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Abstract—In this paper, we propose a novel semi-
supervised learning strategy to address human parsing. Existing
human parsing datasets are relatively small due to the required
tedious human labeling. We present a general, affordable and
scalable solution, which harnesses the rich contexts in those easily
available web videos to boost any existing human parser. First, we
crawl a large number of unlabeled videos from the web. Then for
each video, the cross-frame contexts are utilized for human pose
co-estimation, and then video co-parsing to obtain satisfactory
human parsing results for all frames. More specifically, SIFT
flow and super-pixel matching are used to build correspondences
across different frames, and these correspondences then
contextualize the pose estimation and human parsing in individual
frames. Finally these parsed video frames are used as the reference
corpus for the non-parametric human parsing component of
the whole solution. To further improve the accuracy of video
co-parsing, we propose an active learning method to incorporate
human guidance, where the labelers are required to assess the
accuracies of the pose estimation results of certain selected video
frames. Then we take reliable frames as the seed frames to guide
the video pose co-estimation. Our human parsing framework
can then easily incorporate the human feedback to train a better
fashion parser. Extensive experiments on two benchmark fashion
datasets as well as a newly collected challenging Fashion Icon
dataset well demonstrate the encouraging performance gain from
our general pipeline for human parsing.
Index Terms—Information retrieval, professional

communication.

I. INTRODUCTION

H UMAN parsing aims to predict the label (e.g. face, bag,
left-arm, etc.) for each pixel in a human photo. Human

parsing can benefit a wide range of real applications. For ex-
ample, human parsing can be used in intelligent surveillance,
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Fig. 1. Examples of human parsing results. Note that the girls are with quite
diverse poses, and some girls are in side-view or back-view, which are very
challenging. For better viewing of all figures in this paper, please see original
zoomed-in color pdf file.

such as person re-identification. A good understanding of one’s
apparel may provide useful cues to identify a person. More-
over, reliable human parsing results can facilitate the clothing
retrieval by predicting which pixels belong to the each label
[40]. The clothing retrieval can thus utilize the specific feature
for each label instead of using the feature extracted from the
whole image.
Despite the great progresses achieved [40], [7], [39], [22],

human parsing has not been fully solved. It is very challenging
due to the following reasons. Firstly, the same label has very
diverse appearances. For example, the hair styles of the girls
in Fig. 1 are different. Secondly, the relationships among all
labels are complicated yet critical for human parsing. Thirdly,
the clothing items are always occlued by the human or other
clothing items. Finally, all current human parsing datasets are
very small.
The explosive development of social networks and

image/video sharing websites provides easy access to inex-
haustible fashion images and videos. This inspires us to explore
whether we can train a robust human parser by making use
of limited labeled data and inexhaustible unsupervised web
images or videos. To improve the quality of the enriched
parsing samples and avoid semantic drifting, we argue that
the obtained web videos (from, e.g., YouTube.com) are better
choices than web images, since the videos contain richer con-
textual information. The video context can improve both the
intermediate result, i.e., human pose estimation, and the final
goal, i.e., human parsing. Video contexts include the temporal
correspondence and semantic consistency. Based on the tem-
poral and semantic contexts, reliable pixel-wise cross-frame
correspondences can be constructed. Then the correct human
pose estimation and parsing results of single frames can be
transferred to difficult frames. Thus the wrongly estimated
poses or incorrectly parsing results can be refined based on
the neighboring parsing results and the cross-frame correspon-
dences. To sum up, parsing the whole video collaboratively can
filter the possible noises of parsing each frame individually.
The acceptable quality of the enriched data makes re-training
a better human parser possible.
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Fig. 2. Overview of our framework. The proposed framework contains two
components: contextual video parsing and non-parametric human parsing.
Any off-the-shelf pose estimator and human parser can initialize human pose
estimaiton and parsing results. By leveraging the video contexts represented
by SIFT Flow and super-pixel matching, video human pose co-estimation
and human co-parsing algorithms are proposed to achieve much better pose
estimation and human parsing results in the video. To further improve the
accuracy of video parsing, an active learning method is proposed. The users
judge the correctness of the pose estimation results of several recommended
video key frames, which then serve as seeds to guide video pose co-estimation.
Then, a large number of video frames and their video parsing results can
be obtained and used as a gallery set to facilitate the nonparametric label
transferring to the testing image.

The framework is illustrated in Fig. 2. It contains two compo-
nents: 1) contextual video parsing, and 2) non-parametric image
human parsing. For the contextual video parsing component,
the goal is to parse the unlabeled videos crawled from the web.
Since human pose estimation is as a prerequisite for human
parsing, a human pose co-estimation step (Section V) is imple-
mented first. In this step, we first apply the off-the-shelf human
pose estimator to the videos, and then refine the estimated re-
sults by incorporating the pixel-level correspondences between
sequential frames, which is described by Sift Flow [20]. Fur-
thermore, for better video pose co-estimation, we propose an ac-
tive learning method (Section VI) to recommend a human pose
set. The pose set should satisfy two conditions: 1) the poses
are correctly estimated; 2) the poses are not redundant. Users
are required to assess the predicted poses of the selected frames
to generate pose seeds which are then used to estimate the re-
maining poses of the video. Feedback from the users can thus
be easily integrated into the video pose co-estimation frame-
work. After human pose co-estimation, we first apply an ex-
isting human parser (pre-trained on a small amount of labeled
data). It can provide a rough initialization for the video parsing.
Then we use the correspondences between super-pixels of two
sequential frames, which are described by super-pixel matching
technique to refine the parsing results. That is, we co-parse all
the frames in one video simultaneously (Section VII). In the
non-parametric human parsing component, these parsed video
frames are used as the gallery set which transfers labels to the
testing images (Section VIII).
The contributions of this work can be summarized as follows.
• We propose a novel semi-supervised framework which can
train a reliable parsing model with limited labeled training
data by exploring the easily available fashion videos. Our
framework is general, affordable and scalable.

