motion difference, leading to
over-segmentation and under-segmentation of objects. In the

proposed framework, we overcome this unfavorable result by
designing a bi-layer clustering strategy, and it involves two
steps: 1) over-segmenting foreground point tracks into video
bundles via the normalized cut and 2) performing robust infer-
ence of the spatio-temporal graph consist of video bundles by
the RBP. We first describe the details of the first stage, and
then introduce the second stage in Section V.

In the first stage, the point track are over-segmented into
a set of clusters via normalized cut. The obtained clusters
are served as a robust mid-level representation of video. One
analogical task to the proposed method is image segmen-
tation, where we generate superpixels by clustering pixels
and further construct region-based graph to conduct inference.
By applying normalized cut, the point tracks are embed-
ded into a lower-dimensional subspace. This is done by
finding the large eigenvectors of the affinity matrix, then
we further discretize the eigenvectors by rotation [28] and
obtain K clusters. We treat obtained cluster as a video bun-
dle, denoted by bi = (τ̄i, v̄i, {τj}), where τ̄i and v̄i denote
the cluster center and the mean velocity of bi, respectively.
τ̄i and v̄i are computed by taking average over all point tracks
belonging to bi

τ̄i =
⎧
⎨

⎩
p̄i,k : p̄i,k =

|bi|∑

j=1

pj,k

|bi| , k ∈
[

min
j

tj,b, max
j

tj,e

]
⎫
⎬

⎭

v̄i =
⎧
⎨

⎩
v̄i,k : v̄i,k =

|bi|∑

j=1

vj,k

|bi| , k ∈
[

min
j

tj,b, max
j

tj,e − 3

]
⎫
⎬

⎭
(4)

where |bi| denotes the number of tracks within bi.
The obtained video bundles, as shown in Fig. 4(a), provide

robust and compact descriptions for moving objects which
respect spatial proximity and temporal coherence. Deferred
inference of object can be conducted based on this robust
mid-level representation and overcomes the shortage of nor-
malized cut.

B. Spatio-Temporal Graph

In the previous section, we have presented how the video
bundles are defined. This section explains how to use our pro-
posed bundles to construct a graphical model for inference
task, i.e., data association for tracking multiple targets among
the bundles.

We assume that there are N targets in the video, the objective
of multitarget tracking is to identify the trajectory for each
object in the video. Given the set of video bundles B = {b},
we define the solution W as

W =
{
�n = {bi}|�n|

i=1 , n = 1, 2, . . . , N, bi ∈ B
}

(5)

where �n denotes the trajectory for the nth object. We con-
strain each trajectory encapsulating at least one bundle and
each observed bundle belonging to one and only one trajec-
tory. Thus, we can formulate the problem of data association
as a graph partition task, i.e., grouping bundles into different
object trajectories.

We introduce a spatio-temporal graph G = <B, E> to
describe the relations among bundles. Each bundle bi ∈ B
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Fig. 4. Illustration of our representations. (a) Video bundle generated by point
tracks exhibiting high affinities. (b) Spatio-temporal graph is constructed by
taking the bundles as vertices, and the blue and red edges indicate compatible
and competitive relations between vertices, respectively. Best view in color
image.

is taken as a graph vertex and each edge eij = <bi, bj> ∈ E
describes the relation between two adjacent (neighboring) bun-
dles bi and bj. Two bundles bi and bj are regarded as neighbors
bi ∈ N(bj) if they have temporal overlap Oij �= 0. We fur-
ther develop two kinds of edges: 1) negative edges E− and
2) positive edges E+ to describe the competitive and com-
patible relations among them. Two neighboring bundles with
significantly different motion directions yield a negative edge
and otherwise a positive edge; namely

E = E− ⋃
E+

= {
eij : v̄i · v̄j < 0

} ⋃{
eij : v̄i · v̄j ≥ 0

}
. (6)

For notation simplicity, we drop the notation of the edge index
ij in the following discussion.

Negative edges penalize two bundles moving in the opposite
direction being coupled together, i.e., these two bundles should
belong to two different objects. We define a negative edge
probability ρ−(bi, bj) to represent the extent of two bundles
repulsing each other

ρ−
ij ∝ exp{v̄i · v̄j}. (7)

In other words, two bundles are less likely to belong to the
same object if their motions are obviously different.

