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Abstract

Generating long and semantic-coherent reports to describe
medical images poses great challenges towards bridging vi-
sual and linguistic modalities, incorporating medical domain
knowledge, and generating realistic and accurate descrip-
tions. We propose a novel Knowledge-driven Encode, Re-
trieve, Paraphrase (KERP) approach which reconciles tradi-
tional knowledge- and retrieval-based methods with modern
learning-based methods for accurate and robust medical re-
port generation. Specifically, KERP decomposes medical re-
port generation into explicit medical abnormality graph learn-
ing and subsequent natural language modeling. KERP first
employs an Encode module that transforms visual features
into a structured abnormality graph by incorporating prior
medical knowledge; then a Retrieve module that retrieves text
templates based on the detected abnormalities; and lastly, a
Paraphrase module that rewrites the templates according to
specific cases. The core of KERP is a proposed generic imple-
mentation unit—Graph Transformer (GTR) that dynamically
transforms high-level semantics between graph-structured
data of multiple domains such as knowledge graphs, images
and sequences. Experiments show that the proposed approach
generates structured and robust reports supported with ac-
curate abnormality description and explainable attentive re-
gions, achieving the state-of-the-art results on two medical
report benchmarks, with the best medical abnormality and
disease classification accuracy and improved human evalu-
ation performance.

Introduction
Beyond the traditional image captioning task (Xu et al.
2015; Karpathy and Fei-Fei 2015; Rennie et al. 2017) that
produces single-sentence descriptions, generating long and
semantic-coherent stories or reports to describe visual con-
tents (e.g., images, videos) has recently attracted increas-
ing research interests (Liang et al. 2017; Huang et al. 2016;
Krause et al. 2017), and is posed as a more challeng-
ing and realistic goal towards bridging visual patterns with
human linguistic descriptions. Particularly, an outstanding
challenge in modeling long narrative from visual content is
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to balance between knowledge discovery and language mod-
eling (Karpathy and Fei-Fei 2015). Current visual text gen-
eration approaches tend to generate plausible sentences that
look natural by the language model but poor at finding vi-
sual groundings. Although some approaches have been pro-
posed to alleviate this problem (Lu et al. 2018; Anderson et
al. 2018; Liang et al. 2017), most of them ignore the inter-
nal knowledge structure of the task at hand. However, most
real-world data and problems exhibit complex and dynamic
structures such as intrinsic relations among discrete enti-
ties under nature’s law (Taskar, Guestrin, and Koller 2004;
Hu et al. 2016; Strubell et al. 2018). Knowledge graph, as
one of the most powerful representations of dynamic graph-
structured knowledge (Mitchell et al. 2018; Bizer, Heath,
and Berners-Lee 2011), complements the learning-based ap-
proaches by explicitly modeling the domain-specific knowl-
edge structure and relational inductive bias. Knowledge
graph also allows incorporating priors, which is proven
useful for tasks where universal knowledge is desired or
certain constraints have to be met (Battaglia et al. 2017;
Liang, Hu, and Xing 2018; Hu et al. 2018; X. Wang 2018).

As an emerging task of long text generation of practi-
cal use, medical image report generation (Li et al. 2018;
Jing, Xie, and Xing 2018) must satisfy more critical proto-
cols and ensure the correctness of medical terminology us-
age. As shown in Figure 1, a medical report consists of a
finding section describing medical observations in details of
both normal and abnormal features, an impression or conclu-
sion sentence indicating the most prominent medical obser-
vation, and peripheral sections such as patients information
and indications. Among these sections, the finding section
is considered as the most important component and is ex-
pected to 1) cover contents of key relevant aspects such as
heart size, lung opacity, and bone structure; 2) correctly de-
tect any abnormalities and support with details such as the
location and shape of the abnormality; 3) describe potential
diseases such as effusion, pneumothorax and consolidation.

It is often observed that, to write a medical image report,
radiologists first check a patient’s images for abnormal find-
ings, then write reports by following certain patterns and
templates, and adjusting statements in the templates for each
individual case when necessary (Hong and Kahn 2013). To
mimic this procedure, we propose to formulate medical re-
port writing as a knowledge-driven encode, retrieve, para-
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Medical Image Report 
Indication: 65-year-old male.
Finding:  The cardiomediastinal silhouette is normal in 
size and contour. Masslike opacification of right apex. No 
pneumothorax or large pleural effusion. The osseous 
structures are grossly normal.
Impression:  Worsening masslike opacification of right 
apex-suggesting worsening malignancy or malignancy 
with postobstructive pneumonia. 

Figure 1: Example of medical image report

phrase (KERP) process. In particular, KERP first invokes an
Encode module to transform visual features of medical im-
ages into an abnormality graph where each node represents
a possible clinical abnormality designed by prior medical
knowledge, and the features of which depict semantics of
the abnormality that can be observed from the visual input
(e.g., normal or abnormal, size, location). The correlation
of abnormality nodes is further encoded as edge weights of
the abnormality graph so that the relations among different
abnormal findings are considered when making a clinical di-
agnostic decision. Then KERP retrieves a sequence of tem-
plates according to the detected abnormalities via a Retrieve
module. The words of the retrieved templates are further ex-
panded and paraphrased into a report by a Paraphrase mod-
ule which enriches the templates with details and corrects
false information if any.