• To avoid the semantic drifting, we propose a human pose
co-estimation and co-parsing technique to achieve more
reliable video parsing.

• We propose an active leaning method to automatically rec-
ommend several human poses to the users to assess pose
estimation quality. The feedback from the users can be
easily integrated into our human parsing framework.

Some components of the paper have been published in an
early conference version [23]. This journal version add a few
components. The key differences betweeen the conference and
journal version are listed as following. The conference version
only proposes how to train a human parser in a semi-super-
vised manner. However, in this paper, we further consider the
human interaction and propose an active learning method to
automatically and adaptively recommend video frames to la-
belers to check. Then the users feedback can be easily integrated
into our semi-supervised framework to train a better human
parser. Moreover, We further study how human parsing can as-
sist clothing retrieval. Finally, more experimental results are
added.

II. RELATED WORK

In this section we review the recent research development in
the fields of human parsing and video parsing sequentially.

A. Human Parsing
The human parsing problem is a special kind of semantic

segmentation, which has been studied for a long time [32], [4],
[40], [35], [11]. Yamaguchi et al. [40] proposed to perform
human pose estimation and attribute labeling sequentially.
Their human parsing performance was not quite high due
to the large human pose variation and background clutters.
Later, Yamaguchi et al. [39] dramatically improved the human
parsing performance by using a retrieval based approach. Their
approach combines parsing from pre-trained global clothing
models, local clothing models learned on the fly from retrieved
examples, and transferred parse masks from retrieved exam-
ples. Liu et al. [22] addressed the problem of automatically
parsing the human photos with weak supervision from the
user-generated color-category tags. They proposed to combine
the human pose estimation module, the MRF-based inference
module and the category classifier learning module. Kohli et
al. [17] proposed an approach for joint pose estimation and
human segmentation. The hierarchical compositions based on
the segment shapes were also utilized to assemble the candidate
parts [3]. Tran et al. [35] proved the advantages of representing
a full set of relations between segments than the standard tree
model for human parsing. However, this method has high com-
putational cost. Although these works have made great progress
in human parsing, the involved representative models usually
require a lot of prior knowledges about the specific tasks and
heavily rely on the over-segmentation and pose estimation.
Recently, with the development of deep learning structures,

many researchers explore how to apply the deep model, espe-
cially deep Convolutional Neural Network (CNN), to the se-
mantic segmentation. Farabet et al. [8] trained amulti-scale con-
volutional network from raw pixels to extract dense features for
assigning the label to each pixel. The recurrent convolutional
neural network [28] was used to speed up the scene parsing and
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the state-of-art performances were achieved for scene parsing.
Girshick et al. [12] also proposed to classify the candidate re-
gions by CNN for semantic segmentation. These deep learning
based methods are limited due to the lack of enough training
data to capture the diverse appearances and poses of the fashion
items and human body.

B. Video Parsing
Similarly, comparing with parsing each video frame sep-

arately, more reliable parsing results can be achieved by
co-parsing all the frames collaboratively. The cross-frame
contexts are used as regularization to smooth and refine the
results produced by parsing each frame. Previous efforts on
image co-segmentation [16], [2] also utilize a similar spirit.
The main difficulty of video parsing lies in the great burden

of labeling training samples. Vijayanarasimhan et al. [36]
proposed an active learning based solution which can select
frames for manual labeling, such that automatic pixel-level

label propagation can proceed with minimal expected error. In
this paper, we mainly produce a scalable semi-supervised video
parsing framework, where only a small-scale labeled training
samples and a larges-scale unlabeled web videos are used.
We also propose an active learning based framework where
users can label very few video frames, and better results can be
achieved.

III. DATASET COLLECTION
We collect two datasets, including a video dataset and a

Fashion Icon (FI) image dataset. The video dataset contains
1,500 unlabeled videos downloaded from youtube.com. It is
crawled to assist our ultimate goal of parsing human photos.
The second FI dataset contains 1,082 images. Compared with
existing human parsing datasets, e.g., the Fashionista (FS)
dataset [40] and the Colorful human parsing Data (CFPD) [22]
dataset, the FI dataset is more challenging, since each image
may contain multiple people and each person may take more
diverse poses.
Video Dataset: Firstly, we apply Grammar Models [13] to

the first frame of the video and automatically detect all the
human bodies. For the frames containing multiple people, we
only keep the detection bounding box of the people with the
largest size and ignore other detected human. Secondly, the
detected human-centric bounding box is used as the seed for the
tracking algorithm, i.e., Struck [15]. Thus all the video frames
are roughly aligned and mostly occupied by the human body,
which greatly facilitates the later video parsing. During the
data collection process, other detction algorithms [12], [31] or
tracking algorihtms [44], [43] can also be used. Alternatively,
we can detect the human body in each frame, but this solution
suffers from the relatively low detection speed. We believe that
using detection as the initialization for the tracking algorithm
is a balance between accuracy and efficiency. Thanks to the
fully unsupervised processing of the videos, our video dataset
is easily scalable by continuously downloading more data.
Fashion Icon (FI) Image Dataset: We collect 1,082 images

from the web to construct the Fashion Icon dataset (FI). The FI
dataset is quite different from existing human parsing datasets
[39], [7] in two aspects. Firstly, some images in FI may con-
tain multiple humans. Secondly, the humans in the images of