Positive edges encourage two bundles sharing similar statis-
tics to be assigned with the same label. A positive edge prob-
ability ρ+

ij is defined following two aspects: 1) the geometric
distance and 2) the temporal consistency

ρ+
ij ∝ exp

{

−Dtw
(
τ̄i, τ̄j

) · Dtc
(
τ̄i, τ̄j

)

g

}

(8)

where τ̄i and τ̄j are the cluster centers for bi and bj, as
defined in (4), and g is a fixed scale. Dtw(·) is the DTW
distance defined in (3). Dtc(·) explores the motion context
to provide a complementary cue for identifying the degree
of attractiveness of two bundles. For example, in complex
scenarios where numerous people move in diverse directions,
bundles from different people may not have distinct motion
difference. To overcome this problem, we proposed to mea-
sure their accumulated temporal consistency. Specifically, we
connect one line segment between two bundles and accu-
mulate the derivatives of optical flow along the line, and
define

Dtc
(
τi, τj

) = 1

|Oij|
∑

k∈Oij

∑

p∈ pi,k pj,k

∇Fk(p) (9)

where pi,k pj,k denotes the line segment between points pi,k

and pj,k, and ∇Fk represents the derivative of optical flow
((∂Fk/∂x), (∂Fk/∂y)) at the kth frame and is calculated as a
size weighted mean of the derivative of separate x and y chan-
nel. As Dtc is defined by the sum of gradients of optical flow,
which captures the changes in the flow field and depresses the
local smooth and constant motions, it penalizes two bundles
which exhibit salient motion variance.

An illustration of the spatio-temporal graph representation
is shown in Fig. 4(b). Note we only focus on a few bundles
in the red bounding box for clear specification.

IV. BAYESIAN FORMULATION

We solve W by maximizing a posterior probability under
the Bayesian framework

W∗ = arg max
W

P(W|B) ∝ arg max
W

P(B|W)P(W). (10)

Likelihood P(B|W) measures how well the observed data
(video bundle) satisfies a certain object trajectory. Assuming
the likelihood of each bundle is calculated independently given
the partition, then P(B|W) can be factorized into

P(B|W) =
∏

�n∈W

∏

bi∈�n

P(bi|�n). (11)

Existing related methods [29], [30] usually defined the likeli-
hood model by maintaining a template for each specific object
obtained by online learning, or used Kalman or a particle fil-
ter [31]–[33] to estimate the locations of targets at each state.
Instead of relying on a pretrained detector for measuring the
targets, we define the likelihood term using the simple yet
effective Gaussian mixture models (GMMs) [34].

For the nth trajectory, we use two GMMs to capture
its color and texture information, respectively, {ρc

n, ρ
g
n }.

In particular, ρc
n represents the hue-saturation-value (HSV)
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color distribution, and ρ
g
n represents the distribution of orien-

tated gradients. The GMM includes a number of components
that are parameterized by the means and covariances. In our
implementation, we first extract the color and gradient features
for all pixels of the trajectory, and calculate the Gaussian com-
ponents for ρc

n and ρ
g
n , where the Euclidean distance is used for

measuring the feature vectors. Therefore, given any video bun-
dle bi, we can calculate the likelihood P(bi|�n) by matching
its features with the GMMs, as

P(bi|�n) = P
(
bi|ρc

n, ρ
g
n

)

∝ P
(
Hc(bi)|ρc

n

) · P
(
Hg(bi)|ρg

n

)
(12)

where Hc(bi) and Hg(bi) are the color and gradient features
of bi, respectively.

Prior P(W) imposes constraints on object trajectories and
their interactions. In the proposed framework, this term is
defined such that if two bundles are similar then they are
supposed to have the same identity. We decompose such con-
straints into pairwise potentials between video bundles within
each trajectory. The pairwise term is defined as

P(W) =
∏

�n,�m∈W

P(�n, �m)

=
∏

bi,bj∈�n,e∈E−

(
1 − ρ−

ij

) ∏

bi,bj∈�n,e∈E+
ρ+

ij

∏

bi∈�n,bj∈�m,e∈E−
ρ−

ij

∏

bi∈�n,bj∈�m,e∈E+

(
1 − ρ+

ij

)
(13)

where ρ−
ij and ρ+

ij are the negative and positive edge proba-
bility defined in (7) and (8).

