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Abstract Semantic image parsing, which refers to the pro-

cess of decomposing images into semantic regions and con-

structing the structure representation of the input, has re-

cently aroused widespread interest in the field of computer

vision. The recent application of deep representation learning

has driven this field into a new stage of development. In this

paper, we summarize three aspects of the progress of research

on semantic image parsing, i.e., category-level semantic seg-

mentation, instance-level semantic segmentation, and beyond

segmentation. Specifically, we first review the general frame-

works for each task and introduce the relevant variants. The

advantages and limitations of each method are also discussed.

Moreover, we present a comprehensive comparison of differ-

ent benchmark datasets and evaluation metrics. Finally, we

explore the future trends and challenges of semantic image

parsing.

Keywords semantic image segmentation, deep learning,

convolutional neural networks, image parsing

1 Introduction

1.1 Semantic image parsing

With the development of Internet, in recent years, large-scale

image and multimedia video data have increased explosively,

resulting in urgent demands for advanced intelligent image

analysis technology, such as semantic image parsing. As a

fundamental and long-standing problem in computer vision,
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semantic image parsing is performed at three levels, which

will be discussed below.

Category-level semantic segmentation It attempts to as-

sign a single category label to each pixel. Here, a category la-

bel corresponds to a specific object category or a local part of

the object. Therefore, category-level semantic segmentation

consists of basic semantic segmentation and semantic part

segmentation (called object parsing in the literature), as illus-

trated in Fig. 1. The former predicts the segmentation mask

and its label for the entire object, as shown in the middle of

Fig. 1, while the latter refers to segmenting an object into

its constituent semantic parts and predicting the segmenta-

tion mask for each local part, as shown on the right side of

Fig. 1. According to the definition, part segmentation can be

regarded as a special type of fine-grained category-level se-

mantic segmentation task.

Fig. 1 Illustration of the category-level semantic segmentation. (a) The
original image; (b) the basic semantic segmentation result; (c) the seman-
tic part segmentation result

Category-level semantic segmentation is actually a pixel-

wise dense prediction problem, which is supported by two

key technologies: 1) classification: an object is assigned a
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specific semantic-concept label; and 2) localization: the clas-

sification label for a pixel must match the appropriate coordi-

nates in the output score map [1].

Instance-level semantic segmentation In contrast to

category-level segmentation, it requires precise segmentation

of each object and correct detection of all the object instances

in one image [2]. In the middle of Fig. 2, three boats are seg-

mented by assigning the same category label (i.e., “boat”).

Clearly, category-level segmentation cannot distinguish the

object instances belonging to the same category. In the right

column of Fig. 2, the three boats are segmented by assigning

different IDs with the same category label (i.e., “boat one”,

“boat two”, and “boat three”). Thus, the instance-level seg-

mentation requires support from both classification and de-

tection technologies.

Fig. 2 Comparison of category-level and instance-level semantic segmen-
tation. (a) The original image; (b) the category-level semantic segmentation
result; (c) the instance-level semantic segmentation result

Beyond segmentation In recent years, works extending

beyond semantic segmentation have also received substantial

attention. This task is inspired by previous work on image

parsing [2], which refers to the process of decomposing an

image into its constituent visual structured configuration [3–

5]. Works beyond segmentation not only semantically seg-

ment images but also predict richer and finer results, such as

the structures and relations of objects and the spatial layout.

Specifically, images are decomposed into semantic regions

and the structures and relationships among objects are con-

structed. For example, in Fig. 3, the image caption is “there

is one person sitting on the chair nearby the table with one

monitor”. Following the work in [6], the beyond segmen-

tation method first segments all the objects (i.e., “person”,

“chair”, “table”, and “bottle”) in the image, predicts the rela-

tions among objects (i.e., “hold”, “stand by”, “support”, and

“sit on”), and finally estimates the hierarchical structures. In-

tuitively, works beyond segmentation produces detailed pars-

ing results that are consistent with human perception.

Fig. 3 Illustration of beyond segmentation (Figure extracted from [6])

Similar to most vision problems, the discriminant fea-

tures greatly affect the performance of semantic image pars-

ing. Traditional semantic segmentation methods adopt hand-

crafted features, such as SIFT [7], HOG [8], and LBP [9].

However, these hand-crafted features are not applicable to

various tasks. Therefore, the extraction of valuable informa-

tion and representation of image/video data in an automatic

and effective fashion is critical. Representation learning, i.e.,

learning representations of data, makes it easier to extract

useful information from raw data to build predictors. The rep-

resentation algorithms for semantic image parsing have expe-

rienced three periods of progress in the continuous improve-

ment of image parsing performance: 1) traditional hand-

crafted methods; 2) deep learning, such as convolutional neu-

ral networks (CNNs), recurrent neural networks, and recur-

sive neural networks (RNNs); and 3) the integration of the

two methods to complement each other.

Extensive experiments [1,2,10–14] have demonstrated that

the representation ability of traditional hand-crafted features

is insufficient. Meanwhile, deep learning currently achieves

the best representation ability and has had tremendous suc-

cess in many applications, such as image classification [15],

object detection, and natural language understanding [16].

Therefore, we list only the main differences among the three-

level semantic segmentation tasks accomplished by deep rep-

resentation models, as illustrated in Table 1.

1.2 Deep learning

Deep learning is defined as learning multiple levels of rep-

Table 1 Comparisons of different semantic segmentation tasks performed by deep models

Task Flourshing period Pioneering work Key technology Type of labels

Category-level segmentation 2015 FCN [12] Classification, localization Object, part

Instance-level segmentation 2016 FCIS [17] Classification, detection Instance

Beyond segmentation 2016 CNN-RNN [6] Classification, localization Object, part, relation, scene structure
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resentations from the local and detailed levels in the shallow

layers to the global and abstract levels in the deeper layers

[18–20]. Specifically, deep neural networks consist of several

simple but non-linear modules, each of which transforms the

representation from simple at the shallow layer (starting with

the raw input) into slightly more abstract at the deep layer.

Several well-known deep neural networks, such as the CNN,

recurrent neural network, and RNN, have been reported in

recent years. Moreover, abundant variants of these networks,

which we discuss in the following sections, have emerged.

Convolutional neural networks The CNN [21] is de-

signed for data with grid-like structures and consists of con-

volutional layers, pooling layers, and non-linear rectification

layers. The units in the neural network are locally connected,

which results in shared weights of the local parameters and

features in the deeper abstract layers that are invariant to local

image transformation. Despite the numerous applications of

CNNs, they were not well-known until their successful appli-

cation to object recognition during the ImageNet challenge

in 2012. Then, CNN was quickly applied with tremendous

success to semantic segmentation [1,2,12,14,17,22,23].

