
Sparse Learning-to-Rank via an
Efficient Primal-Dual Algorithm

Hanjiang Lai, Yan Pan, Cong Liu, Liang Lin, and Jie Wu, Fellow, IEEE

Abstract—Learning-to-rank for information retrieval has gained increasing interest in recent years. Inspired by the success of sparse

models, we consider the problem of sparse learning-to-rank, where the learned ranking models are constrained to be with only a few

nonzero coefficients. We begin by formulating the sparse learning-to-rank problem as a convex optimization problem with a sparse-

inducing ‘1 constraint. Since the ‘1 constraint is nondifferentiable, the critical issue arising here is how to efficiently solve the

optimization problem. To address this issue, we propose a learning algorithm from the primal dual perspective. Furthermore, we prove

that, after at most Oð1�Þ iterations, the proposed algorithm can guarantee the obtainment of an �-accurate solution. This convergence

rate is better than that of the popular subgradient descent algorithm. i.e., Oð 1
�2Þ. Empirical evaluation on several public benchmark data

sets demonstrates the effectiveness of the proposed algorithm: 1) Compared to the methods that learn dense models, learning a

ranking model with sparsity constraints significantly improves the ranking accuracies. 2) Compared to other methods for sparse

learning-to-rank, the proposed algorithm tends to obtain sparser models and has superior performance gain on both ranking

accuracies and training time. 3) Compared to several state-of-the-art algorithms, the ranking accuracies of the proposed algorithm are

very competitive and stable.

Index Terms—Learning-to-rank, sparse models, ranking algorithm, Fenchel duality

Ç

1 INTRODUCTION

RANKING is a crucial task for information retrieval systems,
in particular for web search engines. Learning-to-rank is

a task that applies machine learning techniques to learn good
ranking predictors for sorting a set of entities/documents. It
has been drawing increasing interest in information retrieval
and machine learning research. Many learning-to-rank
algorithms have been proposed in literature such as [3], [4],
[5], [6], [7], [8], [9].

In many machine learning applications, such as compu-
ter vision and bioinformatics, there is much desire to learn a
sparse model. That is, a model with only a few nonzero
coefficients with respect to the input features. Models with
sparsity constraints are also desirable in ranking. First, some
new data sets for ranking, such as the data sets for Yahoo!’s
Learning-to-Rank Challenge1 and Microsoft’s data sets
for large-scale learning-to-rank,2 contain high-dimensional
features. High-dimensional features lead to the problem

that the dense models learned are complicated and hard to
interpret. Second, high-dimensional features may be re-
dundant or noisy, which results in poor generalization
performance. Lastly, a sparse model has less computational
cost in prediction.

The following is an intuitive example to illustrate why
sparse learning works: a few strong features can dominate
the whole ranking performance. We sort the documents in
the TD2004 data set (in LETOR 3.0 [20]), respectively, using
each individual feature out of the 64 given features. The
results of Normalized Discounted Cumulative Gain (NDCG)@10
evaluation metrics (interested readers please refer to Sec-
tion 8.2 for more details about NDCG) are shown in Fig. 1.
For comparison, we generate a random predictor that uses all
of the features as follows: we randomly initialize a feature
weight vector wwðww ¼ ðw1; w2; . . . ; w64Þ;8i; wi � 0;

P64
i¼1 wi ¼

1Þ for 10 times and sort the documents in decreasing order of
the results of the inner product hww; xxi, where xx denotes the
feature vector of a document, and then we get the average
over the 10 NDCG@10 values. We can observe in Fig. 1 that
only several strong features, i.e., BM25, language models,
PageRank, HITS [20], have obviously higher NDCG@10
values than the average of ten random sorting values (the red
line), while many are lower. Moreover, there are some poor
features whose NDCG@10 values are very far away from the
average value of random sorting. To sum up, there can be
cases where the whole ranking performance is dominated by
only a small number of strong features, where learning a
sparse model with only a few nonzero coefficients is
desirable for ranking, and it has the potential to achieve
better performance.

To obtain sparse ranking models, a natural way is to
construct a ranking model with the smallest number of
features. This problem is usually modeled using the
‘0 penalty. However, the resulting optimization problem

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013 1221

. H. Lai and C. Liu are with the School of Information Science and
Technology, Sun Yat-sen University, NO. 132 East Waihuan Road,
Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R.
China. E-mail: laihanj@student.sysu.edu.cn, gzcong@gmail.com.

. Y. Pan and L. Lin are with the School of Software, Sun Yat-sen University,
NO. 132 East Waihuan Road, Guangzhou Higher Education Mega Center,
Guangzhou 510006, P.R. China.
E-mail: panyan5@mail.sysu.edu.cn, linliang@ieee.org.

. J. Wu is with the Department of Computer and Information Sciences,
Temple University, 1805 N. Broad ST., Room 302, Wachman Hall 302,
Philadelphia, PA 19122. E-mail: jiewu@temple DOT edu.

Manuscript received 15 Aug. 2011; revised 11 Jan. 2012; accepted 21 Feb.
2012; published online 28 Feb. 2012.
Recommended for acceptance by M. Guo.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-08-0545.
Digital Object Identifier no. 10.1109/TC.2012.62.

1. http://learningtorankchallenge.yahoo.com/.
2. http://research.microsoft.com/en-us/projects/mslr/.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society



is an NP-hard combinatorial problem. A simple way to
tackle the ‘0 penalty is feature selection, which greedily
chooses an additional feature at every step to reduce the
training error. Although feature selection algorithms di-
rectly address the ‘0 penalty, they are nonconvex and hard
to analyze. A more popular way is to use the ‘1 penalty as a
convex surrogate of the ‘0 penalty. The convex optimization
problems with the ‘1 penalty not only lead to efficient
learning algorithms but also allow comprehensive theore-
tical analysis. In this paper, we focus on the sparse ranking
problem with the ‘1 penalty.

However, no effort has been made to tackle the problem
of learning a sparse model for ranking with the ‘1 constraint
except for the work [10], in which the authors proposed a
reduction framework to reduce ranking to the problem of
importance-weighted pairwise classification. Then, they
used an ‘1 regularized algorithm to learn a sparse ranking
predictor. Despite the improvement they reported, the
authors did not justify the individual contribution of
the two parts of their solution: the reduction framework
and the sparse learning algorithm.

This paper aims to answer the question of how the sparse
learning algorithm contributes to improve ranking accuracy.
We propose a convergence-provable primal-dual algorithm
that optimizes the ‘1 regularized pairwise ranking loss.
Furthermore, we empirically show in our experiments that
our algorithm, using the pairwise ranking loss with sparse-
inducing ‘1 norm, can significantly outperform the algo-
rithm using the same loss with ‘2 norm and can achieve a
state-of-the-art performance on several benchmark data sets.

Our contributions in this paper can be summarized as
follows: 1) We successfully formulate the sparse learning-to-
rank problem as a convex optimization problem by
combining a pairwise ranking loss and a sparse-inducing
‘1 norm. Since the ‘1 norm is nondifferentiable, this
optimization problem is difficult to solve. We propose a
learning algorithm for this optimization problem from the
primal-dual perspective. 2) We prove that, after T iterations,
our proposed algorithm can guarantee the obtainment of a
solution with desired tolerant optimization error � ¼ Oð1TÞ.
Our algorithm has a better convergence rate than the
subgradient descent algorithm, which is a popular algo-
rithm for convex and nondifferentiable problems with a

convergence rate of Oð 1ffiffiffi
T
p Þ [11]. 3) We empirically show that,

compared to the methods that learn dense models, learning
a ranking model with sparsity constraints can significantly
improve the ranking accuracies. Experiment results show
that our learning algorithm achieves a state-of-the-art
performance on several public benchmark data sets.