As most real-world data (e.g., images, sequence of text
tokens, knowledge graphs, convolutional feature maps) can
be represented as graphs, we further propose a novel and
generic implementation unit—Graph Transformer (GTR)
which dynamically transforms among multi-domain graph-
structured data. We further equip GTR with attention mech-
anism for learning robust graph structure, as well as incorpo-
rating prior knowledge structure. By invoking GTR, KERP
can transform robustly from visual features to an abnor-
mality graph (with the Encode module), then to sequences
of templates (with the Retrieve module), and lastly to se-
quences of words (with the Paraphrase module).

We conduct extensive experiments on two medical image
report dataset (Demner-Fushman et al. 2015). Our KERP
achieves the state-of-the-art performance on both datasets
under both automatic evaluation metrics and human evalua-
tion. KERP also achieves best performance on abnormality
classification. Experiments show that KERP not only gen-
erates structured and robust reports supported with accurate
abnormality prediction, but also produces explainable atten-
tive regions which is crucial for interpretative diagnosis.

Related Work
Medical report generation. Machine learning for health-
care has been widely recognized in both academia and in-
dustry as an area of high impact and potential. Automatic
generation of medical image reports, as one of the key ap-
plications in the field, is gaining increasing research inter-
est (Li et al. 2018; Wang et al. 2018b; Jing, Xie, and Xing
2018). The task differs from other tasks such as summariza-
tion where summaries tend to be more diverse without clear

templates or internal knowledge structure; and image cap-
tioning where usually a single sentence is desired.

Graph neural networks. Graph neural networks (GNN)
have gained increasing research interests (Defferrard, Bres-
son, and Vandergheynst 2016; Kipf and Welling 2017;
Monti, Bronstein, and Bresson 2017). However, most exist-
ing methods learn to encode the input feature into higher-
level feature through selective attention over the object it-
self (Wang et al. 2018a; Parmar et al. 2018; Velickovic et
al. 2018), while our method works on multiple graphs, and
models not only the data structure within the same graph but
also the transformation rules among different graphs.

Hybrid retrieval-generation approach. Combining tra-
ditional retrieval-based and modern generation-based meth-
ods for (long) text generation (Li et al. 2018; Guu et al. 2018;
Ziqiang Cao and Wei 2018; Hu et al. 2017) has gained in-
creasing research interests. Our work differs from previous
work in that: 1) we develop an encoding procedure that ex-
plicitly learns the graph structure of medical abnormalities;
2) the retrieve and rerank is formulated as one joint, com-
prehensive process and implemented via a novel and generic
unit–Graph Transformer.

Graph Transformer (GTR)
We start by describing Graph Transformer (GTR) which
transforms a graph into another graph for encoding features
into higher-level semantics within the same graph type, or
translating features of one graph (e.g., knowledge graph)
into another one (e.g., sequence of words). First, we rep-
resent a graph as G = (V,E). Here V = {vi}i=1:N is a
set of nodes where each vi ∈ Rd represents a node’s fea-
ture of dimension d, and N is the number of nodes in the
graph. E = {ei,j}i,j=[1,N ] is a set of edges between any
possible pair of nodes. Here we study the setting where each
edge is associated with a scalar value indicating closeness
of nodes, while it is straightforward to extend the formalism
to other cases where edges are associated with non-scalar
values such as vectors.

GTR takes a graph G = (V,E) as input, and out-
puts another graph G′ = (V ′, E′). Note that G and G′

are two different graphs and can have different structures
and characteristics (e.g., N 6= N ′, d 6= d′, and ei,j 6=
e′i,j). This differs from many previous methods (Defferrard,
Bresson, and Vandergheynst 2016; Kipf and Welling 2017;
Velickovic et al. 2018) which are restricted to the same graph
structures. For both source and target graph, the set of nodes
V and V ′ has to be given in prior (e.g., the vocabulary size
if the considered graph is sequences, abnormality nodes if
the considered graph is an abnormality graph). We consider
two scenarios for the edges among graph nodes: 1) the edges
are provided in prior, and denoted as esi,tj where si is the ith
node of source graph and tj is the jth node of target graph; 2)
the edges are not provided, and thus source and target nodes
are represented as fully connected with uniform weights. We
assume esi,tj as normalized, to avoid notation of averaging.

There are two types of message passing in GTR: from
source graph to target graph (inter-graph message passing),



and message passing within the same graph (intra-graph
message passing).

Inter-graph message passing To learn the source graph’s
knowledge, the features of source nodes are transformed
and passed to target nodes with their corresponding edge
weights. The formulation can be written as:

v′j = v′j + σ(
∑N

i=1
esi,tj Wsvi) (1)

where σ is a nonlinear activation, and Ws is a projection
matrix of size d′ × d.