Recurrent neural networks In contrast to CNNs, which

are tailored for grid-structure data [21], recurrent neural net-

works are more appropriate for sequential data [24]. The prin-

cipal characteristic of a recurrent neural network is that neu-

rons (units) are connected by synaptic links to express tem-

poral relations. To alleviate the explosion or vanishing of the

backpropagated gradients in the shallow layers [24,25], long

short-term memory (LSTM) networks [26] were proposed by

introducing special hidden units to memorize the observed

knowledge of the previous and current inputs. The success of

LSTM has demonstrated that LSTM is more effective than

conventional recurrent neural networks in image captioning

[27] and machine translation [28]. Additionally, many works

[26,29–34] utilize LSTM to improve the performance of se-

mantic image parsing.

Recursive neural networks Unlike the aforementioned

recurrent neural networks [35], which are designed for time

sequential data, RNNs [16] are designed for hierarchical

space structural data. Recurrent neural networks for chain

structures by connecting hidden units, whereas RNNs recur-

sively form a hierarchical structure because the structures of

networks are similar at every level of the hierarchy. This char-

acteristic is in line with the structures of natural language,

which results in successful natural language parsing [16].

Some recent works [6,16] proposed RNNs for structural se-

mantic parsing.

1.3 Our contribution to the existing surveys

With a unique perspective, this work comprehensively re-

views deep representation learning-based semantic image

parsing at three levels: category-level semantic segmentation,

instance-level semantic segmentation, and beyond segmen-

tation. Specifically, for each level of semantic segmentation,

we elaborate the relative terminology and background knowl-

edge. Furthermore, this paper reviews and compares exist-

ing models and relatively well-known datasets and evalua-

tion metrics. To the best of our knowledge, there is no such

overview of semantic image parsing in the literature.

The rest of this article is organized as follows. In Section

2, we review deep representations for semantic image parsing

at three levels. Datasets and evaluation metrics are introduced

in Section 3. Finally, we present the conclusions and discuss

promising future research directions in Section 4.

2 Learning deep representations

In previous decades, most of the successful semantic segmen-

tation algorithms have relied on hand-crafted features com-

bined with flat classifiers, such as boosting [36] and support

vector machines [37]. Nevertheless, the performance of these

algorithms is compromised by the limited feature expression.

More recently, with the emergence of big data and de-

velopment of computer hardware, deep neural networks

have reached their prime. In the field of computer vision,

deep leaning has achieved great success in image classi-

fication [12,15,21,38,39], recurrent neural networks have

made tremendous achievements in expressing temporal rela-

tions [31,35,40–42], and RNNs have succeeded in terms of

space structure relationship representation [6,16]. The break-

throughs of deep learning in image classification are quickly

repurposed to semantic image parsing. We illustrate this

problem at different levels of image segmentation, including

the category level, instance level, and beyond segmentation,

in the following sections.

2.1 Category-level semantic segmentation

As mentioned in Section 1, category-level semantic segmen-

tation attempts to assign a single category label to each pixel,

i.e., basic semantic segmentation and semantic part segmen-

tation, as illustrated in Fig. 1. For convenience, we do not

distinguish between these two processes. The category-level

deep models for semantic segmentation are mainly divided

into two types: region-based networks and fully convolu-
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tional frameworks.

Region-based networks The previously reported deep

models [43–45] are mainly region-based networks that clas-

sify each pixel by using its enclosing region for training

and prediction. These methods have several limitations. First,

they treat each region or pixel as a separate unit. On the one

hand, this treatment ignores the importance of the context in-

formation in pixel labeling inference, while on the other hand,

it ignores the spatial correlation in the image and reduces the

algorithm accuracy. Secondly, the independent processing of

thousands of regions results in substantial overhead and inef-

ficiency.

Fully convolutional frameworks The fully convolutional

frameworks for semantic segmentation consist of two funda-

mental works, i.e., fully convolutional networks (FCNs) [12]

and the DeepLab system [13], both of which fully utilize con-

volutional networks to produce spatially dense predictions.

In [12], as the fundamental application of the CNN archi-

tecture [46,47], the authors devised FCNs for spatially dense

prediction tasks by accommodating the prior advance deep

networks [15,37,39]. Specifically, as illustrated in Fig. 4,

fully connected layers in prior networks are converted into

convolutional layers, and the deconvolutional layers are built

by upsampling intermediate feature maps to keep the size

of the output the same as that of the input image. However,

the spatial resolution of the feature maps is reduced after the

consecutive combination of the max-pooling and downsam-

pling layers in FCN, as in prior image classification models.

A novel skip architecture was devised to fuse semantic infor-

mation with appearance information to produce accurate and

detailed segmentations [12], as shown in Fig. 5. The seman-

tic information comes from a deep, coarse layer, while the

appearance information is from a shallow, fine layer. Thus,

by utilizing prior image classification models as pre-training

models, FCN is fine-tuned to learn and inference efficiently in

an end-to-end manner, resulting in equivalently sized output.

Fig. 4 Illustration of the adaptation of fully connected layers into convolu-
tional layers (Figure extracted from [12])

Fig. 5 The “skip” architecture of FCN (Figure extracted from [12])

Another fundamental work — DeepLab system [13] — in-

tegrated CNN with fully connected conditional random field

(CRF) to expand and improve FCN [12]. As shown in Fig. 6,

the responses at the final convolutional layer are fed into

the fully connected CRF to capture finer details. Thus, the

fully connected CRF refines the raw CNN scores, especially

along object boundaries. However, the DeepLab system treats

CNN and CRF as two separate components. Concretely, fully

connected CRF utilizes the Gaussian CRF potentials [48] to

capture long-range dependencies by treating every pixel as a

CRF node to receive unary potentials.

Many subsequent variants emerges from these two funda-

mental works. These works generally evolve along three di-

rections: CNN crafting tricks, integration with the random

field model, and integration with recurrent neural networks.

We discuss these three aspects below.

Fig. 6 Illustration of the DeepLab system (Figure extracted from [13])



844 Front. Comput. Sci., 2018, 12(5): 840–857

2.1.1 CNN crafting tricks

The majority of deep learning algorithms are based on CNNs;

therefore, one intuitive fundamental idea is to design more ef-

ficient network architecture with CNN crafting tricks, such as

downsample-upsample operation, pyramid module, skip con-

nection, and atrous convolution.