2 RELATED WORK

Recently, there has been a lot of research focusing on
learning-to-rank in the machine learning community. Two
main classes of methods for learning-to-rank have been
explored in the last few years: pairwise methods and
listwise methods [3], [4], [5], [6], [8], [12]. Our proposed
method belongs to the first class.

The first class of methods is based on the so-called
pairwise approach, in which a process of learning-to-rank is
viewed as a task to classify the preference order within
document pairs. Ranking SVM [6], RankBoost [5], and
RankNet [3], are notable pairwise algorithms. The Ranking
SVM algorithm adopts a large margin optimization approach
like the traditional SVM [15]. It minimizes the number of
incorrectly ordered instance pairs. Several extensions of
Ranking SVM have also been proposed to enhance the
ranking performance, such as [13], [14]. RankBoost is a
boosting algorithm for ranking by using pairwise preference
data. RankNet is another well-known algorithm, which
applies Neural Network to rank and uses cross entropy as
its loss function. Recently, Chapelle and Keerthi [16] replaced
the standard hinge loss in Ranking SVM with a differentiable
squared hinge loss and, thus, proposed a Newton descent
algorithm to efficiently learn the ranking predictor.

The second class contains the listwise methods in which
there are mainly two streams:

1. The first stream optimizes a loss function directly
based on the IR evaluation metrics. SVM-MAP [8]
adopts the structural support vector machines to
minimize a loss function that is the upper bound of
the Mean Average Precision (MAP) evaluation metrics
(interested readers please refer to Section 8.2 for
more details about MAP). AdaRank [12] is a boosting
algorithm that optimizes an exponential loss, which
upper bounds the metrics of MAP and NDCG.

2. The second stream defines several listwise loss
functions, which take the list of retrieved documents
for the same query as a sample. ListNet [4] defines a
loss function based on the KL-divergence between
two permutation probability distributions. ListMLE
[18] defines another listwise likelihood loss function
based on the Luce Model [17].

Another aspect related to the work in this paper is
sparse learning, which has been widely applied to many
applications in computer vision, signal processing, and
bioinformatics. Many learning algorithms have been
proposed for sparse classification/regression, such as
decomposition algorithms [28], [27], algorithms for ‘1

constrained optimization problem [31], [30], [29] (interested
readers please refer to [27] for more discussions about
sparse classification/regression algorithms).

Since the pairwise approach reduces the ranking problem
to a classification problem on document pairs, in principle,
many algorithms for sparse classification can be applied to

1222 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

Fig. 1. The red line denotes the average NDCG@10 value over 10 times

of random sorting. The dots are the NDCG@10 values of 64 features,

respectively. We can see that only a few dots are above the red line.



obtain sparse ranking models. However, few efforts have
been made to tackle the problem of learning a sparse
solution for ranking. Recently, Sun et al. [10] proposed a
reduction framework to reduce ranking to importance-
weighted pairwise classification and then used an ‘1

regularized algorithm to learn a sparse ranking predictor.
Despite success, it does not justify the individual contribu-
tion of each of its two parts, the reduction framework and
the sparse learning algorithm. Sparse learning for ranking is
a relatively new topic that needs more exploration.

3 NOTATIONS

We introduce the notations used throughout this paper. In

the learning-to-rank problem, there is a labeled training set

S ¼ fðqk;Xk; YkÞgnk¼1 and a test set T ¼ fðqk;XkÞgnþuk¼nþ1. Here,

qk denotes a query, Xk ¼ fXk;ignðqkÞi¼1 denotes the list of

corresponding retrieved objects (i.e., documents) for qk,

and Yk ¼ fyk;ignðqkÞi¼1 is the list of corresponding relevance

labels provided by human, where yk;i 2 f0; 1; 2; 3; 4g, nðqkÞ
represents the number of objects in the retrieved object list

belongs to query qk, and Xk;i represents the ith object in the

retrieved object list belongs to query qk. EachXk;i 2 IRm is an

m-dimensional feature vector and each attribute of Xk;i is

scaled to the range ½0; 1�.
We define a pairs set P of comparable object pairs as

following: ðk; i; jÞ 2 P if and only if Xk;i; Xk;j belong to the

same query qk and yk;i 6¼ yk;j. We use p to denote the

number of pairs in P . In addition, we define an object

pairwise comparison error matrix K 2 IRp�m as follows:

each pair in P corresponds to a row in K. Denote the

lth pair in P as fkl; il; jlg, the lth row of K as Kl. We define

Kl ¼ ykl;il;jlðXkl;il �Xkl;jlÞ, where ykl;il ;jl ¼ 1 if ykl;il > ykl;jl ,

and otherwise ykl;il;jl ¼ �1. Since Xi;j 2 ½0; 1�m for all i; j, we

have Kl 2 ½�1; 1�m for all l.
We use hxx; yyi to represent the inner product of two

vectors xx and yy. Let r denote the radius of an ‘1-ball: kwwk1 �
r . We introduce an indictor function ICðwwÞ: ICðwwÞ ¼ 0 if and

only if for a given vector w, condition C is satisfied,

otherwise ICðwwÞ ¼ þ1. The above notations are summar-

ized in Table 1.

4 PROBLEM STATEMENT

The learning-to-rank problem has a wide range of applica-

tions in information retrieval systems. We are given a

labeled training set S ¼ fðqk;Xk; YkÞgnk¼1 and a test set T ¼
fðqk;XkÞgnþuk¼nþ1. The task of learning to rank is to construct a

ranking predictor from the training data, and then sort the
examples in the test set using the ranking predictor.

Following the common practice in learning-to-rank, in
this paper, we only focus on learning a linear ranking
predictor fðxÞ ¼ hw; xi. Many existing learning-to-rank
algorithms use this setting. The SVM methods, such as the
recently proposed RankSVM-Struct [19] and RankSVM-
Primal [16], are notable algorithms for learning linear
ranking predictors, which achieve a state-of-the-art perfor-
mance on several benchmark data sets. These methods learn
ranking models by minimizing the following form of
regularized pairwise loss functions:

min
ww0

1

2
kww0k2

2 þ C
X
ðk;i;jÞ2P

‘ðyk;i;jww0T ðXk;i �Xk;jÞÞ; ð1Þ

where ‘ðxÞ can be the hinge loss ‘ðxÞ ¼ maxð0; 1� xÞ or the
squared hinge loss ‘ðxÞ ¼ maxð0; 1� xÞ2, and C is a
parameter to control the tradeoff between training error
and the model complexity. Existing work [34] in learning-
to-rank revealed that the classification-based pairwise
loss function (i.e., hinge loss) is both an upper bound of
1-NDCG and 1-MAP. When we take ‘ðxÞ ¼ maxð0; 1� xÞ,
the objective function given by (1) is the objective of
Ranking SVM. There exist several algorithms, such as the
quadratic programming [26] or the cutting plane algorithm
[19], which minimize this objective function. If ‘ðxÞ ¼
maxð0; 1� xÞ2, the function given by (1) becomes the
objective of RankSVM-Primal [16], which is a convex and
twice differentiable function that can be optimized directly
via an efficient Newton descent algorithm. Despite achiev-
ing a state-of-the-art performance, a learning algorithm
using these forms of objectives usually obtains dense
solutions (most of the ranking predictor’s coefficients are
nonzero) because of the ‘2 regularization term.