V. INFERENCE ALGORITHM

Given the spatio-temporal graph representation, inferring
graph partition for W∗ is a nonshallow problem, not only
because the convexity guaranty of probability distribution
P(W|B) does not hold, but also due to the unknown num-
ber of targets. We pose the graph partition as the task of
assigning labels to graph nodes. Let L be a set of labels, i.e.,
L = {li = n, n = 1, 2, . . . , N, bi ∈ B}. A labeling li indicates
the bundle bi ∈ B belonging to the nth trajectory. This graph-
based labeling problem has been extensively discussed in the
literature, and a batch of inference methods were proposed.
Among them, some stochastic sampling approaches [8], [35]
aim to search for the global optimal solution but often limit
by relatively low efficiency. Some alternative methods such as
BP [9] perform fast and also obtain good if given reliable ini-
tializations. They, however, often suffer from getting stuck on
unsatisfied local minima, particularly under complex scenarios
of multiple object tracking. To alleviate this problem, in this
paper, we present an efficient yet effective inference algorithm
called RBP that incorporates the splitting and merging opera-
tors into the message passing procedure, making the inference
reconfigurable to jump from local minima.

A. Initialization

In some traditional BP inferences, the algorithms initial-
ize beliefs for nodes according to their unary likelihoods.

In this paper, we improve the initialization by further impos-
ing pairwise similarities between vertices. Specifically, we can
find a set of bundles as the representatives θi = {b̃k} by com-
paring the similarity measure of bundles defined in (8). This is
done by hierarchically merging pairs of bundles that have the
least distance. The centers of the obtained groups are served
as representatives. We first initialize the beliefs of representa-
tive bundles b̃k as 1 for their belonging labels and 0 for other
labels. For each of the rest bundles bj, we then compute the
mean positive edge probabilities between bj and the represen-
tatives for each label b̃k ∈ θli . Its belief is thus initialized as
a distribution proportional to the mean edge probabilities for
each labels and we put it into the set with the maximum belief.
This process serves as a rough partition on the bundle set.

B. Priority-Based Message Passing

Given the spatio-temporal graph G = <B, E>, BP iterates
on exchanging messages between nodes and updating node
beliefs. In the following discussion, we denote the message
passed from bi to bj and the belief for a node bj at the tth
iteration as �t

i→j(li) and 	 t
j (lj), respectively.

We adopt the mechanism of priority-based BP (PBP) pro-
posed by [10] to suppress the ambiguous information passed
between nodes. The intuition of this mechanism is to disam-
biguate the labels of nodes in virtue of the strength of their
neighbors. The ambiguity of a node bi at the tth iteration is
defined as the entropy of its current belief

ζ t(bi) = −
N∑

li=1

	 t
i (li) log

(
	 t

i (li)
)
. (14)

Nodes with less ambiguity are scheduled to transmit their mes-
sages with higher priority. Furthermore, to prevent propagating
confusing information between nodes, a node only computes
the messages passed from its less ambiguous neighbors. At
the tth iteration, the message passed from node bi to bj is
defined as

�t
i→j(li) ∝

N∑

li=1

δ
(
li, lj

)
δ(bi|li)

∏

bk∈N<(bi)

�t−1
k→i(li) (15)

where δ(bi|li) and δ(li, lj) are unary potential and pairwise
potential, respectively, which correspond to the likelihood and
prior defined in (11) and (13). N<(bi) denotes the less ambigu-
ous neighbors of bi, i.e., N<(bi) = {bj : ζ t(bj) < ζ t(bi),
bj ∈ N(bi)}. Note an implicit requirement for (15) is that bj is
more ambiguous than bi. After computing the messages passed
from its neighbors, the belief of node bj at the tth iteration is
updated by

	 t
j (lj) ∝ δ

(
bj|lj

) ∏

bk∈N(bj)

�t
k→j

(
lj
)
. (16)

The belief 	j(lj) at node j represents the posterior proba-
bility of bundle bj having label lj, and we maximize the
posterior probability by searching the maximum belief. After
convergence, label lj is assigned to bundle bj if it produces
the maximum belief at node j. Thus, the label assignment is
unique.
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Fig. 5. Illustration of our merge-and-spilt operation to drive the solution
reconfiguration. Each small cylinder primitive represents a bundle and the
grouped represents a partitioned object trajectory. The red cuts of edges
indicate the edges been turned off in the operation.