Fig. 3. Whole video parsing framework. The graphical model has three layers:
image layer, pose layer, and parsing layer. Green triangles and blue squares
respectively represent the traditional human pose estimation and human parsing.
By incorporating SIFT Flow correspondences indicated by purple diamonds,
video pose co-estimation is conducted. The refined human pose results, along
with the mined super-pixel matching indicated by red circles, are fed into the
video co-parsing step.

the FI dataset are in very diverse poses, which is more consistent
with reality. In order to compare the performances of different
parsing systems, the FI dataset is thoroughly labeled based on
the label set defined by Dong et al. [7], which includes 18 cat-
egories: face, sunglass, hat, scarf, hair, upper clothes, left-arm,
right-arm, belt, pants, left-leg, right-leg, skirt, left-shoe, right-
shoe, bag, dress and background.

IV. CONTEXTUAL VIDEO PARSING
The goal of our contextual video parsing is to parse all the

frames in each video simultaneously. Themain challenge comes
from the large variations in human poses and views within the
video frames. The performance of existing human parsers often
relies on a perfect human pose estimator to localize the human
as well as the body parts. However, most of the previous pose
estimators, limited by the small amount of training data, tend
to fail in predicting arbitrary poses in images from the web.
In this paper, we propose a novel generic graphical model to
better infer the poses and obtain better parsing results. Intu-
itively, we utilize the temporal coherence and appearance con-
sistency characteristics within video frames to refine the es-
timated poses and parsing results obtained from the existing
models. By taking these informative contexts as the regulariza-
tion constraints, the pose co-estimation and human co-parsing
can be largely improved.
We denote the parsing results of all frames as and the

human pose estimation results as . We estimate the pixel-wise
semantic labeling, where the whole label set is denoted as

and is the number of labels. The three factors
are interdependent for the human parsing task. Video

co-parsing can be formulated asmaximization of the conditional
probability over parsing results , human poses and video
frames , expressed by

(1)

As illustrated in Fig. 3, our graphical model composes of three
layers. The bottom layer contains all the input frames

. The middle layer represents the estimated poses for each
frame . Finally in the top layer, the human parsing
results for all frames are denoted as . For sim-
plicity, only three temporal adjacent frames , and
are shown. Note that the nodes in the middle layer are condi-
tioned on the input observations and the temporal constraints
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and from the adjacent human poses. Further-
more, the video co-parsing task can be converted to inferring
the states of nodes in the top layer. The probability of each
node relies on the prediction of the corresponding pose ,
the appearance constraints and as well as the
inputs . Because there are numerous hypotheses for the loca-
tions of the poses and all the frames are required to be parsed si-
multaneously, the joint inference of can be
NP-hard and impossible to solve efficiently. We approximate
the inference task in (1) by separately optimizing the two se-
quential tasks: pose co-estimation and video co-parsing

. Note that the results of video pose co-estimation are
the inputs of video co-parsing.

V. VIDEO POSE CO-ESTIMATION

Our pose co-estimation stage has two steps. First, we estimate
the initial pose for each frame, illustrated by green triangles in
Fig. 3. Second, the poses of all the frames are refined together by
considering the confidence ranking of poses and the Sift-Flow
correspondences between the successive frames, represented by
purple diamonds in Fig. 3.
1) Image Pose Estimation : Human pose estima-

tion in the image has been extensively studied. We adopt the ar-
ticulated pose estimation technique with the flexible mixtures-
of-parts method [41]. The human pose model can be represented
by a -node skeleton graph , where the nodes

correspond to different human parts, such as left shoulder,
right shoulder, etc., and the edges represent the relationships
of human parts.
Given a frame , we estimate the locations for all

key-points and the associated part types for each point
within the human skeleton. The human pose can be calculated
as , where and . We
denote the hypotheses set of as and that of as

, where is the image lattice and is the number of
types for each part.
Given a pose configuration (including part types and

positions ), the confidence is computed by com-
bining 3 factors: the corresponding confidence for the part type
assignments , the unary score for each key point and the pair-
wise scores for the skeleton relations by [41]. It is worth noting
that the probability can be used to roughly predict the
accuracy of the human pose estimator. That is, the high prob-
ability means the estimator has strong confidence for the esti-
mated pose. We rank the probabilities of the poses for all frames
in each video, and then we can select the most confident poses,
used as the “seeds” for the following pose co-estimation.
2) Video Pose Co-Estimation : As aforementioned,

even the state-of-the-art pose estimators may fail when parsing
the human photos. To process the numerous video frames, we
consider the video frames as a chain structure and the contextual
relationships between adjacent frames are used to regularize the
poses of all the frames. In this chain model, each node is the
pose of the frame , and the edges are the chains. As
shown in Fig. 3, the frame connects only with and

. By using the temporal constraints, more accurate human
pose estimations for all frames can be obtained simultaneously.
We use the Sift Flow [20] method to capture the temporal

displacements between successive frames. For the frame pair

, we denote the corresponding flow field as , which is
a 2D flow vector indexed by pixel positions. Given the flow field