Sparse models have been proved to be effective in many
applications, including computer vision, signal processing,
and bioinformatics. In this paper, we are interested in the
particular problem of how the sparse learning algorithm
can contribute to the improvement of the ranking accuracy.
By replacing the ‘2 norm with the spare-inducing ‘1 norm,
we obtain the following optimization problem:

min
ww0
kww0k1 þ C

X
ðk;i;jÞ2P

1

p
maxð0; 1� yk;i;jww0T ðXk;i �Xk;jÞÞ2:

ð2Þ

For any C in the problem in (2), there exists a correspond-
ing r such that the problem in (2) is equivalent to the
following optimization problem (see the explanation in [32,
Section 1.2]):

min
kww0k1�r

1

p

X
ðk;i;jÞ2P

maxð0; 1� yk;i;jww0T ðXk;i �Xk;jÞÞ2

¼ min
ww0

Ikww0k1�rðww
0Þ þ 1

p

Xp
i¼1

maxð0; 1� ðKww0ÞiÞ
2:

ð3Þ

The predictor ww0 is an m-dimensional vector constrained
in the ‘1-ball of radius r. It is well known that the ‘1

constrained optimization problems like (3) usually lead to
sparse solutions, but the ‘2 regularized formulation like (1)

LAI ET AL.: SPARSE LEARNING-TO-RANK VIA AN EFFICIENT PRIMAL-DUAL ALGORITHM 1223

TABLE 1
List of Notations



does not (see [33, pages 14-15] for a detailed explanation
based on a geometrical intuition).

For ease of analysis, we scale the radius of ‘1-ball to 1
and define ww ¼ 1

r ww
0. The problem (3) can be rewritten as

the following:

min
ww
GðwwÞ ¼ min

ww
Ikwwk1�1ðwwÞ þ

r2

p

Xp
i¼1

max 0;
1

r
� ðKwwÞi

� �2

:

ð4Þ

The objective function given by (4) is similar to that of the
RankSVM-Primal, except for a different regularization term.

Since ‘1 is not differentiable everywhere, it is challenging
to optimize the objective in (4), and the Newton descent
algorithm used in RankSVM-Primal cannot be applied. To
minimize a convex but nondifferentiable function, a straight-
forward way is to use the popular subgradient descent
algorithm. However, the subgradient descent method has a
slow convergence rate of Oð 1

�2
Þ, where � is the expected

optimization precision. In this paper, we propose an efficient
and convergence-provable optimization algorithm for the
problem in (4), with a faster convergence rate of Oð1�Þ.

5 OUR ALGORITHM

5.1 Overview

In this section, we present our algorithm to solve the sparse
learning-to-rank problem in (4). Our algorithm is based on
the theory of Fenchel Duality [24], which has been used in
several machine learning algorithms such as the boosting
variants in [1]. Our algorithm follows the genetic algorith-
mic framework proposed in [1]. Since Fenchel Duality is the
key ingredient in our designing methodology, we call our
algorithm “FenchelRank” for short.

Let DðwwÞ ¼ �GðwwÞ. Then, the problem in (4) is equiva-
lent to the following optimization problem:

max
ww

DðwwÞ ¼ max
ww
�Ikwwk1�1ðwwÞ

� r
2

p

Xp
i¼1

max 0;
1

r
� ðKwwÞi

� �2

:
ð5Þ

To maximize the objective in (5), we propose an iterative
algorithm, which iteratively constructs a sequence of weight
vectors: ww1 ! � � � ! wwt ! wwtþ1 ! � � � ! wwT , such that
fDðwwtÞgTt¼1 is a monotonically increasing sequence of
function values: Dðww1Þ � � � � � DðwwtÞ � Dðwwtþ1Þ � � � � �
DðwwT Þ. Suppose ww� is the best solution for DðwwÞ (i.e., the
Bayes error is minimized), and D� ¼ Dðww�Þ. With the
constructed sequence fDðwwtÞgTt¼1, we will prove that after
T iterations, DðwwT Þ is guaranteed to be an �-accurate
solution (i.e., D� �DðwwT Þ � �) with � ¼ Oð1TÞ.

To improve efficiency in practice, we further define an
early stopping criterion for the algorithm using the properties
of Fenchel duality. Obviously, we can compare D� �DðwwT Þ
with � to determine whether the algorithm can be stopped.
However, D� is unknown. To derive an upper bound of
D� �DðwwtÞ, we construct another sequence of function
values P ðddtÞ such that P ðddtÞ � D�, where P ðddtÞ is the primal
form whose Fenchel dual form is DðwwtÞ. Therefore, we can
use P ðddtÞ �DðwwtÞ � D� �DðwwtÞ to derive an early stopping
criterion (see Sections 5.3 and 5.4 for more details).

The skeleton of the proposed algorithm is shown in
Algorithm 1. The input of the algorithm includes a data
matrix K, a desired optimization tolerance �, a maximum
number of iterations T , and the radius r of an ‘1-ball. In this
algorithm, the sign function signð�Þ ¼ 1 if � � 0, otherwise
signð�Þ ¼ �1; 00m denotes the m-dimensional vector with all
zeros, and eei is the vector with all zeros except the
ith element being 1. The algorithm initializes ww to be 00m.
It stops if the early stopping criterion is satisfied (Line 2), or
the maximal iteration, T , is reached.

Algorithm 1. FenchelRank algorithm

Input: pairwise data matrix K, desired accuracy �,

maximal iteration number T and the radius
r of ‘1 ball.

Output: linear ranking predictor w

Initialize: w1 ¼ 00mm
1. For t ¼ 1; 2; � � � ; T do

//check if the early stopping criterion is satisfied

2. IF kgtk1 þ hdt;�Kwti � �
return wt as ranking predictor w

Here dt ¼ rf�ð�KwtÞ ¼ @f�ð�KwÞ
@ðKwÞ jw¼wt

and gt ¼ dTt K
//Greedily choose a feature to update

3. Choose jt ¼ argmaxj jðgtÞjj
//Compute an appropriate step size

4. Let �t ¼ argmax0��t�1Dðð1� �tÞwt
þ�tsignððgtÞjtÞe

jtÞÞ
//Update the model with the chosen feature and step size

5. Update wtþ1 ¼ ð1� �tÞwt þ �tsignððgtÞjtÞe
jt

7. end For

8. return wT as ranking predictor w

In each iteration, the algorithm has three main steps:

1) checking the early stopping criterion (Line 2); 2) greedily

choosing a feature to update (Line 3); and 3) finding an

appropriate step size and updating the weights (Lines 4-5).

In the following, we first review the properties of Fenchel

duality. Then, we present how to construct the sequences

fDðwwtÞgTt¼1, fddtgTt¼1 and fP ðddtÞgTt¼1. After that, we specify

the three main steps, respectively. Finally, we provide the

theoretical analysis of the algorithm.

5.2 Properties of Fenchel Duality

The main properties of Fenchel Duality are the Fenchel

conjugate (Definition 1) and the Fenchel Duality inequalities

(Lemma 1 and 2).