Considering that the edge information between source and
target graphs may not be available in many cases (e.g., trans-
lating a sequence of words into another sequence of words),
we propose to learn edge weights automatically by an at-
tention mechanism (Vaswani et al. 2017). In this way, target
node update is enabled to consider the varying importance
of the source nodes. Specifically,

êsi,tj = Attention(Wa
svi,W

a
t v
′
j) (2)

where êsi,tj is the attention weight of edge from source
node i to target node j; Wa

s and Wa
t are weights in attention

mechanism to project nodes features of source graph and tar-
get graph to a common space of dimension q respectively;
and Attention: Rq −→ R is the attention mechanism that
transforms the two projected features Wa

svi,W
a
t v
′
j ∈ Rq

to a scalar êsi,tj as the edge’s attention weight. In our exper-
iments, Attention is parameterized as a scaled dot-product
operation with multi-head attention (Vaswani et al. 2017).

The attention weights are normalized over all source
nodes for each target node, denoting the relative importance
of each source node to a target node among all source nodes.
The formulation can be written as:

êsi,tj = softmaxsi(êsi,tj ) =
exp (êsi,tj )∑N

k=1 exp (êsk,tj )
(3)

Once obtained, the normalized attention coefficients are be
combined with prior edge weights to pass features of con-
nected source nodes to target nodes. The combined features
are served as the target node’s updated features with source
graph knowledge encoded. We adopt weighted sum of the
learned attention edge weights and prior edge weights as fi-
nal edge weights. Other methods such as multiplication of
learned and prior edge weights followed by softmax also
works. However, in our experiments, we observed that the
first method performs better and avoids under-fitting. The
formulation can be written as:

ẽsi,tj = λesi,tj + (1− λ)êsi,tj (4)

where λ is a user-defined weight controlling importance of
prior edges and learned edges. If λ is set to 1, the edges
between source graph and target graph are fixed, and no
attention machanism is required. The formulation is then
the same as Equation 1. If λ is set to 0, the edges between
source graph and target graph are completely learned by the
model. With the updated weight, one can obtain updated tar-
get nodes features via Equation 1.

Intra-graph message passing Intra-graph message pass-
ing aims at modeling the correlation among nodes of the
same graph, and fusing features according to the closeness

Source Attention

Self Attention

Source graph Target graph

Figure 2: Architecture of Graph Transformer. GTR evolves
a target graph by recurrently performing Source Attention on
a source graph and Self Attention on itself. The darkness of
color of each graph node indicates the degree of attention
the target node pays to.

between them. Specifically, a target node is updated by com-
bining features of neighboring nodes and itself. The formu-
lation can be written as:

v′j = v′j + σ(
∑N′

i=1
ẽi,jWtv′i) (5)

where Wt is weight to project features of target nodes from
dimension d to output dimension. To learn the edge weights
through attention mechanism, one can directly apply Equa-
tions 1-4 by changing source and target nodes notation to be
of the same graph.

GTR as a module As shown in Figure 2, we formulate
GTR as a module denoted as GTR by first concatenating
intra-graph message passing and inter-graph message pass-
ing into one step (that is, first conduct message passing
within target graph, then conducting message passing from
one or multiple source graphs), then stacking multiple such
steps into one module in order to progressively convert tar-
get graph features into high-level semantics.

GTR for multiple domains Most real-world data types
(e.g., images, sequences, graphs) can be formulated as
graph-structured. For example, a 2-dimentional image can
be formulated as a graph whose nodes are pixels of the
image where every node is connected with its neighboring
pixel nodes; and a sequence of words can be formulated as
a graph whose nodes are the individual words where edges
among nodes are the consecutive relation among words. If
global context of the data is considered, which is commonly
adopted in attention mechanism (Vaswani et al. 2017), the
graph nodes are then fully-connected. In the following, we
describe the variants of GTR for different data domains by
first formulating data as graph-structured, and then perform
GTR operations on it. In particular, we defineGTRi2g as the
variant of GTR for transforming image features into graph’s
features; GTRg2g the variant of GTR for transforming from
a graph to another graph; GTRg2s the variant of GTR for
graph input and sequence output; and GTRgs2s the variant
of GTR for graph and sequence input and sequence output.
We use the variants of GTR as building blocks of KERP for
medical report generation, which is described in section.

GTR for sequential input/output. To apply GTR for se-
quential input or output (e.g., a sequence of words, a se-
quence of retrieved items), we employ positional encod-
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Degenerative changes in the spine.
No pleural effusion.
There is hyperexpansion of the lungs 
suggesting underlying emphysema.
No focal airspace consolidation.
Heart size is normal.

Emphysema

Degenerative 
diseaseDegenerative change 

of spine (0.66)

Focal airspace 
consolidation 

(0.01)

Hyperexpansion of 
lungs (0.78)

Enlarged 
heart size 

(0.04)

Tortuous 
aorta (0.12)

Low lung 
volumes (0.00)

0.03 0.19
0.12

0.00

Figure 3: Architecture of KERP. Image features are first extracted from a CNN, and further encoded as an abnormality graph
via Encode GTRi2g . Retrieve GTRg2s decodes the abnormality graph as a template sequence, the words of which are then
retrieved and paraphrased by ParaphraseGTRgs2s as the generated report. Simultaneously, aGTRg2g decodes the abnormality
graph as a disease graph, and predicts disease categories via extra classification layers. In the abnormality graph, values inside
parentheses are probabilities of the corresponding nodes predicted by extra classification layers taking latent semantic features
of nodes as input. Values along the directed arrows indicate attention scores of source nodes on target nodes.

ing (Vaswani et al. 2017) to GTR so as to add relative and ab-
solute position information to the input or output sequence.
Specifically, we use sine and cosine functions of different
frequencies:

PEpos,2i = sin(pos/100002i/d) (6)

PEpos,2i+1 = cos(pos/100002i/d) (7)

where pos is the position and i is the dimension. If both
input and output are sequences, GTR is close to a Trans-
former (Vaswani et al. 2017) with prior edge weights.