Downsample-upsample operations A downsample-

upsample operation is composed of two stages: downsam-

pling and upsampling. In the downsampling stage, the feature

maps are processed by convolution or unpooling and progres-

sively shrink to smaller maps, where the receptive field of ev-

ery pixel is gradually enlarged. In the upsampling stage, the

object spatial dimension is recovered through deconvolution

or unpooling, where the coarse-to-fine details are captured.

DeconvNet [49] treats the convolutional layers of the VGG

16-layer net as the downsampling stage, whereas the devel-

oped deconvolution network serves as the upsampling stage,

which consists of deconvolution and unpooling layers to in-

crease the resolution of small score maps with more detailed

structures. Specifically, DeconvNet first generates sufficient

instance-wise candidate proposals for each given image and

produces the semantic segmentation maps of each proposal

from the downsampling to the upsampling stage. Then, the

final semantic segmentation of the whole input image is ob-

tained by assembling the maps of all proposals with non-

maximum suppression. Furthermore, DeconvNet [49] is in-

tegrated with FCN [12] to improve the performance.

Similar to DeconvNet [49], SegNet [50] also introduces

the unpooling operation without ReLU in the upsampling

stage to recover the spatial dimensions, and the downsam-

pling and upsampling correspond to encoder and decoder

stacks, respectively. Specifically, the encoder stacks, com-

posed of convolutions, ReLU and max-pooling, produce low-

resolution feature maps while simultaneously memorizing

the pooled indices. Then, the decoder stacks upsample the

low-resolution maps using the pooled indices and output the

semantic segmentation.

The more complicated contextualized convolutional neu-

ral network (Co-CNN) [47] is a novel downsample-upsample

framework that simultaneously captures hierarchical infor-

mation by seamlessly integrating three levels of context (i.e.,

cross-layer context, global image-level context, local super-

pixel context) into a unified network, as shown in Fig. 7.

Specifically, Co-CNN first utilizes convolutional networks to

obtain the downsampled feature maps for multiple resolu-

tions, upsamples the feature maps along with multi-level con-

text generation, and finally produces pixel-wise predictions.

Moreover, the cross-layer context, global image-level context

and local super-pixel context are generated by integrating the

hierarchical structure, predicting the global image-level la-

bels, and refining super-pixels, respectively.

Fig. 7 Illustration of the Co-CNN (Figure extracted from [47])

In general, downsampling is used to extract features from

the input image, whereas upsampling produces object seg-

mentation from the features extracted by downsampling. The

seamlessly integration of downsampling with upsampling el-

egantly accomplishes the semantic segmentation task.

Pyramid module The pyramid module consists of two

varieties: 1) input pyramid, where multi-scale inputs are fed

into the same model with shared weights such that the large-

scale inputs maintain more fine details and the small-scale

inputs capture longer range information; and 2) pooling pyra-

mid, where context information is captured by spatial pyra-

mid pooling in several ranges.

DeepLabV2 [11], the updated DeepLab system [13], em-

ploys both types of pyramid modules. On the one hand,
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DeepLabV2 first transforms the inputs into several scale in-

puts that are synchronously fed into the weight-shared CNN

to produce multi-scale feature maps, which are then merged.

On the other hand, DeepLabV2 segments objects at multi-

ple scales via atrous spatial pyramid pooling (ASPP), which

serves to resample features prior to convolution. Specifically,

ASPP takes advantage of several parallel atrous convolutions

with diverse sampling rates to capture multi-scale objects and

image context.

Zhao et al. [1] proposed a superior framework — pyramid

scene parsing network (PSPNet) — for scene parsing in com-

plex scenes. PSPNet [1] adopts the pyramid pooling mod-

ule to capture the global context representation and prevent

the loss of context information between subregions. Specifi-

cally, the pyramid pooling module employs multiple pyramid

scales to generate coarse to fine feature maps, which provide

additional multi-scale contextual information from different

regions. Then, the different-region-based context information

is aggregated to capture the global context representation.

Apparently, the pyramid module captures multi-scale con-

text information from local fine to global abstract to improve

the performance of semantic segmentation.

Skip connection Similar to its first application in FCN

[12], skip connection refers to the links between low-level

layers and high-level layers at an interval of several layers;

thus, detailed appearance features from shallow layers are

combined with coarse semantic information from deep lay-

ers to improve the segmentation performance.

The global convolutional network (GCN) [14] with large-

size kernels utilizes pretrained ResNet [38] as the feature net-

work and FCN [12] as the segmentation framework. Specif-

ically, the GCN and boundary refinement block are both

treated as residual structures. In the feature network, each

stage of the ResNet block generates different-scale feature

maps, which are fed into the GCN structures to produce

semantic score maps for each category. Additionally, the

boundary refinement blocks are used to further refine the

object boundaries. Next, outputs from the top layer of the

residual structures are passed to the segmentation frame-

work, and new high-resolution score maps are generated it-

eratively by skip connection [12]. Specifically, upsampled

score maps in the higher layers are iteratively combined with

the corresponding-resolution score maps extracted from the

residual structures in the lower layers. Finally, the semantic

score map, which is used to output pixel-wise semantic la-

bels, is generated after the last upsampling.

On the basis of FCN [12], U-Net [51] proposed a u-shaped

architecture composed of a contracting path and a symmet-

ric expanding path to effectively train deep models on small

datasets. Specifically, the contracting path is similar to the

typical convolution architecture used to extract and down-

sample the feature maps. The lowest-resolution feature maps

flows into the expanding path, where the feature maps at each

step are upsampled and concatenated with the same resolu-

tion feature maps cropped from the contracting path. Thus,

the final segmentation maps for each category are generated

after the top layer in the expanding path. The cropping step

is applied to prevent the loss of border pixels during convolu-

tion operations.

Islam et al. [23] proposed the label refinement network

(LRN) to improve segmentation performance by predicting

segmentation labels at multiple resolutions. The LRN is for-

mulated as an encoder-decoder framework [12,49,50], where

the VGG16 network serves as the encoder network to extract

feature maps with decreasing resolution and the decoder net-

work predicts multi-scale coarse-to-fine label maps in several

stages. The skip connection architecture combines the label

maps of each stage with the corresponding feature maps in

the encoder network to refine the segmentation labels. Fur-

thermore, the LRN [23] supervises the predictions at different

stages by defining a loss function for each stage.