Definition 1. The Fenchel conjugate of function f is defined as

f�ð��Þ ¼ maxxx2domfðh��; xxi � fðxxÞÞ.
Lemma 1 (Fenchel-Young Inequality: [2], Proposition

3.3.4). Any points �� in the domain of function f� and xx in

the domain of function f satisfy the inequality:

fðxxÞ þ f�ð��Þ � h��; xxi: ð6Þ

The equality holds if and only if �� 2 @fðxxÞ.
Lemma 2 (Fenchel Duality Inequality: [2], Theorem 3.3.5).

Let function f : Rp ! ð�1;þ1� and g : Rm ! ð�1;þ1�
be two closed and convex functions, K be a IRp�m matrix,

1224 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013



sup
ww
�f�ð�KwwÞ � g�ðwwÞ � inf

dd
fðddÞ þ gðddTKÞ: ð7Þ

The equality holds when 0 2 ðdomðgÞ �KTdomðfÞÞ .

5.3 Constructing the Sequences

To construct the sequences fDðwwtÞgTt¼1, fP ðddtÞgTt¼1, and

fddtgTt¼1, we define

g�ðwwÞ ¼ I kwwk1�1ðwwÞ and f�ð��Þ ¼ r
2

p
ðmaxð0; 1þ ��ÞÞ2:

We have f�ð�KwwÞ ¼ r2

p

Pp
i¼1 maxð0; 1

r � ðKwwÞiÞ
2. The objec-

tive in (5) can be rewritten by combining f� and g�:

max
ww

DðwwÞ ¼ max
ww
�f�ð�KwwÞ � g�ðwwÞ: ð8Þ

This is exactly the same as the left-hand side of (7).

Accordingly, we can define the upper bound of (5) by the

right hand side of (7):

min
dd
P ðddÞ ¼ min

dd
fðddÞ þ gðddTKÞ; ð9Þ

where g and f are the Fenchel conjugates of g� and f�,

respectively, which is given by the following lemma.

Lemma 3. The Fenchel conjugate of

f�ð�KwwÞ ¼
Xp
i¼1

r2

p
max 0;

1

r
� ðKwwÞi

� �2

is

fðddÞ ¼
Xp
i¼1

p

4r2
d2
i �

1

r
di þ Idi�0ðdiÞ

� �
:

The Fenchel conjugate of g�ðwwÞ ¼ Ikwwk1�1ðwwÞ is gðddTKÞ ¼
kddTKk1.

Proof. Let x ¼ �Kww. According to Definition 1, we have

fðddÞ ¼ max
xx
hdd; xxi � f�ðxxÞ

¼
Xp
i¼1

max
xi

dixi �
r2

p
max 0;

1

r
þ xi

� �2

:

Let hðdiÞ ¼ maxxidixi � r2

p maxð0; 1
r þ xiÞ

2, thus fðddÞ ¼Pp
i¼1 hðdiÞ.
If di < 0, letting xi ! �1, we have

hðdiÞ ¼ dixi �
r2

p
max 0;

1

r
þ xi

� �2

¼ dixi !1: ð10Þ

If di > 0, we, respectively, discuss the following two

cases: 1) If ð1r þ xiÞ � 0, then hðdiÞ ¼ maxxi��1
r
dixi �

r2

p ð1r þ xiÞ2 ¼ maxxi��1
r
� r2

p ðxi þ 1
r �

p
2r2 diÞ2 þ p

4r2 d
2
i � 1

r di,

which implies that hðdiÞ � p
4r2 d

2
i � 1

r di. The equality holds

when xi þ 1
r �

p
2r2 di ¼ 0. 2) If ð1r þ xiÞ � 0, then

hðdiÞ ¼ maxxi<�1
r
dixi:

the maximum of dixi is obtained when xi ¼ � 1
r , thus

hðdiÞ < � 1
r di �

p
4r2 d

2
i � 1

r di.
To sum up, we get hðdiÞ ¼ p

4r2 d
2
i � 1

r di when di � 0,
otherwise hðdiÞ ¼ 1.

Therefore, we have

fðddÞ ¼
Xp
i¼1

p

4r2
d2
i �

1

r
di þ Idi�0ðdiÞ

� �
:

Next, we prove that the Fenchel conjugate of g�ðwwÞ is

gðddTKÞ ¼ kddTKk1gðddTKÞ ¼ max
ww
hddTK;wwi � g�ðwwÞ

¼ max
kwwk1�1

hddTK;wwi ¼ max
i
jðddTKÞij ¼ kddTKk1:

tu

Therefore, the upper bound function can be rewritten as:

min
dd
P ðddÞ ¼ min

dd
fðddÞ þ gðddTKÞ

¼ min
dd�00

p

4r2
kddk2

2 �
1

r
kddk1 þ kddTKk1:

ð11Þ

Next, we describe the construction of ddt. At the beginning
of each iteration, one is given wwt from previous iteration. We
define ddt by:

ddt ¼ rf�ð�KwtÞ ¼
@f�ð�KwÞ
@ðKwÞ jw¼wt ; ð12Þ

where the ith coordinate of ddt is defined by:

dd
ðiÞ
t ¼

2r2

p

1

r
� ðKwwtÞi

� �
if

1

r
� ðKwwtÞi � 0

0 otherwise:

8<
:

We use this definition of ddt because it satisfies the equality
condition of the inequality (6) in Lemma 1, and, thus, we can
use it to derive the early stopping criterion in the next section.

5.4 Checking the Early Stopping Criterion

The early stopping criterion is satisfied when the gap
between the primal form and the dual does not exceed the
desired optimization tolerance � in iteration t:

P ðddtÞ �DðwwtÞ � �: ð13Þ

Now, we show how to compute P ðddtÞ �DðwwtÞ. In each
iteration, we update the weights by an update rule (see
Section 5.6) which ensures that kwwtk1 � 1 for all t (Line 5).
Therefore, we have g�ðwwtÞ ¼ 0 for all t, and DðwwtÞ ¼
�f�ð�KwwtÞ. With (11), we have

P ðddtÞ �DðwwtÞ ¼ kddtTKk1 þ fðddtÞ þ f�ð�KwwtÞ: ð14Þ

It is easy to verify that f�ð�KwwtÞ is differentiable. Hence,
with (12) and Lemma 1, the following equality holds:

fðddtÞ þ f�ð�KwwtÞ ¼ hddt;�Kwwti: ð15Þ

Combining (15) and (14), we get

P ðddtÞ �DðwwtÞ ¼ kddtTKk1 þ hddt;�Kwwti: ð16Þ

Finally, the early stopping criterion is

kddtTKk1 þ hddt;�Kwwti � �: ð17Þ

5.5 Greedily Choosing a Feature

At iteration t, the algorithm greedily selects a feature jt, which
has the largest absolute value of ðddTt KÞj. This step is similar to
the step of selecting a weak learner (i.e., by finding a single
feature with the best edge), which is a common building block

LAI ET AL.: SPARSE LEARNING-TO-RANK VIA AN EFFICIENT PRIMAL-DUAL ALGORITHM 1225



in many boosting algorithms (i.e., AdaBoost [25]).