C. Iterative Belief Reconfiguration

To make the BP more robust, one can impose extra con-
straints during inference. For example, Kschischang et al. [36]
adopted the high-order factors into energy potentials, making
the inference more robust, but these methods usually lead to
expensive computation. In this paper, we provide an alternative
way to verify converged solutions and reactivate the inference
by reconfiguring the beliefs of nodes.

First, we introduce a global constraint for the divided
trajectories based on the intuitive observation in video track-
ing. For example, tracking targets with very small or very
large size probably results from the trajectory being over-
segmented or under-segmented, respectively. Specifically, we
define the global constraints on an object trajectory �n as
bivariate Gaussian distributions on averaged object size in time
intervals

P(�n) =
∏

z

P(�n,z) =
∏

z

G
([

w̄n,z h̄n,z
] ∣∣μ, σ 2

)
(17)

where z denotes the zth time interval of the trajectory, �n,z

the region of nth tracking target in time interval z, [w̄n,z h̄n,z]
the size of the bounding box of �n,z averaged over the time
interval. The parameters μ and σ are tuned to fit the size of
most objects in the dataset. In the experiments, we set the time
interval as eight frames and determine an object trajectory vio-
lates global constraints if there exists one time interval where
the probability is less than 0.01.

For the converged solution, we first identify the most
problematic partitioned trajectory, i.e., violating the global
constraint. Then we design a corresponding operator, i.e.,
merge-and-split, to reconfigure the solution by correcting �n

over the graph.
1) Merge-and-Split: For the case that we identify the prob-

lematic trajectory �n by its very small region, i.e., the size
of �n,z is smaller than a threshold, we scatter every node
bi ∈ �n and merge them with their neighbor nodes accord-
ing to the affinities specified by the edge connections. The
belief vector of bi is then revised by setting 0 to the nth bin.
Note that we need to renormalize the beliefs of all vertices
over the graph accordingly. In other case, when one region
of the trajectory �n is too large, we split the vertices of �n

into two subsets. The vertices in one subset remain unchanged
while the rest vertices are merged to their neighbors. The belief
of each changed vertex is also need to be revised, i.e., the
nth of the belief vector is set as 0. In the implementation,

Algorithm 1: Sketch of the RBP Algorithm
Input: Video bundles B
Output: Bundle labels L
Initialize: �i→j(li) = 1, 	i(li) by mechanism proposed
in Section V-A, li = maxli 	i(li) ;
repeat

Reconfigure beliefs and labels for bundles within the
problematic object trajectory ;
for t = 1 to T2 do

repeat
Prioritize bundle bi according to its level of
ambiguity ;
foreach more ambiguous neighbors of bi do

Compute message from bundle bi to
bundle bj by Equ.(15) ;
Update belief for bundle bj by Equ.(16) ;

end
until all bundles pass messages;

end
Assign each bundle bi ∈ B the label li with the max
belief ;

until L satisfies variance and three complementary
constraints or algorithm iterates over T1 times;

TABLE I
EVALUATION METRICS FOR COMPARISONS OF

DETECTION-FREE TRACKING METHODS

we realize the split operator using the normalized-cuts [37]
on positive and negative edges. An illustration is shown
in Fig. 5.

Once a new partition is generated by the operator, the PBP
will be reperformed to calculating the beliefs over the graph.
These above steps iterate until the target energy converges
finally, i.e., the solution will not be changed. The overall
procedure is summarized in Algorithm 1.
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TABLE II
QUANTITATIVE RESULTS AND COMPARISONS ON MOSEG. EXTRACTED OBJECTS STANDS FOR THE

NUMBER OF LABELED MASKS WITH LESS THAT 10% CLUSTERING ERROR

TABLE III
QUANTITATIVE RESULTS OF DIFFERENT DETECTION-FREE TRACKING METHODS. OUR-FULL: OUR METHOD

(TRAJECTORY PARSING WITH VIDEO BUNDLES AND RBP ALGORITHM). WE ALSO PRESENT THE

RESULTS OF THREE ADDITIONAL APPROACHES BY SIMPLIFYING OUR METHOD

VI. EXPERIMENTS

A. Datasets and Settings

Three datasets, motion segmentation (Moseg) [16], fig-
ure untanglement (Figment) [12], and TUD [21], [38], are
used to evaluate the proposed method. Moseg [16] is a
recently released dataset for motion segmentation, which con-
sists of 26 video sequence about objects of various scales and
motions and is publicly available. A total of 189 frames are
annotated densely in space and sparsely in time, and the soft-
ware delivered with the dataset is adopted for performance
evaluation.