Lin et al. [52] devised a multi-path refinement net-

work, called RefineNet, for semantic segmentation. The cas-

caded architecture exploits multi-scale features from different

stages of ResNet [38] and conveys them into different stages

of the RefineNet block via long-range skip connections. The

RefineNet block is applied to upsample features maps and to

recover the decreased resolution through local residual con-

nections and chained residual pooling. The long-range skip

connections are used to integrate information from the coarse

high-level deep layers and the fine low-level shallow layers

to produce high-resolution semantic feature maps; thus, the

gradient can be directly propagated to the inputs, preventing

gradient vanishing and explosion.

In conclusion, skip connection structure merges hierarchi-

cal cross-layer features to improve the segmentation perfor-

mance, and the gradient can be propagated backward along

both the skip path and the cascaded original path to prevent

gradient vanishing and explosion.

Atrous convolution Atrous convolution [11,13], also

called dilated convolution [53,54], refers to convolution with

an atrous rate. The rate corresponds to the stride with which

the input signals are sampled. Thus, standard convolution,

with a rate of 1, is a special case of atrous convolution.

The fundamental work on the DeepLab system [11,13]

first proposed the definition of atrous convolution and utilizes
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atrous convolution to simplify the architecture of FCN [12].

In this work, atrous convolution is constructed via convolu-

tions with upsampled filters. In an atrous convolution opera-

tion, the incoming input feature maps are sampled by enlarg-

ing the input stride values, resulting in enlarged field of view

of filters and feature responses.

Instead of the atrous convolution with a dilated filter in

DeepLab [11,13], Yu and Koltum proposed a special tailored

atrous convolution in Dilated-Net [54] to obtain multi-scale

contextual information. Specifically, the atrous convolution

in Dilated-Net is built by recomposing the convolution op-

erator itself with dilation factors and is free from the dilated

filters in DeepLab. The dilated convolution operator with dif-

ferent dilation factors can adopt the same filter in different

ranges to capture multi-scale context. Moreover, the recep-

tive fields are enlarged exponentially without loss of resolu-

tion, whereas the parameters in the network grow linearly.

What can be inferred from the aforementioned three works

[11,13,54] is that, atrous convolutions can take control of the

field of view of the convolution filters and feature responses

without additional computation overhead.

Coarse-to-fine refinement Coarse-to-fine refinement ex-

ploits cascade or supplementary structures to refine confi-

dence maps from coarse to fine.

Active template regression (ATR) [46], which directly pre-

dicts and locates the structural masks for each label, was pro-

posed for human parsing. The structural outputs consist of the

mask template coefficients and the shape parameters. ATR

builds the end-to-end relations between the input image and

the structural outputs by devising two separate CNNs, i.e.,

a template network and a shape network. The template co-

efficients are predicted by the template network with max-

pooling to capture the contextual correlations among all label

masks. Meanwhile, the shape parameters are predicted by the

shape network without max-pooling to maintain the sensi-

tivity to the label mask position. The outputs from the two

parallel CNNs provide supplementary information. Thus, the

normalized mask of each semantic region is expressed as a

linear combination of the learned mask templates and is then

refined to a more precise mask with the shape parameters.

Li et al. [55] proposed an end-to-end deep layer cascade

(LC) framework to improve the accuracy and speed of se-

mantic segmentation. Specifically, LC treats different layers

in the deep network as different stages with difficulty-aware

learning. The early lower stages are trained to handle easy re-

gions, while the challenging regions are forward propagated

to the subsequent higher stages; thus, the prediction process

is coarse to fine. Furthermore, dilated convolutions are used

on the propagated regions to reduce the computations.

Similar to the LC framework [55], Zhou et al. [56] pro-

posed a cascaded fixed-point model for small organ segmen-

tation in a coarse-to-fine manner. The entire input region is

fed into a coarse-scaled network to produce the coarse seg-

mentation mask, based on which a small region is generated

via a transformation function. Then, the small region serves

as the input of the subsequent fine-scaled network to produce

a more accurate segmentation result. The fixed-point model

is iteratively optimized by means of the strategy in [57].

Wang et al. [58] proposed a weakly supervised model, im-

age descriptions in the wild CNN (IDW-CNN), to improve

segmentation performance using object interactions and de-

scriptions. The architecture of IDW-CNN is composed of

three components, i.e., the feature extraction procedure, seg-

mentation stream (Seg-stream) and object interaction stream

(Int-stream). First, ResNet-101 is used to extract features.

The Int-stream takes these features as input to predict the ob-

ject interaction after producing masked features for all cate-

gories and outputting an object-presence probability vector

for all categories. The Seg-stream first predicts the coarse

segmentation masks for each category and further refines the

segmentation results by convolving the segmentation masks

with the object-presence probability vector obtained from the

Int-stream as the filter.

Luo et al. [59] proposed a dual image segmentation (DIS)

model to boost the segmentation performance using the

image-level tags of the IDW dataset rather than using the

object interactions and descriptions in IDW-CNN [58]. DIS

first utilizes ResNet101 to produce the first feature map and

the first feature vector for the segmentation prediction net and

the tag classification net, respectively. The tag classification

net outputs a tag prediction vector for all categories after two-

stage refinement of the first feature vector. Meanwhile, in the

segmentation prediction net, the second feature map is gen-

erated by calculating the sum of the upsampled first feature

vector and the first feature map and is then further refined to

obtain the initial segmentation map for all categories. The fi-

nal segmentation prediction is obtained by refining the initial

segmentation map with the tag prediction vector.

Essentially, these CNN crafting tricks optimize deep net-

works from the following perspectives: tailoring convolution

or pooling operation in accordance with specific conditions,

and modifying connection structure between different level

layers. These tricks are universally applicable to all the three

levels of semantic image parsing tasks.
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2.1.2 Integration with the random field model

Some recent studies [10,13,60] integrate random field mod-

els, such as Markov random fields (MRFs) [61] and CRFs

[54], into deep learning to capture contextual information and

long-term dependencies.

The DeepLab system [13] and DeepLabV2 [11] integrate

fully connected CRFs into CNNs to refine the raw DCNN

scores and achieve better segmentation results. Fully con-

nected CRF utilizes the Gaussian CRF potentials [48] to cap-

ture long-range dependencies and treats every pixel as a CRF

node to receive unary potentials. However, the CNN is sep-

arated from the CRF portions, so the DeepLab system and

DeepLabV2 are not trained in an end-to-end manner.