5.6 Updating the Weights of the Ranking Model

Given the selected feature from the previous section, we
set wwtþ1 to be the convex combination of wwt and the
selected feature

wwtþ1 ¼ ð1� �tÞwwt þ �tsign
��
dTt K

�
jt

�
eejt : ð18Þ

The coefficient of the combination, denoted by �t, is
calculated so as to maximize the increase of the dual objective

�t ¼ argmax
0���1

Dðwwtþ1Þ

¼ argmax
0���1

D
�
ð1� �Þwwt þ �sign

��
ddTt K

�
jt

�
eejt
�
:

ð19Þ

Let Ki be the ith row in K. Denoting

bbt ¼ sign
��
ddTt K

�
jt

�
eejt � wwt and aa

ðiÞ
t ¼

1

r
�Kiwwt:

Equation (19) can be simplified as the following quadratic
equation:

�t ¼ argmin
0���1

Xp
i¼1

max
�
0; aa

ðiÞ
t �Kibbt�

�2
: ð20Þ

Equation (20) only contains a single variable � and can be
solved as follows: For all i, maxð0; aaðiÞt �Kibbt�Þ2 ¼ 0 if
aa
ðiÞ
t �Kibb

�
t � 0, otherwise

max
�
0; aa

ðiÞ
t �Kibbt�

�2 ¼
�
aa
ðiÞ
t �Kibbt�

�2
:

For all Kibbt 6¼ 0, we denote cc
ðiÞ
t ¼

aa
ðiÞ
t

Kibbt
.Let

L ¼ f0; 1g [
�
cc
ðiÞ
t jcc

ðiÞ
t 2 ½0; 1�

�
:

We sort the elements in L in a decreasing order: 1 ¼ l1 �
l2 � � � � � ln ¼ 0, where lk 2 Lð1 � k � nÞ. In every interval
½lkþ1; lk�, the values of maxð0; aaðiÞt �Kibbt�Þ2 (i ¼ 1to p) are
known in advance, and, thus, the objective in (20) becomes a
simple quadratic function of � that has a closed-form
solution. Hence, we can find n� 1 candidate values of �t by
solving the n� 1 subproblems in (21), respectively, and,
thus, obtain the final �t by selecting the one that minimizesPp

i¼1 maxð0; aa
ðiÞ
t �Kibbt�Þ2

�
ðk;kþ1Þ
t ¼ argmin

lkþ1���lk

Xp
i¼1

max
�
0; aa

ðiÞ
t �Kibbt�

�2
: ð21Þ

To ensure that wwt satisfies the constraint of ‘1-ball,
wwt � 1, we initialize the weight vector ww1 to be the zero
vector and restrict the range of coefficient �t to be in ½0; 1�. It
is easy to verify that kww1k1 � 1, and for any t, kwwtþ1k1 ¼
kð1� �tÞwwt þ �teeik � ð1� �tÞkwwtk þ �tkeeik � 1.

We note that, in FenchelRank, we can also use

�t ¼ max min 0;
hddt;Kbbti
kKbbtk2

2

 !
; 1

 !

to find an appropriate step size in each iteration. This is
similar to the calculation rule used in [1]. The analysis in [1]
shows that this kind of calculation rule of �t leads to a

sufficient increase of the objective. The calculation rule used
in FenchelRank obtains a �t by directly maximizing the
increase of the objective, which results in a larger increase of
the objective than the rule in [1].

6 THEORETICAL ANALYSIS

In this section, we analyze the convergence rate of
FenchelRank and show the correctness of the early stopping
criterion. Please remind that, in each iteration t, the algorithm
maintains a primal-dual pair: the dual form DðwwtÞ given in
(5) and the primal formP ðddtÞ given in (11). Supposeww� be the
optimal solution for DðwwÞ, that is ww� ¼ argmaxwwDðwwÞ. We
define �t ¼ Dðww�Þ �DðwwtÞ as the gap between the optimal
solution and the solution obtained at iteration t.

6.1 Convergence Rate

The following theorem establishes the upper bound of
required iterations to obtain an �-accurate solution.

Theorem 1. The FenchelRank algorithm terminates after at most
16r2=�� 1 iterations and returns an �-accurate solution,
where r2 � 0:125.

Our proof is based on the properties of Fenchel Duality
and strongly convex functions.

Before presenting the proof, we first introduce some
concepts and lemmas, which will be used in the analysis.

A function f is convex if for all x; y 2 domðfÞ, and
0 � � � 1, fð�xþ ð1� �ÞyÞ � �fðxÞ þ ð1� �ÞfðyÞ. A vector �
is a subgradient of a function f at x if:

8y; h�; y� xi � fðyÞ � fðxÞ: ð22Þ

We define the set of subgradients of f at x as @fðxÞ. Note
that if f is convex and differentiable at x, then @fðxÞ consists
of only a single vector, the gradient of f at x, denoted by
rfðxÞ.
Definition 2. A closed and convex function f is �-strongly

convex w.r.t. a norm k � k if 8x; y and 8g 2 @fðxÞ have

fðyÞ � fðxÞ � hy� x; gi � �
2
kx� yk2: ð23Þ

For instance, 1
2 kddk

2
2 is 1-strongly convex w.r.t. norm k � k2.

The following two lemmas will be used in the proof of
Theorem 1. We refer the readers to [1] for the proofs of these
two lemmas.

Lemma 4 ([1], Lemma 18). Let f be a closed and �-strong convex
over S with respect to a norm k � k�. Let f� be the Fenchel
conjugate of f ; then f� is differentiable and its gradient satisfies
rf�ðwÞ ¼ argmaxd2Shw; di � fðdÞ . For all x; y we have

f�ðxþ yÞ � f�ðxÞ � hrf�ðxÞ; yi þ 1

2�
kyk2: ð24Þ

Lemma 5 ([1], Lemma 20). Let 1 � �1 � �2 � . . . be a sequence
such that, for all t � 1, we have �t � �tþ1 � r�2

t for some
constant r 2 ð0; 0:5Þ. Then, for all t we have �t � 1

rðtþ1Þ .

Now, we turn to the proof of Theorem 1. Some proof
techniques are similar to those of [1].

1226 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013



Proof. since fðddÞ ¼ p
4r2 kddk2

2 � 1
r

P
i ddi is p

2r2 -strongly convex

with the l2 norm kddk2
2, using Lemma 4, we have

f�ðxxþ yyÞ � f�ðxxÞ � hrf�ðxxÞ; yyi þ r
2

p
kyyk2

2; ð25Þ

for all yy; xx 2 domðf�Þ. Since

wwtþ1 ¼ ð1� �tÞwwt þ �tsignððddTt KÞjtÞee
jt ;

we can rewrite it into

wwtþ1 ¼ wwt þ �tðsignððddTt KÞjtÞee
jt � wwtÞ:

For ease of presentation, we denote

bbt ¼ ðsignððddTt KÞjtÞee
jt � wwt;

thus wwtþ1 ¼ wwt þ �tbbt.
Letting xx ¼ �Kwwt; yy ¼ ��tKbbt, we have xxþ yy ¼ �

Kwwtþ1. In terms of (12), we have rf�ðxxÞ ¼ rf�ð �
KwwtÞ ¼ ddt. Substituting xx; yy;rf�ðxxÞ into (25), we obtain

f�ð�Kwwt � �tKbbtÞ � f�ð�KwwtÞ

� h��tKbbt; ddti þ
r2

p
k�tKbbtk2

2:
ð26Þ

According to the definition �t ¼ Dðww�Þ �DðwwtÞ, we
have

�t � �tþ1 ¼ Dðwwtþ1Þ �DðwwtÞ
¼ f�ð�KwwtÞ � f�ð�Kwwtþ1Þ:

ð27Þ

Combining (26) and (27), we get

�t � �tþ1 � h�tKbbt; ddti �
r2

p
k�tKbbtk2

2: ð28Þ

According to Theorem 2 (see below), we have

�t � kddTt Kk1 þ hddt;�Kwwti ¼ hddt;Kbbti: ð29Þ

Since each attribute of Xi;j is scaled to the range ½0; 1�, we

can verify Ki;j 2 ½�1; 1�. We have

kKbbtk2
2 ¼ kKððsignððddTt KÞjtÞee

jt � wwtÞk2
2

� 2kKsignððddTt KÞjtÞee
jtk2

2 þ 2kKwwtk2
2

¼ 2kKeejtk2
2 þ 2kKwwtk2

2

¼ 2
Xp
i¼1

K2
i;jt
þ

Xd
j¼1

Ki;jww
j
t

 !2
0
@

1
A

� 2
Xp
i¼1

K2
i;jt
þ

Xd
j¼1

jwwjt j
 !2

0
@

1
A

� 2
Xp
i¼1

ð1þ 1Þ ¼ 4p;

ð30Þ

where the first inequality follows from the Cauchy-

Schwarz inequality, the second inequality follows from

Ki;j 2 ½�1; 1�,and the last inequality utilizes the con-

straint jwwj1 � 1.
Substituting (29) and (30) into (28), we have

�t � �tþ1 � �t�t �
r2

p
�2
t �4p ¼ �t�t � 4r2�2

t : ð31Þ

In terms of (27), to maximize the increase Dðwwtþ1Þ �
DðwwtÞ, we need to maximize the right side of (31). We
can verify that:

�t�t � 4r2�2
t ¼ 4r2 �t

8r2

	 
2
� �t �

�t
8r2

	 
2

� 4r2 �t
8r2

	 
2
¼ �2t

16r2
:

ð32Þ

The last equality holds if we set �t ¼ �t=8r2. Thus, we

have

�t � �tþ1 � �2t =16r2: ð33Þ

Equation (33) implies FenchelRank guarantees that
the dual objective DðwwÞ, at least, increases by �2t =16r2 at
each iteration.

Because Dðww1Þ ¼ �f�ð0Þ ¼ � r2

p

P
ði;jÞ2P

1
r2 ¼ �1 and

Dðww�Þ ¼ � r2

p

P
ði;jÞ2P maxð0; 1

r � yijww�T ðxi � xjÞÞ
2 � 0, we

have �1 ¼ Dðww�Þ �Dðww1Þ � 1. We also have �t � �tþ1 �
�2
t =16r2 for all t according to (33), that is 1 � �1 � �2 �
� � � � �t. Using Lemma 5, we get �t � 16r2

tþ1 . In other words,
if the iteration t � 16r2

� � 1, then Algorithm 1 can
guarantee the obtainment of an �-accurate solution. This
concludes our proof. tu

6.2 Correctness of the Early Stopping Criterion

In practice, the convergence rate of the FenchelRank
algorithm is pessimistic. The algorithm usually needs a

much less iterations to converge. To improve the efficiency
in practice, we define an early stopping criterion (Line 2 in

Algorithm 1).
Now we show that, if the early stopping criterion is

satisfied at iteration t, the solution wwt is guaranteed to be an

�-accurate solution.

Theorem 2. For all t, we have �t � kddTt Kk1 þ hddt;�Kwwti.

The proof is similar to [1, Lemma 11].
As a consequence of Theorem 2, if kddTt Kk1 þ hddt; �

Kwwti � �, then we have �t � �, and, thus, the algorithm

obtains an �-accurate solution at iteration t. This proves the
correctness of the early stopping criterion.

7 DISCUSSIONS

The generic algorithmic framework of FenchelRank is
similar to that of the algorithms in [1]. However, the

algorithms in [1] are problem dependent, i.e., they depend
on their loss functions. The generic algorithmic framework

in [1] is not directly applicable in other problems. There are
two major differences between FenchelRank and the

algorithms in [1]: 1) In this paper, our pairwise ranking
loss function used in the sparse learning-to-rank problem

(4) is different from those in [1]. It is nontrivial to modify the
generic algorithmic framework in [1] to work with a
particular loss function, which includes deriving the

Fenchel dual form of the loss function, designing how to
find an appropriate step size, and deriving the results of

convergence rate. 2) In each iteration, FenchelRank uses a

LAI ET AL.: SPARSE LEARNING-TO-RANK VIA AN EFFICIENT PRIMAL-DUAL ALGORITHM 1227



different rule to calculate the step size for weights updating.

This rule maximizes the increase of the dual objective, and it

can result in a much faster convergence of the objective than

the rule similar to [1].

8 EXPERIMENTS

In this section, we evaluate the ranking performance of our

proposed method on several publicly available benchmark

data sets. The results show that: 1) The proposed

FenchelRank, with the sparse-inducing ‘1 constraint, has

superior ranking accuracies gain compared to RankSVM-

Primal, whose objective shares the same loss function with

ours but uses the ‘2-norm as the regularization term.

2) Compared to other sparse learning-to-rank algorithms,

FenchelRank obtains sparser ranking models and has

superior performance on both accuracies and efficiency.

3) Compared to other state-of-the-art algorithms for rank-

ing, FenchelRank also achieves competitive performance on

ranking accuracies.

8.1 Data Sets

We conduct our experiments on the LETOR 3.0 and LETOR

4.0 data collections [20], which are publicly available

benchmarks for learning-to-rank. LETOR 3.0 contains seven

data sets for four search tasks of document retrieval: topic

distillation (TD2003, TD2004), home page finding (HP2003,

HP2004), named page finding (NP2003, NP2004), and

medical document retrieval (OHSUMED). LETOR 4.0

contains two large-scale data sets, MQ2007 and MQ2008.

In our experiments, we test the performances of ranking

algorithms on four small data sets, TD2004, HP2004,

NP2004, OHSUMED, and one large-scale data set,

MQ2008. In each data set, the features are extracted from

the query-document pairs, covering a wide range including

low-level features (i.e., TF, IDF) and high-level features

(i.e., BM25, language models).
Each of the five data sets is divided into five folds. There

is a training set, a validation set, and a test set in each fold,

which can be used to conduct cross validation.

8.2 Evaluation Measures

To evaluate the performance of ranking models, we use

MAP [21] and NDCG [23] as the evaluation measures.
MAP is a standard evaluation measure widely used in

information retrieval systems. It works for cases with binary

relevance judgments: relevant and irrelevant. MAP is the

mean of average precisions over a set of queries. Precision

at position jðP@jÞ [21] represents the proportion of relevant

documents within the top j retrieved documents, which can

be calculated by:

P ðjÞ ¼ NposðjÞ
j

; ð8:1Þ

where NposðjÞ denotes the number of relevant documents

within the top j documents. Given a query qi, the average

precision of qi is defined as the average of all P@jðj ¼
1; 2; . . . ; nÞ and can be calculated by the following equation:

AvgPi ¼
XM
j¼1

P ðjÞ � posðjÞ
Npos

; ð8:2Þ

where j is the position, M is the number of retrieved
documents and posðjÞ is an indicator function. If the
document at position j is relevant, then posðjÞ is 1, or else
posðjÞ is 0. Npos represents the total number of relevant
documents for query qi. P ðjÞ is the precision at the given
position j.