, the position of each pixel in the frame can be mapped
to in the frame . Note that is not symmetric,
i.e., , according to the SIFT Flow computational
framework.
As for human pose co-estimation, we consider two items for

jointly refining the poses of all the frames: single pose confi-
dence for each frame and pairwise pose coherence. First, the
single pose confidence is obtained by , which evalu-
ates the quality of the estimated pose of each frame. Second, the
pairwise term assesses the coherence of poses in two adjacent
frames. We map the estimated pose of one frame by the flow
vector to its adjacent frame, and hope the mapped pose to be
close to the estimated pose of the adjacent frame. This means
that pose estimation results should be consistent with the tem-
poral flow field. We thus formulate the human pose co-estima-
tion as maximizing the probability ,

(2)

where is used to balance the single pose confidence and the
pairwise pose coherence, which is empirically set in our exper-
iments. Given the pose of the frame , we map it into the
frame by using the SIFT Flow vector for all loca-
tions of , denoted as . The temporal displace-
ment between the estimated pose and the transfered pose

is calculated using the Euclidean distance. The
pairwise term is computed by the summation of the displace-
ments of all key points.
The difficulty of optimizing (2) lies in two aspects. 1) We es-

timate the pose locations of all frames simultaneously,
which leads to a very huge hypotheses set of the size .
2) The whole graph for the pose co-estimation can be viewed as
a hierarchical model. The bottom is a common skeleton graph,
in which the nodes are human key points and the edges are
skeleton relations within each frame. Then the top is a chain
structure, where the nodes are the single pose confidences ob-
tained from the bottom and the edges are the cross-frame
pose coherences. This hierarchical graph makes inferring pose
locations intractable for each video, not to mention our large-
scale video set.
For efficiency, we consider all within-frame nodes (i.e. key

points) for each frame as a super node (i.e. an integrated pose
candidate). In this way, our graph can be simplified into a chain
structure from a hierarchical model, which can be effectively
solved by the well-known belief propagation method.1 To gen-
erate a set of reasonable pose candidates for each frame, we
use the pose propagation strategy with the selected pose seeds.
Specifically, we rank all confidences of initial-
ized poses for all frames and select the top 5 candidates with
the highest confidences as the pose seeds. We then propagate

1[Online]. Available: http://www.di.ens.fr/~mschmidt/Software/UGM.html
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Fig. 4. Illustration of human pose co-estimation. The frames # 4, # 7, # 23, # 24
of the video are shown as examples. The constrained human pose estimator is
applied and the confidences are shown in parentheses. Then the frames with high
confidences (e.g., # 7 and # 4) are regarded as the seeds. In the active learning
scenario, users manually check the recommended human poses, and only the
poses considered as correct are used as pose seeds. Each frame has 3 candidate
poses. The first candidate is generated by the frame itself, while the other two
are transferred from seeds by Sift-Flow correspondences (in the second row).
For each possible candidate pair, we calculate the pairwise correspondence ac-
cording to the SIFT Flow field in the fourth row. Based on the context between
successive frames, the optimal poses among all pose candidates are selected.

these seeds to all other frames via SIFT Flow [20]. Except the
frames with pose seeds, each frame has 6 candidate poses,
including 5 propagated pose candidates and the estimated pose
from itself. We consider these pose candidates as the possible
hypotheses of each frame, which largely reduces the searching
space for each node. During the inference procedure, the unary
term for each super node is and the probabilities
of propagated pose candidates are directly transferred from the
original pose confidences of the seeds. In addition, given a spe-
cific pair of frames, we obtain different pairwise terms if we se-
lect different pose candidate pairs. The pairwise term for each
pose candidate pair is calculated by the summation of two tem-
poral displacements using the SIFT Flow vector, as described in
(2). The whole procedure of our pose co-estimation is illustrated
in Fig. 4. Two pose seeds with highest confidences are selected
and then used to generate the candidate poses for the non-seed
frames.

VI. HUMAN-ASSISTED VIDEO POSE CO-ESTIMATION

Note that video pose co-estimation is still far from perfectly
solved even with the aforementioned co-estimation techniques
in Section V-2. Actually, its performance is greatly determined
by the accuracy of the pose seeds, because the seeds determine
the hypothesis set for each frame in the propagation process.
As shown in Fig. 4, inaccurately estimated poses of the seed

frames may spread to other non-seed frames and damage the
video pose co-estimation results. Previously in Section V, we
select the key poses based on only the pose estimation con-
fidences produced by [41]. Generally, the videos contain ex-
tremely diverse human poses, which brings a great challenge
for pose estimation algorithms. The poses with high confidences
computed by these algorithms are not always correct, thus need
to be checked manually. Next, we propose an active learning

strategy to select human pose seeds. In order to reduce human
labor, we only require labelers to judge whether the estimated
poses are correct or not. For each video, an adaptive (e.g. 10
frames) with their human pose estimation results overlaid are
shown to the labelers who need to check every human pose es-
timation results.
Our active video pose co-estimation procedure contains two

steps. Step 1 aims to determine which frames to be shown to
labelers and Step 2 aims to incorporate human interaction into
the existing video pose co-estimation framework. Next, we will
elaborate the two steps sequentially.
The first step automatically recommends video frames to the

labelers to assess. Two criteria are considered during the pose
recommendation. The first criterion is that the pose estimation
confidences should be high, which is the same requirement as in
Section V. Generally, similar poses will produce similar scores
by [41]. However, if all the seed poses are visually similar, they
are not representative enough to cover all the variations in the
video and this will damage the co-estimation results. Thus we
have the second criterion: the pose seeds should sufficiently di-
verse. Also, reducing the redundancy among the selected video
frames saves the labelers much time on checking similar frames.
Mathematically, our target is to select a subset from