GTR for image input. We denote visual features of an
image as I ∈ RD,W,H where D is the dimension of latent
features, W and H is width and height. To apply GTR for
image input, we first reshape visual features by flattening the
2-dimension into 1-dimension RW×H,D. Then each pixel
is treated as graph node whose features are used as source
graph features.

GTR for multiple input graphs. For the cases where
a target graph wants to learn from more than one source
graphs, we extend GTR to take into account multiple in-
put source by replacing the single intre-graph message pass-
ing in each stacked layer of GTR into multiple concatenated
intre-graph message passing.

Knowledge-driven Encode, Retrieve,
Paraphrase (KERP)

It is observed that, to write a medical image report, radiol-
ogists first check a patient’s images for abnormal findings,
then write reports by following certain patterns and tem-
plates, and adjusting statements in the templates for each
individual case when necessary (Hong and Kahn 2013). To
mimic this procedure, we propose to formulate medical re-
port writing as a process of encoding, retrieval and para-
phrasing. In particular, we first compile an off-the-shelf ab-
normality graph that contains large range of abnormal find-
ings. We consider frequent abnormalities stem from thoracic

organs as nodes in the abnormality graph. For example, ”dis-
appearance of costophrenic angle”, ”low lung volumes”, and
”blunted costophrenic angle”. These abnormalities compose
a major part of medical reports, and their detection quality
would greatly impact the accuracy of the generated reports.
Please see Appendix for detailed definition and examples.
We also compile a template database that consists of a set
of frequent sentences that cover descriptions of different ab-
normalities in the abnormality graph. For example, ”there
is hyperexpansion of lungs and flattening of the diaphragm
consistent with copd” is a template for describing ”hyperex-
pansion of lungs”, ”flattening of diaphragm” and ”copd”.

Then we design separate modules for the purpose of en-
coding visual features as an abnormality graph, retrieving
templates based on the detected abnormalities, and rewriting
templates according to case-specific scenario. As described
in Figure 3, a set of images are first fed into a CNN for ex-
tracting visual features which are then transformed into an
abnormality graph via Encode GTRi2g . Retrieve GTRg2s

decodes the abnormality graph as a template sequence, the
words of which are then retrieved and paraphrased by Para-
phrase GTRgs2s as the generated report.

In addition, we design a disease graph containing com-
mon thorax diseases (e.g., nodule, pneumonia and emphy-
sema) which are commonly concluded from single or com-
bined condition of abnormalities. For example, atelecta-
sis may be concluded if ”interval development of bandlike
opacity in the left lung base” is present; consolidation and
atelectasis may exist if there is ”streaky and patchy bibasilar
opacities”, and ”triangular density projected over the heart”
without ”typical findings of pleural effusion or pulmonary
edema”. In parallel to generating reports in the proposed
model architecture, a GTRg2g is employed to transform the
abnormality graph to a disease graph in order to predict com-
mon thorax diseases (right lower column of Figure 3) which
can be useful as concluding information for medical reports.



Encode: visual feature to knowledge graph
The Encode module aims at encoding visual features as an
abnormality graph. Assume an input image is encoded with
a deep neural network into feature X ∈ RWH,dX where W ,
H and dX are width, height, and feature dimension, respec-
tively. An abnormality graph is represented as a set of nodes
of size N with initialized features. The latent features of
each node can be used to predict occurrence of the abnor-
mality via an additional classification layer. By applying the
variant of GTR for image input and graph output, denoted as
GTRi2g , the updated node features can be written as:

hu = GTRi2g(X) (8)
u = sigmoid(Wuhu) (9)

where GTRi2g is the formulation of the variant of GTR
for image input and graph output described on page 3, and
Wu is linear projection to transform latent feature u into 1-
d probability. hu = (hu1 ;hu2 ; ...,huN

) ∈ RN,d is the set
of latent features of nodes where d is feature dimension.
u = (u1, u2, ..., uN ), yi ∈ {0, 1}, i ∈ {1, ..., N} denotes
binary label for abnormality nodes.

Retrieve: knowledge graph to template sequence
Once the knowledge graph of abnormality attributes is ob-
tained, it can be used to guide the retrieval process to har-
vest templates. A sequence of templates is represented as
t = (t1, t2, ..., tNs

) where Ns is the maximum length of
template sequence (also maximum number of sentences) and
ti is index of templates where i ∈ {1, ..., Ns}. By applying
the variant of GTR for graph input and sequential output,
denoted as GTRg2s, the retrieved template sequence can be
obtained as follows:

ht = GTRg2s(hu) (10)
t = argmax Softmax(Wtht) (11)

where GTRg2s denotes the formulation of the variant of
GTR for graph input and sequence output, Wt is linear pro-
jection to transform latent feature to template embedding,
and argmax Softmax is the operation that selects index of
maximum value after Softmax function.