NDCG is another popular evaluation criterion for
comparing ranking performance in information retrieval.
Unlike MAP, NDCG can deal with the cases which have
more than two levels of relevance judgments. Given a
query qi, DCG score at position m is defined as:

DCG@m ¼
Xm
j¼1

2rðjÞ � 1

logð1þ jÞ ; ð8:3Þ

where rðjÞ is the grade of the jth document. Then, NDCG
score at position m in the ranking list of documents can be
calculated by the equation as follows:

NDCG@m ¼ 1

Zm
DCG@m; ð8:4Þ

where Zm is the maximum value of DCG@m, which means
that the value of NDCG ranges from 0 to 1.

8.3 Experiment Protocols

To evaluate the performance of our proposed method, we
conduct three experiments.

The aim of the first experiment is to empirically justify
whether the sparse models can help to improve ranking
performance. For fair comparison, we compare the ranking
accuracies and sparsity ratios of FenchelRank versus
RankSVM-Primal. RankSVM-Primal shares the same loss
function with FenchelRank but uses ‘2 norm as the
regularization term. Thus, RankSVM-Primal learns a dense
model while FenchelRank learns a sparse one. This
comparison shows us how the sparse models can contribute
to improve the ranking accuracies.

In the second experiment, we compare the ranking
accuracies, sparsity ratios and training time of FenchelRank
versus other methods for sparse ranking, i.e., RSRank [10], a
variant of RSRank based on truncated gradient descent
method and a feature selection method based on RankSVM-
Primal.

In the last experiment, we compare the ranking accuracies
of FenchelRank versus other state-of-the-art learning-to-
rank methods. Since our method learns linear predictors, we
choose three linear ranking methods and one tree-based
nonlinear ranking method for comparison.

In all of the experiments, the parameter r in our method
is chosen in the set f1; 2; 4; 8; 16; 32; 64; 128; 256g by cross
validation. Since the top 10 documents ranked by a ranking
model are viewed as the most important ones in web search,
we choose the parameters, which achieve the best value of
NDCG@10 on the validation set as test parameters on the
test data. In all of our experiments, we fix the maximum
iteration T ¼ 1; 000 and desired optimization accuracy � ¼
0:001 on all the data sets. If the algorithm meets the desired
accuracy � or it reaches the maximum iteration T , then it
stops and returns the learned ranking model.

1228 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013



8.4 Comparing with RankSVM-Primal

8.4.1 Results on Ranking Accuracies

In our first experiment, we compare the performance of
FenchelRank with RankSVM-Primal. RankSVM-Primal is
one of the state-of-the-art learning-to-rank algorithms. Both
algorithms use the same pairwise loss function (the second
term in (5)). The experiment results of RankSVM-Primal on
the four data sets in LETOR 3.0 are cited from the LETOR
website,3 while the results on MQ2008 are obtained by
directly running the open source code of RankSVM-Primal.4

Figs. 2, 3, 4, and Table 2 show the ranking accuracies of
FenchelRank versus RankSVM-Primal on the five data sets
with respect to NDCG and MAP. We can observe that the
FenchelRank algorithm, based on our proposed objective
function with the sparse-inducing ‘1 norm, performs
significantly better than RankSVM-Primal. Here are some
statistics. On TD2004, FenchelRank performs 0.3202 at
NDCG@10, a 9.9 percent increase compared with
RankSVM-Primal. On HP2004, the value of NDCG@10
using the FenchelRank algorithm is 0.8274, a 7 percent
increase compared with RankSVM-Primal. On OH-
SUMED, FenchelRank performs 0.4637 at NDCG@10,
compared to 0.4504 of RankSVM-Primal, which indicates
a 3 percent increase.

In addition, we provide the significance test (t-test) results
of FenchelRank versus RankSVM-Primal. As can be seen in
Table 3, the improvement of FenchelRank over RankSVM-
primal is statistically significant (i.e., with a p-value less than
0.05) on OHSUMED, HP2004, and TD2004. This validates
that learning a sparse ranking model can help to make
statistically significant improvement in ranking.

Since the only difference between the objectives of

FenchelRank and RankSVM-Primal is the regularization

LAI ET AL.: SPARSE LEARNING-TO-RANK VIA AN EFFICIENT PRIMAL-DUAL ALGORITHM 1229

3. http://research.microsoft.com/en-us/um/beijing/projects/letor/
letor3baseline.aspx.

4. http://olivier.chapelle.cc/primal/.

Fig. 2. Ranking accuracies of FenchelRank and RankSVM-Primal on

TD2004 (top) and NP2004 (bottom).

Fig. 3. Ranking accuracies of FenchelRank and RankSVM-Primal on

OHSUMED (top) and MQ2008 (bottom).

Fig. 4. Ranking accuracies of FenchelRank and RankSVM-Primal on

HP2004.



term, the experimental results can empirically justify that
sparsity constraints (i.e., ‘1-norm) on learning a ranking
model can help to significantly improve the ranking
accuracy. The idea of learning a sparse ranking model can
also be applied in other learning-to-rank methods and have
the potential to boost their ranking performance.

8.4.2 Results on Sparsity Ratios

To investigate the differences between the learned models
of FenchelRank and RankSVM-Primal, we report their
sparsity ratios. We define the sparsity ratio on a ranking
model w as

jwj0
m , where jwj0 represents the number of

nonzero coefficients in w and m represents the dimension of
w. For each data set, we first calculate the sparsity ratio on
the ranking model obtained in each of the five folds,
respectively. Then, we average the five sparsity ratios as the
final sparsity ratio. Table 4 shows the sparsity ratios on the
five data sets obtained by FenchelRank and RankSVM-
Primal. The ranking models obtained by FenchelRank are
significantly sparser than those of RankSVM-Primal. This
validates that the FenchelRank algorithm tends to obtain
sparse ranking models. Interestingly, on NP2004, HP2004,
and TD2004 (all of their documents are from the .GOV
corpus [20]), the indexes of the most frequent features
appearing in the final models obtained by FenchelRank are
22, 23, 27, 40, 46, 52, and 61, where 22, 23, and 61 are BM25
features, 27 and 40 are features of language models, 46 is
hyper-link feature, and 52 is HostRank feature [20]. This is
desirable because the features like BM25 and language
models are known to be effective for document retrieval.
Moreover, most of these frequent features have high values
of NDCG@10 in Fig. 1.

8.5 Comparing with Other Methods for Sparse
Ranking

8.5.1 Comparing with RSRank and Its Variant

To compare the ranking performance of the proposed
FenchelRank algorithm with other methods for sparse

ranking, we carefully implement the RSRank algorithm
[10]. The RSRank algorithm optimizes the following
objective ([10, (15)], with our notations: ww0 ¼ �� and C ¼ 1

g ):

min
ww0
kw0k1 þ C

X
ðk;i;jÞ2P

W ðyi; yj; ww0Þ ðww0T ðXk;i �Xk;jÞÞ; ð8:5Þ

where Wðyi; yj; ww0Þ is a weight function that assigns
different importance to different document pairs, and
 ðww0T ðXk;i �Xk;jÞÞ is a modified Huber loss, which plays
a similar role as the squared hinge loss in FenchelRank. In
RSRank, the truncated gradient descent algorithm is
applied to solve the ‘1 regularized optimization problem
in (8.5).

The loss function of RSRank (the second part in (8.5)) is
quite different from that of FenchelRank. For fair compar-
ison, we implement TGRank, a variant of RSRank. TGRank
solves the optimization problem in (2) using truncated
gradient descent. Because the objective in (2) is equivalent
to the objective of FenchelRank in (3) (see Section 4), the
main differences between TGRank and FenchelRank are in
their learning algorithms.