Schwing and Urtasun proposed fully connected deep-

structured networks (FCDSs) [60] to jointly train the CNN

and CRF. On the basis of the VGG16 network [39], the FCDS

incorporates unary potentials into convolutional features and

iteratively passes the error of CRF inference backward into

the CNN. However, a CNN typically has millions of pa-

rameters while a CRF involves thousands of latent variables.

Therefore, the simple integration of CNN with CRF is ineffi-

cient.

To alleviate this issue, Liu et al. proposed an end-to-end

deep parsing network (DPN) [10] that incorporates high-

order relations and a mixture of label contexts into an MRF

and enables optimal computation of the MRF in a single

forward pass rather than using an iterative algorithm. The

DPN models unary terms and pairwise terms by the tailored

VGG16 network [39] and additional designed layers, respec-

tively.

2.1.3 Integration with recurrent neural networks

Because the CNN [46,47] can extract only neighboring con-

text information through small convolutional filters, it obtains

only local information, which limits the classification accu-

racy of each pixel position. Moreover, CRF can learn only

the short-term dependencies of sequence data [54,61] due to

its own inner structure. Therefore, several works [26,29,31–

34] used recurrent neural networks to simulate the graphical

model for context modeling. Applications of recurrent neural

network architecture range from 1D sequence data, such as

speech and language, to 2D image space [62] and semantic

segmentation.

Two-dimensional (2D) LSTM architecture [31] was

adapted to consider the sophisticated spatial dependencies

of labels for the pixel-level segmentation of large natural

scene images. Specifically, 2D LSTM simultaneously per-

forms classification, segmentation and context integration

with low computational complexity by neglecting additional

processing, such as multi-scale. Each local prediction is syn-

chronously affected by its neighboring contexts and their pre-

vious spatial dependencies, which helps to efficiently capture

local and global contextual information end-to-end.

Similarly to 2D LSTM [31], the long short-term memo-

rized context fusion (LSTM-CF) model [29] was proposed

to fuse 2D contextual information from photometric RGB

and depth data. LSTM-CF can handle the challenges of se-

vere occlusions and diverse appearances [43,44,63–65] for

RGB-D indoor scene labeling. The photometric context is

captured by stacking several convolutional layers, while the

depth context is achieved by devising one LSTM layer that

encodes both short-range and long-range spatial dependen-

cies along the vertical direction. Moreover, another LSTM

fusion layer is constructed to integrate the 2D contexts from

different channels along the vertical direction to achieve true

2D global context through bi-directional propagation of the

fused contexts along the horizontal direction. Finally, the 2D

global contextual representation is cascaded with the RGB

features extracted by convolutional layers.

Local-global LSTM (LG-LSTM) architecture [26] was de-

veloped for end-to-end embedding of local short-distance and

global long-distance spatial context into the feature learn-

ing over all pixel positions for semantic part segmentation.

The local short-distance spatial dependencies of each posi-

tion in each LG-LSTM layer consist of one depth dimension

and eight spatial dimensions (left side of Fig. 8). The former

refers to the hidden cells from the same position in the pre-

vious LG-LSTM layer, whereas the spatial dimensions refer

to the hidden cells from eight neighborhood positions. More-

over, to capture the global long-distance spatial context (right

side of Fig. 8), in each LG-LSTM layer, the whole hidden

cell maps obtained from the previous layer are split into nine

grids, each of which covers one part of the image. Then, the

global context is obtained by max-pooling operations over

each grid. Thus, the features at each position are greatly en-

hanced by stacking several LG-LSTM layers.

Furthermore, to improve the LG-LSTM architecture [26],

the graph LSTM [32] network was built as the general-

ization of LSTM from sequential data to general graph-

structured data. Traditional pixel-wise LSTM structures, e.g.,

row LSTM [66], grid LSTM [26] and diagonal BiLSTM

[66,67], take fixed-size pixels or patches as physical nodes

and capture the context of each node by following a fixed

route for different images. By contrast, for each image, graph

LSTM constructs a single adaptive graph topology by view-
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Fig. 8 Illustration of the LG-LSTM layer (Figure extracted from [26])

ing arbitrary-shaped superpixels as semantically consistent

nodes, and the contextual information of each node is ob-

tained along the edges, which represent the spatial relations

of the adjacent superpixels.

Another extension of LG-LSTM [26], the structure-

evolving LSTM model [33], was proposed to progressively

and stochastically learn interpretable data representations

over hierarchal graph structures via LSTM optimization.

Structure-evolving LSTM is clearly distinguishable from

graph LSTM [32], which processes only data with pre-fixed

structures. Structure-evolving LSTM stochastically incorpo-

rates graph nodes with high compatibilities along the stacked

LSTM layers, followed by progressive evolution of the multi-

level graph representations from low levels to higher levels,

which enables efficient propagation of long-range data depen-

dencies. Moreover, the compatibility of two connected nodes

accords with the corresponding LSTM gate outputs in each

LSTM layer.

The third extended version of LG-LSTM [26] is progres-

sively diffused networks (PDNs) [34], which unify multi-

scale context modeling with deep feature learning for se-

mantic image segmentation. Specifically, PDNs utilize multi-

dimensional convolutional LSTMs to construct information

diffusion layers, which contribute to diffused information

over the learned feature maps. Each LSTM unit is equipped

with tailored atrous filters to capture the short-range and long-

range context from the neighbors of each site in the feature

map.

2.2 Instance-level semantic segmentation

Instance-level semantic segmentation has attracted substan-

tial attention [56,68–71] because increasing practical appli-

cations, such as robot task planning [42] and human ac-

tivity recognition [72], require different objects belonging

to the same category to be distinguished. The aforemen-

tioned category-level segmentation methods cannot achieve

this goal, as illustrated in Fig. 2. Instance-level semantic seg-

mentation precisely segments each object category and cor-

rectly detects all the object instances in one image [2], seek-

ing joint object detection and semantic segmentation. Next,

we discuss this task from the three aspects: proposal-based

framework, multi-task end-to-end module and metric learn-

ing embedded model.

Proposal-based framework The first step in the

proposal-based framework is to generate proposals, and fur-

ther processing is required to produce the final segmenta-

tions. Most early deep works [68,73,74] first adopt a proposal

generation method, extract features with tailored CNN archi-

tectures, and finally feed the intermediate results into post-

processing steps.