Paraphrase: template sequence to report
Paraphrase serves for two purposes: 1) refine templates with
enriched details and possibly new case-specific findings; 2)
convert templates into more natural and dynamic expres-
sions. The first purpose is achieved by modifying informa-
tion in the templates that is not accurate for specific cases,
and the second purpose is achieved by robust language mod-
eling for the same content. These two goals supplement each
other in order to generate accurate and robust reports.

Given the retrieved sequence of templates t = (t1, t2, ...,
tNs), the rewriting step generates a report consisting of a se-
quence of sentences R = (r1, r2, ..., rNs

) by subsequently at-
tending to template words and the encoded knowledge graph
(described on page 4). Each sentence ri = (wi1, wi2, ...,
wiNw

), i ∈ {1, .., Ns} consists of a sequence of Nw words.

hw = GTRgs2s(hu, t) (12)
R = argmax Softmax(Wwf(hw)) (13)

where GTRgs2s denotes the formulation of the variant of
GTR for graph and sequence input, and sequence output,
f denotes the operation of reshaping hw from RNs,Nw,d to
RNs∗Nw,d, Ww is linear projection to transform latent fea-
ture into word embedding, and argmax Softmax selects in-
dex of maximum value after Softmax function.

Disease classification
Abnormality attributes are frequently used for diagnosing
diseases. Let z = (z1, z2, ..., zL) be a one-hot representa-
tion of disease labels where L is the total number of disease
labels, and zi ∈ {0, 1}, i ∈ {1, ..., L}. The multi-label dis-
ease classification can be written as:

hz = GTRg2g(hu) (14)
z = sigmoid(Wzhz) (15)

where GTRg2g denotes the formulation of the variant of
GTR for graph input and graph output, Wz is linear projec-
tion to transform disease nodes feature into 1-d probability.

Learning
During paraphrasing, the retrieved templates t, instead of la-
tent feature ht, is used for rewriting. Sampling the templates
of maximum predicted probability breaks the connectiv-
ity of differentiable back-propagation of the whole encode-
retrieve-paraphrase pipeline. To alleviate this issue, we first
train the Paraphrase with ground truth templates, and then
with sampled templates generated by Retrieval module. This
minimizes the negative effect of dis-connectivity and make
better test-time performance by letting the model accom-
modate to its own generated templates. Besides, given that
templates serve as starting points instead of ground truth for
rewriting, the prediction of templates does not have to be
highly accurate as the Paraphrase module needs to learn to
paraphrase any suitable templates.

Experiments & Results
Dataset. We conduct experiments on two medical image
report datasets. First, Indiana University Chest X-Ray
Collection (IU X-Ray) (Demner-Fushman et al. 2015) is a
public dataset consisting of 7,470 chest x-ray images paired
with their corresponding diagnostic reports. Each patient
has 2 images (a frontal view and a lateral view) and a re-
port which includes impression, finding and indication sec-
tions. We preprocess the reports by tokenizing and convert-
ing to lower-cases. We filter tokens by minimum frequency
3, which results in 1185 unique tokens covering over 99.0%
word occurrences in the corpus. We collect 80 abnormal-
ities and 87 templates for IU X-Ray dataset. CX-CHR is
a private dataset of chest X-ray images with corresponding
Chinese reports collected from a professional medical insti-
tution for health checking. The dataset consists of 35,609
patients and 45,598 images. Each patient has one or multi-
ple chest x-ray images in different views (e.g., frontal and
lateral), and a corresponding Chinese report. We select pa-
tients with no more than 2 images and obtain 33,236 patient
samples in total which covers over 93% of the dataset. We
preprocess reports by tokenizing and filtering tokens whose



Dataset Model CIDEr ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 Hit (%)

IU X-Ray

CNN-RNN 0.294 0.307 0.216 0.124 0.087 0.066 –
LRCN 0.285 0.307 0.223 0.128 0.089 0.068 –
AdaAtt 0.296 0.308 0.220 0.127 0.089 0.069 –
Att2in 0.297 0.307 0.224 0.129 0.089 0.068 –
CoAtt* 0.277 0.369 0.455 0.288 0.205 0.154 24.100
HRGR-Agent 0.343 0.322 0.438 0.298 0.208 0.151
KER 0.318 0.335 0.455 0.304 0.210 –
KERP 0.280 0.339 0.482 0.325 0.226 0.162 57.425

CX-CHR

CNN-RNN 1.580 0.578 0.592 0.506 0.450 0.411 –
LRCN 1.589 0.577 0.593 0.508 0.459 0.413 –
AdaAtt 1.568 0.576 0.588 0.505 0.446 0.409 –
Att2in 1.564 0.576 0.587 0.503 0.447 0.403 25.937
HRG 2.800 0.588 0.629 0.547 0.497 0.463 –
HRGR-Agent 2.895 0.612 0.673 0.587 0.530 0.486 -
KER 0.817 0.552 0.609 0.489 0.400 0.335 –
KERP 2.850 0.618 0.673 0.588 0.532 0.473 67.820

Table 1: Automatic and human evaluation on IU X-Ray (upper part) and CX-CHR dataset (lower part) compared with CNN-
RNN (Vinyals et al. 2015), LRCN (Donahue et al. 2015), AdaAtt (Lu et al. 2017), Att2in (Rennie et al. 2017), CoAtt (Jing,
Xie, and Xing 2018), and HRGR-Agent (Li et al. 2018). * indicates re-training and evaluation on our data split.

frequencies are no less than 3, resulting in 1,479 unique to-
kens. We collect 155 abnormalities and 362 templates for
CX-CHR dataset. More details of the dataset, and collection
of abnormalities and templates is in Appendix.