. To satisfy the first criterion, we build a matrix , where
the diagonal elements represent the confidence of each frame ,
i.e., , by the initialized pose estimator, and the non-di-
agonal elements measure the dissimilarities between samples.
For example, is calculated by first calculating the Euclidean
distances between the normalized deep convolutional activa-
tion features by Caffe implementation2 of frames and . The
distance is then fed into the sigmoid function to be scaled into
[0,1] and produce . We choose the activations of the first
fully connected layer as our feature (4096-d). According to the
two criteria, we want to select a dense subgraph, all frames of
which have high pose confidences and low redundancies. We
aims to maximize the energy function which is defined by

(3)

where is an -dimensional binary vector. If the th element
satisfies , the corresponding th frame is selected. Oth-
erwise, it is not selected. is the number of selected frames.
Since it is difficult to solve (3) due to the binary constraint on

the indicator vector , we relax this constraint by replacing the
vector by . Then the formulation (3) is equivalent to

(4)

Since each coordinate of is nonnegative, is equiv-
alent to . By relaxing to be within the range
of [0, 1], we obtain the final formulation of the frame selection
problem

(5)

2“Caffe: An open source convolutional architecture for fast feature embed-
ding,” [Online]. Available: http://caffe.berkeleyvision.org/

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 20:18:58 UTC from IEEE Xplore.  Restrictions apply. 



1352 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 8, AUGUST 2015

where and is the standard
simplex in the -dimensional Euclidean space. By relaxing (3)
to (5), the maximum over the original two variables, and ,
is replaced with the maximum over a single variable . Once
the solution of (5) is obtained, we can easily recover the
number of the selected frames and the index of the selected
frames: a frame is selected if and only if . Conse-
quently, the number of selected frames is determined by the
number of positive coordinates of . Note that the number of
selected frames is determined by the non-zero elements of ,
which is essentially dynamically determined by the complexity
of the video. Intuitively, complex and long videos will need
more human labor to check the pose estimation results. The for-
mulation is solved by the pairwise optimization method [21],
[24].
The second step aims to integrate human feedback into video

pose co-estimation. Little modification is required in the video
pose co-estimation process compared with Section V. Instead of
fixing the hypothesis number as 6 in Section V, the number of
hypotheses is dynamically determined. Suppose that frames
generated by (3) are presented to the labelers. The labelers an-
notate among the frames as correct, and the remaining

frames as wrong. Thus, for the frame , the
original human pose result as well as the selected frames
(transformed by Sift Flow) constitute its hypothesis. The
frames annotated as “Bad” poses are removed from the hy-
pothesis set to avoid any error propagation. Except for the seed
poses, the remaining video pose co-estimation procedure is the
same.

VII. VIDEO CO-PARSING

Given the refined human poses for all frames, we can per-
form the video co-parsing, conditioned on the image and pose
layer as displayed in Fig. 3. Our co-parsing algorithm includes
two steps: computing pixel-level confidences w.r.t. the fashion
items for all pixels (denoted as blue
rectangles), and then co-parsing all frames by considering the
super-pixel correspondences (denoted as red circles) to obtain

.
3) Image Parsing : Given one frame and

the refined human pose , we compute the confidence score
of assigning the possible clothing item label to each pixel.
Let us denote as the clothing item label at the pixel .
The confidence score of assigning the clothing
item label to can be computed by the existing fashion
parser, e.g., [39]. And can be denoted as the set
of .
Note that our algorithm can easily adapt to any other fashion

parser, such as [7], by properly redesigning video co-parsing
solution.
4) Video Co-Parsing : Based on the pixel-level

confidences, we refine the parsing results of all frames together
by considering the within-frame and cross-frame super-pixel
consistencies. Intuitively, the super-pixels in the spatial neigh-
bours within each frame are encouraged to take the same fashion
labels; and similarly, the matched super-pixels across the adja-
cent frames also favor the same labels. We can thus rectify and
smooth the label map of super-pixels of all frames together.

Following the previous parsing work [39], we build dense ap-
pearance correspondences for super-pixels instead of pixels. We
first compute over-segmentations of all frames using a fast seg-
mentation method [9]. Then the confidence score of assigning
the clothing item label to each super-pixel is computed by the
average of the pixel-wise confidences of
which represents all pixels within this super-pixel. is
defined as the cost converted by its corresponding confidence.
To smooth the label maps of all frames, we utilize two kinds
of relationships to consider the appearance consistency. First,
the within-image relationship is computed for the spa-
tial neighbors of super-pixels. Second, we consider the cross-
image relationship for each super-pixel with its most sim-
ilar counterpart in the previous/subsequent frame.
Mathematically, our co-parsing task, which aims to maximize

the probability , which we define by

(6)

where denotes all super-pixels within each image .
represents each pair of neighboured super-pixels within images
and across images. The within-image smoothness term and
the cross-image smoothness term are defined as

(7)

where is the indicator function and is the feature of
the super-pixel, which is computed by a concatenation of bag-
of-words from RGB, Lab and Gradient for each super-pixel. We
also pick the closest super-pixel pairs across the sequent
frames using the -distance on these bag-of-words features.

and are the weights of two kinds of pairwise terms.
Because our pairwise term (7) is a submodular function, the
optimization of maximizing (6) becomes a tractable graphical
model. We solve this optimization problem by the well-studied
-expansion method [11]. Thus the optimal parsing results of

all frames can be calculated as .