Typically, Hariharan et al. [68] proposed a simultaneous

detection and segmentation (SDS) model. This work first

generates category-agnostic candidate region proposals via

bottom-up multi-scale combinatorial grouping [75] under

the hypothesis that each region proposal, which consists of

bounding boxes and initial segmentations, contains one ob-

ject. On the basis of the proposals, features are extracted from

both the bounding boxes and initial foregrounds with two

separate tailored R-CNNs [64]. Support vector machines and

non-maximum suppression are used to classify region pro-

posals and to refine segmentations, respectively. This work

first formulates instance-level semantic segmentation as joint

object detection and semantic segmentation. But the compu-

tational cost in proposals generation phase is too expensive.

Later research [73] follows the same pipeline as that of

the SDS model [68]. The differences among the methods are

that 1) the refinement process in the SDS model [73] is re-

placed by hypercolumn-based refinement [73] to improve the

segmentation accuracy; and 2) in the feature extraction step,

this work [73] enlarges the bounding boxes set of detections
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and extracts features from just these bounding boxes with-

out consideration of the region foreground, as in [68], which

decreases the computational cost.

Recently, Li et al. [76] presented a novel salient instance

segmentation approach that produces salient instance pro-

posals by virtue of salient object contours. Specifically, This

work first devised a deep multi-scale refinement network to

simultaneously detect salient region and salient object con-

tours. Then, the salient object contours are used to generate

salient object proposals, which are futher filtrated by subset

optimization algorithm to obtain finer salient instance pro-

posals. The final salient instance segmentation is generated

by using CRF model to integrate the saliency mask with in-

stance proposals. This work is a pioneer of joint detection of

salient region and salient object contour in a unified frame-

work, and is beneficial for the situation where multiple salient

instances are spatially overlapped.

In this proposal-refinement pipeline, proposal generation

precedes classification. Apparently, the deep features and

large-scale training data play no role in boosting the quality

of the generated proposals, therefore, the accuracy of instance

segmentation is inherently limited by the quality of the initial

object proposals. To resolve the issues, some newly published

works [2,17] concentrate on unifying the proposal generation

and instance segmentation sub-tasks into a single end-to-end

framework, and more details are discussed in the below sub-

section.

Multi-task end-to-end framework Other methods seam-

lessly integrate the object segmentation of each category and

the detection of all object instances into a unified framework,

which is beneficial for end-to-end training without supervi-

sion in the intermediate stages.

Liang et al. [70] proposed a proposal-free network (PFN)

to predict the instance numbers of different categories and

each instance segmentation in end-to-end manner. This work

[70] directly predicts instance-level masks through bottom-up

merging, without requiring object proposals. However, PFN

is not suitable for cases with small objects.

Additionally, Liang et al. proposed an alternate novel

framework, called reversible recursive instance-level object

segmentation (R2-IOS) [69], which recursively refines ob-

ject proposals and segmentation masks. R2-IOS contains two

significant sub-networks, i.e., the object proposal refinement

sub-network and the instance-level object segmentation sub-

network, both of which are alternately fed into each other

for progressive optimization. The object proposal refinement

sub-network reversibly predicts the confidences for all se-

mantic categories and the bounding box offsets to refine the

object proposals; meanwhile the instance-level object seg-

mentation sub-network iteratively produces the foreground

mask of the dominant object in each proposal. Moreover, one

instance-aware denoising auto-encoder is embedded in the

instance-level object segmentation sub-network, which helps

R2-IOS to distinguish overlapping objects with similar ap-

pearance. This work jointly training object proposal refine-

ment and proposal-based segmentation to complement each

other, other than works in [68,73,76].

Dai et al. [77] presented multi-task network cascades

(MNC), which dissects instance-wise segmentation into three

causal sub-tasks respectively accomplished by the three se-

quential cascaded stages, i.e., distinguishing instances, fore-

casting masks and categorizing instances. Specifically, MNC

first extracts the convolutional features using the stacked con-

volutional layers. The output is shared among the three fol-

lowing stages. Besides, the outputs from the early stages are

also shared among the pursuant stages. This work achieves

contemporary state-of-the-art accuracy by transforming com-

plex instance-wise segmentation into three simplified sub-

tasks, which, however, has its deficiencies caused by RoIPool

[78,79]: missing spatial details and repetitive computation

among RoIs without sharing.

To alleviate MNC’s [77] issues, FCIS [17] provides the

first fully convolutional end-to-end solution for instance-

level semantic segmentation, which highly integrates FCN

[12] for semantic segmentation and InstanceFCN [22] for in-

stance mask proposal. Specifically, FCIS is divided into in-

stance mask prediction and classification sub-task. A input

image is fed into shallower convolutional layers to produce

convolutional representation and further position-sensitive

score maps, which are shared between subsequent two sub-

networks to exploit the correlation. FCIS is fast, and pre-

serves more spatial details without warping or resizing op-

erations in RoIs. But FCIS has inherent drawbacks at dealing

with overlapping instances [2].

Recently, a concise general framework, mask R-CNN [2],

which can simultaneously detect objects in one image and

generate a segmentation mask for each instance, as well as

being simple to implement and trained, was built for object

instance segmentation. In concrete terms, mask R-CNN in-

tegrates one mask branch into faster R-CNN [0] so that ob-

ject mask prediction is performed in parallel with the exist-

ing branch for bounding box recognition. Mask R-CNN can

be generalized to other tasks, such as bounding box object

detection and person keypoint detection. More importantly,

mask R-CNN transcends all previous state-of-the-art results

with its framework’s flexibility. However, the accuracy and
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speed are also restricted by the RPN and RoIPool the same as

[78–80].

Metric learning embedded model Most recently, the

novel research moves towards metric learning embedded

deep networks for instance segmentation to measure the like-

lihood of different elements (e.g., pixels, detections). The dis-

tance between different elements is calculated to determine

whether these elements belong to the same object instance.

Newell et al. [81] integrated associative embedding into

supervised CNNs for pixel-wise predictions, which view in-

stance segmentation as the joint detection of relevant pix-

els and their grouping into object instances. Here, the em-

beddings serve as tags to group detections with similar tags.

Specifically, [81] utilizes a tailored hourglass network to si-

multaneously produce a detection heatmap and a grouping

heatmap for each object category. The detection heatmap af-

fords a detection score at each pixel to predict whether the

pixel belongs to the foreground. Meanwhile, the grouping

heatmap tags each pixel such that pixels with similar tags are

grouped into the same object instance by non-maximum sup-

pression. Besides pixel-wise embeddings [82], this work also

engenders pixel-wise detection scores to reduce the output

dimension of each pixel.