On both dataset, we randomly split the data by patients
into training, validation and testing by a ratio of 7:1:2. There
is no overlap between patients in different sets. To fairly
compare with all baselines, we extract visual features for
both dataset from a DenseNet (Huang et al. 2017) jointly
pretrained on CX-CHR and public available ChestX-ray8
dataset (Wang et al. 2017). Please see Appendix for details.

Evaluation metrics. We use area under the curve (AUC)
to evaluate performance of abnormality and disease classi-
fication. For evaluating medical report generation, we use
two kinds of evaluation metrics: 1) automatic metrics includ-
ing CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015),
ROUGE-L (Lin 2013), BLEU (Papineni et al. 2002); 2) hu-
man evaluation: we randomly select 100 sampled testing re-
sults of each method, and conduct surveys through Amazon
Mechanical Turk. Each survey question gives a ground truth
report, and ask candidate to choose among reports generated
by different models. The criteria is the degree of correctness
of abnormal findings, language fluency, and content cover-
age compared to the ground truth report. A default choice is
provided in case of no or all reports are preferred. We collect
results from 5 participants, and compute the average prefer-
ence percentage for each model excluding default choices.

Training details. We first train Encode for abnormality
classification, then separately train Retrieve with fitted tem-
plates supervision, and Paraphrase with fitted templates
as input and ground truth report as output with fixed En-
code. Then we fine-tune Paraphrase using sampled tem-
plates from Retrieve. As Retrieve may not predict same
length or same order of sentences as ground truth, we re-
order the ground truth sentences by choosing the smallest
edit distance to the corresponding retrieved template sen-

Dataset Model Abnormality Disease

IU X-Ray
DenseNet 0.612 0.646
Ours-1Graph 0.674 -
Ours-2Graphs 0.686 0.726

CX-CHR
DenseNet 0.689 0.800
Ours-1Graph 0.721 -
Ours-2Graphs 0.760 0.862

Table 2: Classification AUC.

tence. We use learning rate 1e−3 for training and 1e−5 for
fine-tuning, and reduce by 10 times when encountering val-
idation performance plateau. We use early stopping, batch
size 4 and drop out rate 0.1 for all training.

Besides, as observed from baseline models which overly
predict most popular and normal reports for all testing sam-
ples, and the fact that most medical reports describe nor-
mal cases, we add post-processing to increase the length and
comprehensiveness of the generated reports for both datasets
while allowing KERP to focus on abnormal findings. Please
refer to Appendix for detailed description.

Baselines for abnormality and disease classification We
compare the performance of abnormality and disease classi-
fication with a DenseNet (Huang et al. 2017) trained on clas-
sifying the same set of abnormality labels or disease labels.
For abnormality classification, we compare our method by
solely training on abnormality classification (Ours-1Graph),
and jointly training on both abnormality and disease clas-
sification (Ours-2Graphs). For disease classification, we di-
rectly compare with DenseNet.

Baselines for medical report generation On both
datasets, we compare with 4 state-of-the-art image caption-
ing models: CNN-RNN (Vinyals et al. 2015), LRCN (Don-
ahue et al. 2015), AdaAtt (Lu et al. 2017), and Att2in (Ren-
nie et al. 2017). We use the same visual features and
train/test split on both datasets respectively. On IU X-



Images Attention Maps Abnormality graph Ground truth report Retrieved templates Generated report

The cardiac silhouette is mildly 
enlarged. Mediastinal contours are 
within normal limits. The pulmonary 
vascularity is increased. There is large 
right - sided pleural effusion and 
probable underlying associated 
compressive atelectasis. Mild 
perihilar xxxx opacities , xxxx edema. 
No pneumothorax is seen. 

There is a small left 
pleural effusion. No 
pneumothorax.
Heart size normal
the lungs are clear. 

There are bilateral pleural 
effusions with bibasilar 
airspace disease , right 
greater than left. No 
pneumothorax. Cardiac 
silhouette is at the upper 
limits of normal. Clear 
lungs.

There is mild cardiomegaly. 
Mediastinal contours appear within 
normal limits. There are small 
bilateral pleural effusions , left 
greater than right with left basilar 
opacities. No pneumothorax. Mild 
degenerative changes of the thoracic 
spine. 

Heart size is upper limits 
of normal. There are 
small bilateral pleural 
effusions. xxxx 
sternotomy xxxx are again 
noted. No pneumothorax. 
Heart size normal.