We also evaluate the proposed method for tracking multiple
interacting and deforming agents using the Figment dataset
that is usually applied for detection-free tracking and video
annotation testing [39]. Figment is a dataset of basketball court
filmed from a freely moving camera, which consists of 18
challenging basketball clips of with 50–80 frames each.

The detection-based methods usually have unsatisfying per-
formance on abovementioned two datasets, mainly due to their
unreliable detection performances under such cluttered sce-
narios. Moreover, we adopt another benchmark TUD to com-
pare with several detection-based methods, and this dataset
addresses pedestrian tracking task, in which the pedestrian
detection proposals are relatively reliable. TUD includes three
sequences that have hundreds of frames.

All the parameters are fixed in the experiments. The number
of video bundles is set to be 200, and the number of trajec-
tories N is between 5 ∼ 14. We use a fixed scale g = 300
in positive edge probability. We set the maximum number of
reconfiguration T1 = 10 and the maximum number of BP
iterations T2 = 15. For intrabody variance, the threshold q for
splitting is set to be 100.

B. Comparisons With Detection-Free Methods

We use the six performance metrics listed in Table I
for quantitative comparison of detection-free tracking meth-
ods. Note the first three metrics are used for evaluating on
both Moseg and Figment dataset. For more details about the
evaluation metrics please refer to [12].

The proposed method is first compared with three detection-
free tracking methods [12], [16], [22] on Moseg. All these
competing methods are suggested for automated detection
and tracking of objects based on clustering of point tracks.
Table II lists the comparison results, where we use the first
three metrics together with density and extracted objects for
performance evaluation, as [12], [16], and [22] do. Note back-
ground clusters are considered here for comparison with other
methods. Our proposed method achieve comparable results
when compared with the state-of-the-arts. Fig. 6 shows several
examples of the segmentation results.

We also compare the detection-free methods on the Figment
dataset, which is more challenging in tracking multiple inter-
acting objects. All the six performance metrics listed in Table I
are employed for the evaluation of the tracking performance.
For fair comparisons, the calculation of metrics follows the
standard procedure introduced in [12].

1) All metrics are computed by discarding top and bottom
10% of values and averaging over the remaining ones.

2) Per region clustering error (PRCE) for a mask is set to
100% if it is missed to be assigned a label.

3) Recall for a leaking cluster is set to 0.
4) Recall and tracking time are computed by dilating each

trajectory with a radius of eight pixels.
As listed in Table III, our method outperforms all the com-

peting methods in terms of all metrics. Fig. 9 shows some
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Fig. 6. Segmentation results on Moseg. (a) and (c) Sampled frames, with (b) and (d) their corresponding results. Background cluster are considered. Pixels
in red are the segmented background, and pixels in blue and yellow are the extracted foreground objects, respectively. Note our method works well for both
articulated (row above) and rigid (row below) targets.

TABLE IV
EVALUATION METRICS FOR COMPARISONS WITH DETECTION-BASED

TRACKING METHODS

TABLE V
QUANTITATIVE RESULTS AND COMPARISONS WITH DETECTION-BASED

TRACKING METHODS ON FIGMENT AND TUD

examples of the tracking results, and more video results are
provided in the supplementary materials.

It worth mentioning that our framework can handle the
partial and total occlusion issues well. The video bundles
have long-term temporal consistency of visible object pix-
els, naturally handling partial occlusion in tracking. For total
occlusion, our framework can also achieve robust tracking by

Fig. 7. Tracking results using different inference algorithms. (a) Source
frames. (b) and (c) Tracking results by the PBP and the proposed RBP algo-
rithms, respectively. The assigned labels to object IDs are represented by
different colors.

performing reconfigurable inference on the constructed spatio-
temporal graph. The values of Recall and TT in Table III
can address the partial and total occlusion issues, and the
qualitative illustration is shown in Fig. 6.