Coincidentally, Fathi et al. [83] also manufactured a deep

metric learning method to further improve the performance

of instance-wise segmentation. Specifically, a fully convolu-

tional scoring model is first adopted to compute the seediness

score of each pixel, which estimates the representativeness of

the pixel comparing with other pixels in the same instance.

Pixels with top seediness score serve as seed points. Then,

the distance between the seed points are learned via a deep

embedding model, which represents likelihood of two pix-

els. Thus similar pixels are grouped together into the same

instance. Different from [81] using one-dimensional embed-

ding, this work derives multi-dimensional embedding from

each pixels, which makes it more appropriate for slender-

shape objects.

Generally, these metric learning embedded models are

trained end-to-end with fast speed and promising perfor-

mance. The grouping procedure is based on pairwise con-

straints [84], not associated with predefined semantic cat-

egories. Therefore, such embedding technology maybe be-

come a new tendency for instance-level segmentation.

2.3 Beyond segmentation

The aforementioned segmentation research focuses on seg-

menting images with different-level configurations, such as

category level and instance level. Each configuration assigns

the label of the corresponding levels for each pixel. In this

section, we discuss beyond segmentation methods, which

considers the implicit high-level hierarchical information in

the image, such as the geometric information [30], the rela-

tions between objects [58], and the structural information [6],

in addition to the aforementioned pixel-wise segmentation.

This high-level information improves the image segmenta-

tion performance.

Peng et al. [30] proposed hierarchical LSTM (H-LSTM)

to exploit data from the perspective of geometric attributes

and geometric relations, as shown in Fig. 9. Specifically, H-

LSTM simultaneously outputs the segmentation of geometric

attributes (e.g., sky, ground) and geometric interaction rela-

tions (e.g., layering, supporting) through the pixel LSTM (P-

LSTM) sub-network and the multi-scale super-pixel LSTM

(MS-LSTM) sub-network, respectively. P-LSTM captures lo-

cal contextual information to segment geometric attributes;

meanwhile, MS-LSTM extracts multi-scale super-pixel rep-

resentations to categorize geometric interaction relations be-

tween adjacent attributes. MS-LSTM shares basic convolu-

tional layers with P-LSTM, which means attribute segmenta-

tion and relation categorization benefit from each other.

Fig. 9 Illustration of the geometric scene parsing (Figure extracted from
[30])

The major obstacles in beyond segmentation research are

the ambiguity of the image hierarchical representations and

the rarity of elaborative manually annotated datasets. To al-

leviate these issues, someintroduced top-down information

(e.g., hierarchical object structure, object interactions) [6,58]

from image descriptions.
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Lin et al. [6] proposed the deep-structured CNN-RNN

model by integrating a CNN [12,15] and RNN [16], which

can recursively learn the representations in a semantically

and structurally coherent way, as shown in Fig. 10. The CNN

layer-wise extracts the feature maps of semantic objects from

the input scene image (i.e., semantic segmentation results).

Then, the feature maps are fed into the RNN to generate the

hierarchically structured configuration (i.e., the hierarchical

object structure and the object interaction relations), as shown

in Fig. 3. The CNN-RNN model [6] discovers structural

scene configurations from the image descriptions [27,85] fol-

lowing the work of [86,87] and is trained in a weakly su-

pervised manner, which avoids the need for elaborate man-

ual annotations. Furthermore, the expectation-maximization

method, which alternates between latent label prediction sub-

ject to the weak annotation constraints and optimization of

the network parameter, is used to train the model.

Fig. 10 The detailed CNN-RNN architecture (Figure extracted from [6])

Inspired by CNN-RNN [6], IDW-CNN [58] also exploits

the image descriptions [27,85] to capture top-down infor-

mation, which further improves the image parsing perfor-

mance. Wang et al. [58] designed an elaborate CNN to jointly

train IDW and a subsistent image segmentation dataset. IDW

dataset are raw: 1) Images are only captioned with raw sen-

tences without pixel-wise annotation; and 2) Images and their

descriptions are automatically downloaded from the Internet

without subsequent manual post-processing (e.g., cleaning,

refinement). IDW contributes useful object interactions to im-

prove segmentation performance; consequently, the precise

object segmentation results from the subsistent dataset also

benefit object-interaction extractions in IDW. Thus, knowl-

edge from different dataset sources can be fully explored and

transferred to improve performance.

3 Datasets and evaluation metrics

Public datasets and relevant evaluation metrics form the foun-

dation for improving the algorithms. The emergence of big

data has driven the development of datasets and relevant eval-

uation metrics in the field of deep representation for semantic

image segmentation, which require large-scale datasets for

training. Thus, in this section, we describe these well-known

public datasets and evaluation metrics in detail.

3.1 Datasets

Table 2 compares the well-known public datasets. Accord-

ing to the source of the image, the semantic segmentation

datasets can be divided into RGB(2D) data and RGB-D(3D)

data, as indicated by the “2D / 3D” term.

For category-level / instance-level semantic segmentation,

the widely used datasets include PASCAL VOC, PASCAL-

Part, ILSVRC 2016, MS COCO, SIFT Flow, NYUDv2, SUN

RGB-D, ATR, and Fashionista.

• PASCAL VOC The PASCAL VOC dataset [88] is

part of the PASCAL Visual Object Classes (VOC) Chal-

lenge organized annually from 2005 to 2012. VOC data

have been accepted annually for five main tasks: clas-

sification, detection, segmentation, action classification

and large-scale recognition. The segmentation task was

first introduced in 2007. The dataset is utilized for both

category-level and instance-level segmentation. Table 2

lists VOC 2007 and VOC 2012, which are the most fre-

quently used VOC datasets.

• PASCAL-part dataset This dataset [89] contains ad-

ditional annotations for PASCAL VOC 2010, which

provides segmentation masks for each body part of an

object.