Cardiac silhouette is 
enlarged but unchanged. 
There are bilateral pleural 
effusions with bibasilar 
airspace disease , right 
greater than left. 
Unchanged sternotomy 
xxxx. No pneumothorax. 
Cardiac silhouette is at 
the upper limits of 
normal. 

The heart , pulmonary xxxx and 
mediastinum are within normal limits. 
There is no pleural effusion or 
pneumothorax. There is no focal 
airspace opacity to suggest a 
pneumonia. There is mild biapical 
pleural thickening which is smooth. 
There is evidence of previous anterior 
cervical spine fusion. There are 
degenerative changes of the spine.

Degenerative changes in 
the thoracic spine. 
Tortuous aorta. No pleural 
effusion. The lungs are 
free of focal airspace 
disease. No pneumothorax. 
Heart size normal.

There are degenerative 
changes of the spine. 
Tortuosity of the aorta. No 
pleural effusion. There is no 
focal airspace 
consolidation. There is no 
pneumothorax or pleural 
effusion. Heart size is 
normal.

Normal heart size. Tortuosity of the 
thoracic aorta. The lungs are free of 
any focal airspace disease. There is no 
pneumothorax or pleural effusion. 
Degenerative changes are present in 
the spine. 

Degenerative changes in 
the thoracic spine. 
Tortuous aorta. No 
pleural effusion. The lungs 
are free of focal airspace 
disease. Heart size normal.

Degenerative changes of 
the spine. Tortuous aorta. 
No pleural effusion. There 
is no focal airspace 
consolidation. Heart size is 
normal.
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Figure 4: Visualization of result of KERP on IU X-Ray dataset. Bold text indicates alignment between the generated text and
ground truth reports. Underlined text indicates correspondence of the generated text (specifically location description) with the
visualized attention maps (of either the 1st/frontal or 2nd/lateral view). In the abnormality graph, values inside parentheses are
predicted probabilities of corresponding nodes. We select edges whose attention scores are greater than or equal to 0.05, or are
the highest from neighboring nodes to each node, and visualize the attention scores along the directed arrows.

Ray dataset, we also compare with CoAtt (Jing, Xie, and
Xing 2018) which uses different visual features extracted
from a pretrained ResNet (He et al. 2016). The authors of
CoAtt (Jing, Xie, and Xing 2018) re-trained their model us-
ing our train/test split, and provided evaluation results for
automatic report generation metrics using greedy search and
sampling temperature 0.5 at test time. We also compare with
HRGR-Agent (Li et al. 2018) which uses different visual
features, same set of train/test split for both dataset, and
greedy search and argmax sampling at test time. To study
the effectiveness of individual modules of KERP, we com-
pare KERP with its variant KER which excludes Paraphrase
module and only uses retrieved templates as prediction re-
sults.

Results and Analyses
Abnormality and disease classification error analysis.
The AUCs of abnormality and disease classification are
shown in Table 2. Ours-2Graphs outperforms baselines
on both dataset on abnormality and disease classification.
DenseNet performs the worst on both dataset, and is out-
performed by Ours-2Graphs by more than 6%. This demon-
strates that, by incorporating prior medical knowledge and
learning internal medical knowledge structure, our method
is able to distill useful features for correctly classifying ab-

normalities and diseases. Given the high performance of
Ours-2Graphs, we conduct following experiments using the
knowledge graph trained with both abnormality and disease
labels as initialization.

Medical report generation error analysis. The results
is shown in the upper part of Table 1. Most importantly,
KERP outperforms all baselines on BLEU-1,2,3,4 scores on
IU X-Ray dataset, and on ROUGE-L, BLEU-1,2,3 scores
on CX-CHR dataset, demonstrating its effectiveness and ro-
bustness on combining retrieval and generation mechanism
for generating medical reports. KERP achieves lower CIDEr
score than that of HRGR-Agent on both dataset. However,
HRGR-Agent is fine-tuned using reinforcement learning di-
rectly with CIDEr as reward. Furthermore, KERP achieves
much better performance on abnormality prediction (Table 2
compared to (Li et al. 2018)), demonstrating its superior
capability of detecting abnormal findings which is impor-
tant in clinical diagnosis. Compared to other baseline mod-
els that do not use reinforcement learning, KERP obtains the
highest CIDEr score on both dataset. On IU X-Ray dataset,
KERP achieves lower CIDEr score but higher ROUGE-L
and BLEU-n scores than KER which does not have Para-
phrase process. This indicates that the Paraphrase process
smooths the retrieved templates into more common sen-



tences as higher BLEU-n scores means higher overlap be-
tween n-grams of generated and ground truth reports. How-
ever, as CIDEr incorporates inverse document frequency
(idf) of words evaluated in the entire evaluation corpus, it
inherently gives higher importance to informative and sig-
nificant phrases, such as abnormal findings and diseases, as
oppose to common and popular phrases such as ”the lungs
are clear” and ”heart size is normal”. Thus this shows that
KER correctly detects more significant phrases, and KERP
generates smoother and more common expressions while
maintaining the overall performance of abnormal findings
detection. On CX-CHR dataset, it is observed that KER per-
forms worse than baseline models in most metrics. This may
due to the fact that the templates for CX-CHR are designed
to be concise and to cover large range of different abnormal
findings, instead of being natural and common. Thus only
using retrieved templates does not lead to high performance.
However, the overall high performance of KERP verifies
that Paraphrase module is able to distill accurate informa-
tion from the retrieved templates, and paraphrase them into
more common and natural descriptions. It also shows that
learning conventional and general writing style of radiolo-
gists is as important as accurately detecting abnormalities in
medical report generation.