C. Comparisons With Detection-Based Methods

We compare our method with two detection-based track-
ing methods [2], [3], where human detectors [40], [41] are
adopted to generate proposals for human tracking. Their pub-
licly available codes are adopted and we tune the parameters
to achieve the best performance on Figment and TUD. Note
that [3] treats tracking as a network flow problem and solved
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TABLE VI
QUANTITATIVE RESULTS OF THE PROPOSED METHOD WITH DIFFERENT VIDEO BUNDLE NUMBERS AND

VIDEO BUNDLE FEATURES ON SEVERAL VIDEO SEQUENCES RANDOMLY SELECTED FROM FIGMENT

it approximately via dynamic programming, while [2] utilize
point tracks as low-level cues. In each frame, the bounding
boxes for each target are simply localized as the cluster cen-
ter of all pixels within the corresponding label. We calculate
the one-to-one assignment of object proposals to groundtruth
and utilize the widely used CLEAR MOT metrics [42] listed
in Table IV for evaluation, where the multiple object track-
ing accuracy (MOTA) is the combination of the three error
ratios. The quantitative results are reported in Table V, and
some representative results are shown in Fig. 9. From the
results of Figment, one can see that due to the deficiency of
detection in such scene, both [2] and [3] suffer from heavy
missing detection (MD = 89.19% and 50.95%). Our method
recovers substantially more trajectories with much higher
MOTA accuracy, i.e., 56.71%, while the competing methods
are sensitive to unreliable detections. For TUD, our method
can achieve comparable accuracy against [3], and substantially
outperforms [2]. This evaluation results demonstrate the effec-
tiveness of the proposed method under the detection-reliable
scenarios.

D. Evaluation on Components and Convergence

The proposed framework has two key components, i.e.,
video bundle representation and RBP. To validate the ben-
efits of the components, we compare the proposed method,
i.e., our-full, with three additional methods by replacing one
or two components of the framework. Our-1 generates tra-
jectories on video bundles by replacing RBP with PBP [10].
Our-2 generates trajectories by performing spectral clustering
on video bundles, i.e., replacing RBP with spectral clus-
tering. Our-3 performs spectral clustering on point tracks
directly to generate trajectories, i.e., replacing video bundles
with point tracks and replacing RBP with spectral cluster-
ing. Table III lists the results of the four variants of the
proposed method. Clearly bundle representation and RBP
outperform point track representation and conventional PBP,
respectively.

We further present the evaluation results of the proposed
method with different video bundle numbers and video bun-
dle features on several video sequences selected from Figment.

Fig. 8. Energy decreasing of RBP and PBP during inference.

Specifically, we set the number of video bundles as 100, 150,
200, 250, and 300. We use the different color features, i.e.,
HSV and RGB, and the different texture features, i.e., Grad
(oriented gradients) and local binary pattern (LBP). Table VI
reports the quantitative results generated under different set-
tings. From the results, we can observe that our algorithm
generally achieves satisfying performances.

1) Efficiency: Our implementation is coded in MATLAB
and all the experiments are conducted on an Intel I5 3.0 GHz
PC with 4 GB memory. Given the extracted point tracks,
the average runtime for bundle generation is 250 ms per
sequence. The runtime of inference is related to the complex-
ity of video content, with the average of 5 ∼ 8 min per video
sequence.

In addition, we analyze the energy convergence of the RBP
algorithm during inference, where the energy is derived based
on the posterior probability. Fig. 7 shows the tracking results
of RBP and PBP on a clip from figment. Using this clip, Fig. 8
shows the energy values of the proposed RBP and PBP [10]
algorithms with increasing iterations. Here, we use the same
energy function as in [9]. It is clearly shown that RBP can
achieve better convergence while PBP stops after 4 iterations.
From Figs. 7 and 8, RBP is effective to avoid being stuck
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Fig. 9. Segmentation and tracking results on the figment dataset.

in unsatisfied local minima by the reconfiguration operations,
and achieves better spatio-temporal assignment results of
persons.

VII. CONCLUSION

This paper proposed a novel video tracking framework in
the context of object detectors been limited. The proposed
method first constructed a spatial-temporal graph consist-
ing of the video bundles by exploiting multiple cues of
motion and appearance, and then generated the trajectories
by a novel RBP algorithm. RBP allows the reconfigura-
tion of the clustering results and reactivation of the BP
inference to avoid stucking in local minima, and thus can con-
duct more reliable spatio-temporal association of objects. The
experiments and comparisons to the state-of-the-arts demon-
strated the effectiveness of our framework on very challenging
scenarios.
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