• ILSVRC 2016 The ImageNet Large Scale Visual
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Table 2 Comparison of the semantic segmentation datasets

Datasets # of images # of training images # of testing images 2D/3D image Indoor/outdoor scene # of categories

PASCAL VOC 2012 9,993 4,997 4,996 2D Both 20

PASCAL VOC 2007 7,062 3,531 3,531 2D Both 20

PASCAL part 19,740 10,103 9,637 2D Both 88

ILSVRC 2016 25,562 20,210 3,352 2D Both 150

MS COCO 328,000 − − 2D Both 91

SIFT flow 2,688 − − 2D Outdoor 33

NYUDv2 1,449 − − 3D Indoor 40

SUN RGB-D 10,355 − − 3D Indoor 19

Fashionista 685 456 229 2D Both 56

ATR 7,700 6,000 1,000 2D Both 18

CityScapes 5,000 3,475 1,525 2D Outdoor 30

Note: “#” is short for “number”. “−” means the value cannot be found in the literature

Recognition Challenge 2016 (ILSVRC 2016) [90], or-

ganized by the MIT CSAIL Vision Group, is well-

known for the image classification task, and it first in-

troduced a scene parsing task in 2016. The dataset for

this scene parsing task is the complete ADE20K Dataset

[91], which contains more than 20K scene-centric im-

ages exhaustively annotated with object instances and

object parts. Thus, the dataset is used for both seman-

tic instance-level segmentation and part segmentation.

In particular, the distribution of objects occurring in

the images is non-uniform, which simulates daily real-

world scenes.

• MS COCO The Microsoft Common Objects in COn-

text (MS COCO) dataset contains 91 common object

categories in the version released in 2015 [92] and 80

categories in the 2014 version [93]. Distinct from others

datasets, MS COCO contains considerably more object

instances per image, which may help to exploit con-

textual information. MS COCO is now a widely used

benchmark dataset for category-level and instance-level

semantic segmentation.

• SIFT flow The SIFT Flow dataset [94] was thoroughly

labeled by LabelMe users with 33 semantic categories,

three geometric categories (i.e., ground, vertical, and

sky) and four interaction relation labels (i.e., layering,

supporting, siding and affinity). The dataset is appro-

priate for category-level segmentation, and it was later

transformed for image geometric parsing.

• NYUDv2 NYUDv2 [95] is an RGB-D dataset [96] and

can be used for both category-level and instance-level

segmentation. Additionally, it contains labeled struc-

tural support relationships for support relation classi-

fication.

• SUN RGB-D SUN RGB-D [97] is the largest RGB-

D dataset currently available. The dataset combines

most of the previous datasets, such as NYUDv2 [95],

Berkeley B3DO [98], and SUN3D [99], as well as

3943 newly captured RGB-D images [97]. Currently,

the SUN RGB-D dataset is designed for only category-

level semantic segmentation.

• Fashionista The Fashionista dataset [100] is designed

for clothes parsing and contains 56 different clothing

items, of which 43 items have at least 50 image regions.

• ATR The ATR dataset [46] combines four human pars-

ing datasets: Fashionista [100], colorful fashion parsing

data (CFPD) [101], daily photos [102] and the human

parsing in the wild (HPW) datasets. The labels of the

Fashionista and CFPD datasets are merged into 18 cat-

egories, and the HPW dataset is newly annotated [46].

• CityScapes The CityScapes dataset [103] focuses

on both category-level and instance-level segmentation

of urban street scenes. It provides 5,000 fine annota-

tions, i.e., individual annotations of single instances,

and 20,000 coarse annotations, which cover individual

objects with marked polygons.

Semantic image parsing mainly contains structured seman-

tic parsing [6] and geometric parsing [30]. However, to the

best of our knowledge, there is no specific subsistent dataset

for image parsing. Structured semantic parsing requires not

only the segmentation of objects in an image but also hierar-

chical prediction of semantic objects with object interaction

relations. Therefore, the requisite dataset is distinct from the

datasets used for semantic segmentation tasks. The work in

[6] constructed a dataset for this task based on the existing

dataset PASCAL VOC 2012. In practice, in addition to uti-

lizing the dataset for category-level semantic segmentation,

images used to construct the structure and relations were se-
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lected from the PASCAL VOC 2012 segmentation dataset.

Furthermore, in contrast to the pixel-wise annotations in this

dataset, based on these selected images, [6] built image-level

annotations by describing each image with several natural

language sentences. In addition, each sentence contains ob-

jects and the hierarchy with their interaction relations in the

image. Similarly, there is no specific dataset to validate the ef-

fectiveness of the proposed algorithm for geometric parsing,

which simultaneously labels geometric attributes and deter-

mines the geometric interaction relations. The work in [30]

transformed existing datasets (i.e., SIFT Flow, LM+SUN,

and Geometric Context dataset) for use in geometric parsing.

3.2 Evaluation metrics

The performance of pixel-wise segmentation algorithms is

commonly evaluated with four metrics [12]: pixel-wise ac-

curacy, mean accuracy, intersection over union (IoU), and F1

score. Denote ni j as the number of pixels of category i pre-

dicted to belong to category j, where there are K categories,

and let ti =
∑

j ni j be the total number of pixels of category i.

Then,

• pixel-wise accuracy:
∑

inii/
∑

iti,

• mean accuracy: (1/K)
∑

inii/
∑

iti,

• mean IoU: (1/K)
∑

inii/(ti +
∑

j n ji − nii),

• F1 score: (Pixel-wise Accuracy + mean IoU) /2.

The performance of structured scene parsing algorithms is

evaluated with two metrics [6]: relation accuracy and struc-

ture accuracy. Following [6], relation accuracy is computed

recursively. Denote by T a tree and let P = T, T1, T2, . . . , Tm

be the set of enumerated subtrees (including T ) of T . A

leaf Ti is considered to be correct if it is of the same ob-

ject category as that in the ground truth tree. A non-leaf Ti

(with two subtrees Tl and Tr) is considered to be correct if

and only if Tl and Tr are both correct and the relation la-

bel is correct. Then, the relation accuracy is calculated as

(number o f correct subtrees)/(m + 1). The structure accu-

racy is a simplification of the relation accuracy that ignores

the relation labels when evaluating the correctness of T .

4 Conclusions and future work

In this work, we present a comprehensive review on deep

representation learning algorithms for semantic image pars-

ing with a unique perspective. In contrast to other surveys,

we review the image parsing models in terms of the devel-

opment of three-level semantic segmentation from its origins

to the most recent and the relatively well-known datasets

and evaluation metrics, including 41 algorithms, 11 datasets

and six evaluation metrics. We believe that there are several

promising research directions for semantic image parsing.

The first is multi-task driven semantic parsing, such as [6],

which integrates natural language understanding and image

parsing. In addition, a large number of training samples are

required for deep parsing models, but the collection and

annotation of large-scale datasets is elaborative. Therefore,

semi-supervised, weakly supervised or unsupervised learning

algorithms are another direction to pursue. The third intuitive

direction is to transfer image parsing ideas and technologies

to the challenging video parsing task.
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