VIII. HUMAN PARSING WITH VIDEO CONTEXT
Based on our contextual video parsing algorithm, we can effi-

ciently process the large scale video data to generate the gallery
set of images. In the following, we propose a non-parametric
method for transferring the parsing results of our parsed gallery
to the test image.
Given a testing image , we first use the human detection

technique [13] to roughly locate the human body. The caffe fea-
ture for each human is computed, which can intrinsically cap-
ture the style, pose and appearance characteristics of the whole
image. We use the -distance over the Caffe feature to find 25

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 20:18:58 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: FASHION PARSING WITH VIDEO CONTEXT 1353

TABLE I
PCK COMPARISON BETWEEN FRAME-BASED POSE ESTIMATION AND VIDEO-BASED POSE CO-ESTIMATION

Fig. 5. Two comparison examples between image based human pose estima-
tion (top row) and video based human pose co-estimation (bottom row).

nearest neighbors in our gallery. After that, we follow [39] and
use the image segmentation algorithm [9] to obtain superpixels
with the parameters of , . Each super-pixel of the
testing image finds the closest super-pixel from each retrieved
image using the -distance of the Caffe features .
More specifically, we denote the retrieved images for the

image as . For each super-pixel , the selected corre-
sponding super-pixel from the reference image in is
denoted as , and the caffe feature of the super-pixel is de-
noted as . Then, our transfered label for each super-pixel
is computed by

(8)

where we define

(9)

where is the number of pixels within the super-pixel
and denotes each pixel. is a normalization constant. Our
parsing results are computed by the weighted average of the
parsing results of the closest super-pixels for all retrieved im-
ages in . The obtained transferred parsing results
for all super-pixels are further refined by Markov Random Field
to respect boundaries of actual clothing items.

IX. EXPERIMENTS

A. Experimental Setting

We conduct the experiments on three datasets. The first is
the Fashionista (FS) dataset [40] containing 685 photos with
good visibility of the full body and covering a variety of la-
bels. 456 out of the 685 images are used for training and the rest
229 images are used for testing. The second dataset is the Col-
orful human parsing Data (CFPD) [22] dataset which consists
of 2,682 images. The training set and the testing set are half-
half. The third dataset is our newly collected Fashion Icon (FI)
dataset which contains 1,028 images. The images in this dataset
contain one or multiple humans with quite diverse human poses.

TABLE II
COMPARISON BETWEEN IMAGE-BASED PARSING AND VIDEO CO-PARSING

Fig. 6. Comparison examples between image based human parsing (middle
row) and video based co-parsing (bottom row). For the color-label map, please
refer to Fig. 1.

The FIdataset is more challenging than FS and CFPD since
some girls cross or stretch their arms or legs freely, and may be
in arbitrary views. In our experiments, the label sets of FS and
CFPD contain 18 and 13 kinds of labels, respectively. FI has
two sets of label sets, one containing 18 kinds of labels as FS,
and the other containing 13 kinds as CFPD, where the later is
obtained by merging from the former.
We can parse an image of resolution in 2 seconds

on a PC with Core I7 3.4 GHz GPU and 6 GB memory. The
parameter , and are set as 0.1, 0.5 and 0.5 empirically
in this work.

B. Experimental Results
In this subsection, we first evaluate the effectiveness of

video parsing, including human pose co-estimation and video
co-parsing sequentially. Then, we compare the results of our
system and the baselines on the three datasets, including FS,
CFPD and FI.
1) Video Parsing—Video Pose Co-Estimation: We evaluate

the performance of the human pose co-estimation method on
predicting the poses of video frames. We randomly select 100
videos from our collected video dataset and manually label 14
key points of the human skeleton for each selected video frame.
We compare our results with the state-of-the-art image-based
pose estimator, mixtures-of-parts model [41], which is trained
on FS and predicts the pose of each frame separately. The stan-
dard PCK (Probability of Correct Key point) metric [41] is used
to evaluate the performance of pose estimation. Table I displays
the results of the frame based pose estimator (denoted as “Pose”)
and the video pose co-estimator (denoted as “Co-Pose”). The re-
sults demonstrate that our video pose co-estimator can generally
improve the key points localization accuracies for 9 out of all 14
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TABLE III
COMPARISON AMONG PAPER DOLL [39] AND THREE VERSIONS OF OUR METHOD IN FS, CFPD, AND FI

key points. In particular, the accuracy for the left knee point has
been increased by 9.6%. Moreover, Our average PCK of all 14
key points reaches high accuracy of 78.17% and improves the
“Pose” by 1.73%.
In addition, we visualize the pose estimation results of the

two comparisonmethods in Fig. 5. For the dancing video frames
with large variations in poses and views, our method shows su-
perior performance in predicting the key points of human poses,
especially for the left and right knees. As shown in Fig. 5, only
the left knee point of the first frame is predicted correctly for
“Pose”, while our method can rectify the left knee key points of
all frames by benefiting from the Sift-Flow and temporal coher-
ence constraints.
2) Video Parsing—Video Co-Parsing: We compare the per-