Human evaluation. We conduct human evaluation as a
supplement to automatic evaluation, the result of which is
shown in the last column of Table 1. KERP outperforms the
compared baseline on both dataset, demonstrating its capa-
bility of generating fluent and accurate reports.

Qualitative analysis. The visualization result of KERP on
IU X-Ray dataset is shown in Figure 4. The generated re-
ports demonstrate significant alignment with ground truth
reports as well as correspondence with the visualized at-
tention maps. For example, the generated report of the first
sample correctly describes ”right greater than left” airspace
disease, and the attention map of frontal view shows red re-
gion over right upper lung greater than left lower lung (the
redness indicates degree of attention). The result demon-
strates that KERP is capable of generating accurate reports
as well as explainable attentive regions. More visualization
and analysis on both dataset is in Appendix.

Conclusion
We propose a novel Knowledge-driven Encode, Retrieve,
Paraphrase (KERP) method to perform accurate and robust
medical report generation, and a generic implementation
unit–Graph Transformer (GTR) which is the first attempt to
transform multi-domain graph-structured data via attention
mechanism. Experiments show that KERP achieves state-of-
the-art performance on two medical image report datasets,
and generates accurate attributes prediction, dynamic medi-
cal knowledge graph, and explainable location reference.
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Appendices
Dataset statistics

Detailed statistics of IU X-Ray and CX-CHR dataset is
shown in Table 3.

Visual features extraction
To fairly compare with all baselines, we extract visual fea-
tures for both dataset from a DenseNet (Huang et al. 2017)

Statistics IU X-Ray CX-CHR
#Patients 3,867 35,609
#Images 7,470 45,598
#Diseases 14 14
#Abnormalities 80 155
#Templates 87 362
#Abnormal templates 66 290
#Normal templates 21 72
Vocabulary size 1185 1479
Max. #sentences 18 24
Max. sentence length 42 38
Max. sentence length (by tokens) 42 18
Max. report length 173 216
Avg. #sentences 4.637 9.120
Avg. sentence length 6.997 7.111
Avg. report length 32.450 64.858
Avg. predicted #sentences 4.420 9.984
Avg. predicted sentence length 4.751 7.309
Avg. predicted report length 21.003 66.045

Table 3: Statistics of CX-CHR and IU X-Ray dataset. ”#”
indicates ”number of”.

jointly pretrained on CX-CHR and public available ChestX-
ray8 dataset (Wang et al. 2017). IU X-Ray dataset is not used
for pretraining due to its relatively small size. We add an ad-
ditional lateral layer as in Feature Pyramid Network (Lin et
al. 2017) for the last three dense blocks and additional con-
volutional layers to transform feature dimension to 256. We
extract features from the last convolutional layer of the sec-
ond dense block which yields 64 × 64 × 256 feature maps.
Such feature maps contain higher resolution and more lo-
cation information than that directly extracted from the last
convolutional layer of a DenseNet (e.g., 16 × 16 × 1024).

Abnormality definition & collection
The abnormal findings generally take these forms: 1) the
presence of abnormal attributes of an object (e.g., bibasi-
lar consolidation) 2) absence of typical attributes (e.g., dis-
appearance of costophrenic angle) 3) abnormal change of
object shape (e.g., enlarged heart size) 4) abnormal change
of object location (e.g., elevated left hemidiaphragm). We
consider all clinical abnormalities stem from thoracic organs
as nodes in the abnormality graph. We use normalized co-
occurrence of abnormality attributes computed from train-
ing corpus as prior edge weights for the knowledge graph,
and normalized co-occurrence of disease labels as prior edge
weights for disease graph, normalized co-occurrence of any
abnormality attribute and disease labels as edge weights
from source knowledge graph nodes to target disease nodes.
The coefficients for prior edge weights mentioned above are
all set to 0.9.

Template definition & collection
For each abnormality, we first collect sentences that describe
the abnormality and have frequencies no less than a thresh-
old in the training corpus, then manually group sentences of
the same meaning and select the most frequent one in each
group as template. For generating template sequence and re-



port word sequence, we assume no prior edge weights for the
target graph or prior edge weights from source graph to tar-
get graph. We assume uniform prior edge weights among all
graph nodes, and use 1.0 weight on the learned edge weights.

Training details
GTRi2g for Encode has 3 graph message passing layers and
6 heads in multi-head attention. GTRg2s and GTRgs2s for
Retrieve and Paraphrase respectively has 6 graph message
passing layers and 8 heads in multi-head attention. The di-
mension of all hidden features and embedding is set to 256.
The coefficients for prior edge weights, if provided, are all
set to 0.9. The word embedding of Retrieve and Paraphrase,
and the projection matrix Ww to project latent feature to
word distribution is shared. We implement our model by Py-
Torch and train on two GeForce GTX TITAN GPUs.