formances of our video co-parsing method with the existing
image-based human parser [39], whose codes are publicly avail-
able.3 The 100 videos are randomly selected and all frames
are manually labeled. Similar to [39], we evaluate the parsing
results of all frames with 5 metrics, including accuracy, fore-
ground accuracy, average precision, average recall and average
F-1 score. The comparison results are shown in Table II. Signifi-
cant improvements of our co-parsing method for all five metrics
can be observed.
More exemplar results are shown in Fig. 6. The video

co-parser predicts more consistent labels for all video frames
than the image-based human parser. For example, in the left
panel, “Parsing” predicts that the girl wears upper clothing in
three frames yet dress in two frames. Through the contextual in-
ference of “Co-Parsing”, all five frames are correctly predicted.
3) Human Parsing—FS and CFPD: We report the human

parsing performance of the baseline, i.e., Paper Doll and our
method on testing images in FS and CFPD datasets. In addition,
we evaluate the superiority of our pose co-estimator and video
co-parsing components. The “Co-Pose+Co-Parsing” utilizes
the pose co-estimator and the video co-parser sequentially.
The “Co-Parsing” solution does not implement pose co-es-
timation and directly uses the image-based pose estimator.
“Active-Co-Pose+Co-Parsing” indicates the results after active
learning is used during the video parsing process. We invite 10
participants (3 females and 7 males who are university students
and staffs) to label 500 videos for us. The labelers need judge

3[Online]. Available: http://www.cs.sunysb.edu/~kyamagu/research/
paperdoll/

Fig. 7. F-1 scores of each class of Paper Doll [39] and three ver-
sions of our methods (Co-Parsing, and
Active-Co-Pose+Co-Parsing) in the FS-FS and CFPD-CFPD settings.
(a) FS-FS. (b) CFPD-CFPD.

the correctness of the estimated human poses for the videos and
the labeling interface.
The results are listed in the first two rows of Table III.

It is obvious that both of our two solutions achieve higher
performances than the Paper Doll in general, which demon-
strates the capability of our contextual video co-parser. In
addition, the necessity of human pose co-estimation is proved,
where the avg. F1-score of “Co-Pose+Co-Parsing” outper-
forms “Co-Parsing” by 4.54% in the FS-FS experiment setting.
Finally, “Active-Co-Pose+Co-Parsing” also outperforms
“Co-Pose+Co-Parsing”, e.g., by 2.17% in the FS-CFPD exper-
iment setting.
We present the F1-score for each label in Fig. 7(a) and

Fig. 7(b). Generally, the “Active-Co-Pose+Co-Parsing” shows
the highest performance. Besides, our semi-supervised human
parser “Co-Pose+Co-Parsing” achieves the second best re-
sults, especially when predicting the human body labels,
such as “LeftLeg”, “LeftArm”, “RightLeg” and “RightArm”.
The inferior performance of “Co-Pose+Co-Parsing” than
“Active-Co-Pose+Co-Parsing” is due to the lack of human
labeling. We can observe this superior performance from the
visualization of parsing results in Fig. 8(a). The first row shows
the parsing results of Paper Doll and the second row shows the
results of “Co-Pose+Co-Parsing”. It can be observed that our
parser performs better on predicting the fashion labels, such as
“skirt”, “pants”, and “upper-clothes”. In addition, our results
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Fig. 8. Comparison of two settings: (a) FS-FS, (b) FS-FI. In each triple, the
original image, the parsing result by Paper Doll and our result are shown
sequentially.

can be less disturbed by the background clutter and show
relatively clearer boundary and appearance consistency, e.g.
the leg regions of the second and third images in the first row
of Fig. 8(a). Moreover, our parser can also correctly localize
small fashion labels, such as the bags in the second and third
images in the second row of Fig. 8(a) and the third image in the
first row of Fig. 8(b).
4) Human Parsing—FI: Our collected FI dataset contains

more images with diverse poses and arbitrary views. We
parse images in the FI dataset with the trained models from
two training image sets, FS and CFPD, separately. The main
difference between FS-FI and CFPD-FI is that we train two
supervised parsing models with different training data and label
sets. Similarly, we compare three solutions of our method, i.e.,
“Active-Co-Pose+Co-Parsing”, “Co-Pose+Co-Parsing” and
“Co-Parsing” with the baseline Paper Doll. The quantitative
comparison results show that our method largely improves
the performance of Paper Doll in both settings, shown in the
last two rows of Table III. It is worth noting that our method
shows much larger improvements on our collected FI dataset
than on the existing datasets (i.e., FS and CFPD). Specifically,
with the same training dataset CFPD, the performance of our
“Active-Co-Pose+Co-Parsing” outperforms Paper Doll by
16.21% in the CFPD-FI setting, which is much higher than by
8.69% in the CFPD-CFPD setting. This well proves the advan-
tages of our method on parsing challenging human photos.
The detailed comparison of each label among

“Paper Doll”, “Co-Parsing”, “Co-Pose+Co-Parsing”
and “Active-Co-Pose+Co-Parsing” in both FS-FI and
CFPD-FI settings is illustrated in Fig. 9. In general,
“Active-Co-Pose+Co-Parsing” performs the best.
“ ” outperforms “Co-Parsing” and
performs much better than Paper Doll [39].
Moreover, the visual parsing comparisons are shown in

Fig. 8(b) and Fig. 10(b) for the FS and CFPD datasets, respec-
tively. Our system can correctly predict the labels for images
with very diverse human poses, e.g., the second image of the
first row of Fig. 9(a).
Additionally, we conduct experiments of parsing the multi-

human images under the FS-FI setting, as shown in Fig. 11. We
use the detection method [13] to cut the images into several
smaller images with a single human only. The single human
image is then fed into our system and the parsing results are

Fig. 9. F-1 scores of each class of Paper Doll [39] and three ver-
sions of our methods (Co-Parsing, and
Active-Co-Pose+Co-Parsing) in the FS-FI and CFPD-FI settings. (a) FS-FI.
(b) CFPD-FI.

Fig. 10. Comparison of two settings: (a) CFPD-CFPD, (b) CFPD-FI. In each
triple, the original image, the parsing result by Paper Doll and our result are
shown sequentially.

Fig. 11. The results of our system in parsing images with multiple humans in
the FS-FI setting.

Fig. 12. Six comparisions of our method and Paper Doll. In each triplet, the
original images, results of Paper Doll, and our results are shown sequentially.
From the resutls, we can see that our method produced much more accurate
parsing results than Paper Doll.

generated. Then the final parsing result for each multi-human
image is merged by combining the parsing of each single image.
We show several results of parsing images withmultiple humans
and prove that our method can predict reliable parsing results
when the humans are not heavily occluded.
We show several human parsing results of

“Active-Co-Pose+Co-Parsing” in Fig. 12. From the results, we
can see that our human parser can handle the half body human
photos and humans with very flexible poses.
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Fig. 13. Quantitative comparisons between our method and baseline method for the upper (a), lower (b) and dress (c). X-axis represents the number of rank,
Y-axis is the corresponding NDCG value.

From the quantitative results in Fig. 7 and Fig. 9, the qual-
itative parsing results in Fig. 8, Fig. 10 and Fig. 11, we can
see that our algorithm tends to work better in parsing larger
labels, such as “upper clothes”, “dress”, but sometimes fails
in parsing small and less common labels, such as “Scarf” and
“Sunglasses”. Moreover, although our algorithm still suffer
from incorrectly estimated human pose estimation, which
will results in wrong foreground-background separation and
wrongly estimated foreground labels.
5) Human Parsing Assisted Clothing Retrieval: In this sub-

section, we will show how the human parsing can help clothing
retrieval. Given a query image, we first parse it using the pro-
posed human parsing method. Besides the query image, the
users also decide which label to be retrieved. For example, the
users want to find skirts which are similar with the one in the
query image. We use the CNN feature because it has shown to
achieve good performance in object recognition [18], [29], [18],
[42], we use the deep convolutional activation feature to repre-
sent the region. More specifically, the Caffe feature is extracted
from the corresponding region. Finally, the Euclidean distance
is calculated and used as the ranking criterion.
To test the clothing retrieval performance, we use all the FI

human photos as query and use the on-line shop images in street-
to-shop work [25] as repository. Then we evaluate the retrieval
performance for upper and lower-body clothing respectively.
Similar with the street-to-shop work [25], we evaluate the re-
trieval performance based on whether the attributes of the query
and the retrieval results are the same. All the online shop im-
ages in the street-to-shop [25] are extensively labeled by 10
kinds of attributes. So we manually label all the attributes of
all images in the FI dataset. We compare with the baseline, i.e.,
street-to-shop work [25]. Normalized Discounted Cumulative
Gain (NDCG) is used as the evaluationmetric. The comparisons
between our method and street-to-shop are shown in Fig. 13(a),
(b) and (c) for dress, upper and lower-body respectively. We can
see that for all ranks, our method is better than the baseline. The
gain is mainly due to the more precise localization of the labels.
Some typical retrieval results are shown in Fig. 14(a), (b) and
(c) for dress, upper and lower body respectively.

Fig. 14. Three examples of clothing retrieval results: (a) dress, (b) top, and
(c) skirt. The leftmost images are the query images. The right columns show
some retrieval results.

X. CONCLUSION AND FUTURE WORK

In this paper, we proposed a semi-supervised framework for
human parsing which leverages video contexts without extra
annotation. It contains two components: the contextual video
parsing and the non-parametric human parsing. Extensive ex-
periments on two benchmark human parsing datasets as well as
a newly collected FI dataset well demonstrate the effectiveness
of our proposed framework. We can optionally label more im-
ages to train a better human parser. However, the great burden
of human labelling may considerably limit the scalability of the
human parser. Since our method only needs the unsupervised
videos which can be easily crawled from the web, our solution
can easily scale up to new videos with even more challenging
poses and views, e.g. lying on the floor or sitting in the chair.
If the human labeling are available, we can requires labelers to
check the video pose co-estimation results and then train a better
human parser.
Two possible research directions can be considered in future.

First, we plan to develop a mobile application, which can parse
images uploaded by users in the server-side. Second, inspired
by the great advantage of deep learning in classification [19],
[42] and detection [12], we will try to solve the human parsing
problem in the Convolutional Neural Network (CNN) architec-
ture. Current deep learning based image parsing models [8],
[28], [12] require a large amount of training data. We believe
that the framework introduced in this paper can greatly enrich
the training dataset by exploring the video and finally make
training the CNN possible.
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