Table 5 shows the ranking accuracies of FenchelRank,
RSRank,5 and TGRank on four data sets. The results show
that FenchelRank has superior ranking accuracies com-
pared to the other two algorithms for sparse ranking.

In addition, we compare the sparsity ratios of the
models learned by FenchelRank, RSRank, and TGRank,
respectively. As can be seen in Table 4, FenchelRank

1230 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

5. Note that we could not reproduce the results on OHSUMED reported
in [10], possibly due to the algorithm chooses the initial model from a set of
random initialized models by cross validation.

TABLE 2
MAP on the Five Data Sets from the LETOR Distribution

TABLE 3
The T-Test Results of FenchelRank versus RankSVM-Primal

TABLE 4
The Sparsity Ratios on the LETOR Distribution

(Denote RankSVM-Primal as RSVM-P for Short)

TABLE 5
Ranking Accuracies of FenchelRank, RSRank,

and TGRank on the LETOR Distribution



obtains the lowest sparsity ratios on the four data sets. This
indicates that FenchelRank tends to obtain sparser ranking
models than other sparse learning-to-rank algorithms,
which may be the underlying reason that FenchelRank
outperforms the baseline algorithms.

To investigate the efficiency of FenchelRank, we also
provide the results of training time and the corresponding
sparsity ratios of FenchelRank over TGrank on two data
sets. The training time depends on the values of the
regularization parameter (i.e., C in TGRank or r in
FenchelRank). To make fair comparison, we take the
following comparing procedure: On each fold, we use
TGRank to learn a ranking model wwTG by fixing
the regularization parameter C ¼ 0:1 and the maximum
number of iterations T ¼ 1;000. Let ww? be the best model
(i.e., the Bayes error is minimized) for the objective of
TGRank (2). As explained in Section 4 (see the detailed
explanation in [32, Section 1.2]), for any C in the objective of
TGRank (2), there exists a corresponding r ¼ Cjww?j1 such
that the objective in (2) is equivalent to the objective of
FenchelRank (3). Since ww? is unknown, we approximately
set r ¼ CjwwTGj1 and set the maximum number of iterations
T ¼ 1;000 in FenchelRank, and, thus, learn a ranking model
wwFenchel. Then, we compare the training time of these two
algorithms under this parameter setting. Table 6 shows the
results of training time and the corresponding sparsity
ratios of ranking models. The results show that: 1) The
training time of FenchelRank is less than that of TGRank.
This is due to the fast convergence rate and the early
stopping criterion in FenchelRank. 2) The corresponding
sparsity ratios of FenchelRank are also significantly smaller
than those of TGRank. This indicates that FenchelRank
tends to obtain sparser ranking models.

8.5.2 Comparing with a Feature Selection Method

We also implement a simple feature selection algorithm
based on RankSVM-Primal, and compare its ranking
performance with FenchelRank. The feature selection
algorithm belongs to the filter methods and it adopts a
two-stage strategy: 1) In the first stage, we sort the
documents in a training set, respectively, using each of
the given features. The features with high NDCG@10 values
are more important for ranking than those with low
NDCG@10 values. We construct a new training set by

selecting the top k features with high NDCG@10 values and
removing other features from the original training set. 2) In
the second stage, we use RankSVM-Primal to learn a
ranking model on the newly constructed training set
containing only k features.

The ranking accuracies on OHSUMED and HP2004 are
shown in Table 7. Two observations can be made from the
results: 1) The simple feature selection algorithm based on
RankSVM-Primal performs better than the original
RankSVM-Primal algorithm. This validates our intuition
that a small number of strong features can dominate the
whole ranking performance and learning a sparse model
with only a few nonzero coefficients is desired for ranking.
2) The proposed FenchelRank algorithm still shows sig-
nificant ranking performance gain compared to the feature
selection algorithm. This is because FenchelRank is an ‘1

optimization algorithm, which minimizes the training error
while simultaneously conducts model selection.

8.6 Comparing with Other State-of-the-Art Methods

In the last experiment, we compare FenchelRank with other
state-of-the-art learning-ro-rank algorithms. Since our pro-
posed method learns a linear ranking model, we select
RankSVM-struct, AdaRank-NDCG, and ListNet as base-
lines in our experiments because they are state-of-the-art
algorithms that also learn linear models. We also select
RankBoost as a representative of tree-based algorithm that
learns nonlinear ranking models.

The results on five data sets with respect to NDCG and
MAP are shown in Table 8. Two observations can be made
from the results: 1) While the accuracies of the baseline
algorithms vary from one data set to another, the proposed
FenchelRank performs very competitively. On OHSUMED,
HP2004, and NP2004, FenchelRank performs the best. On
HP2004, its value of MAP is 0.7447, compared to 0.6914 of
the second best algorithm, which indicates a 7.7 percent
increase; its value of NDCG@10 also indicates a 2.7 percent
increase compared to the second best algorithm. On
OHSUMED, FenchelRank’s value of NDCG@10 is 0.4637,
compared to 0.4523 of the second best algorithm, which
indicates a 2.4 percent increase. On TD2004 and MQ2008,
FenchelRank is in the second place among all of the five
algorithms. 2) Among the five algorithms in comparison,

LAI ET AL.: SPARSE LEARNING-TO-RANK VIA AN EFFICIENT PRIMAL-DUAL ALGORITHM 1231

TABLE 6
Training Time (Seconds) of FenchelRank
versus TGRank on HP2004 and NP2004

TABLE 7
Ranking Accuracies on OHSUMED and HP2004



the proposed FenchelRank algorithm appears to be the most
stable algorithm on all of the data sets. For instance, ListNet
archives a good performance on NP2004, while it performs

poorly on OHSUMED. AdaRank-NDCG performs well on
TD2004 and HP2004, but yields a poor performance on
OHSUMED and NP2004. In summary, compared with other
state-of-the-art algorithms, the proposed FenchelRank algo-
rithm achieves competitive and stable performance on

ranking. We further provide the significant tests (t-test)
results of FenchelRank versus other algorithms, respec-
tively. The results in Table 9 indicate that FenchelRank
makes statistically significant improvement (i.e., p-value
less than 0.05) over other state-of-the-art algorithms on

OHSUMED and HP2004.

9 CONCLUSION

Sparse learning-to-rank is a relatively new research topic.
The difficulty lies in the sparse-inducing norm, i.e., ‘1 norm,
which is usually nonsmooth and hard to optimize. In this
paper, we address this challenge and propose a convergency-
provable primal-dual algorithm for sparse learning-to-rank.

We prove that, after T iterations, our proposed algorithm can
guarantee the obtainment of a solution with a desired
tolerant optimization error of � ¼ Oð1TÞ. This convergence
rate is better than that of the popular subgradient descent
algorithm. Furthermore, we empirically show in our experi-
ments that the proposed algorithm, with the sparse-inducing
‘1 norm, can outperform the algorithm using the same loss
with the ‘2 norm and can achieve state-of-the-art perfor-
mance on several benchmark data sets.

ACKNOWLEDGMENTS

This work was funded in part by National Science Founda-
tion of China (grant No. 61003045, 61003241, and 61033010),
Natural Science Foundation of Guangdong Province, China
(grant No. 10451027501005667), Educational Commission of
Guangdong Province, China, and the Fundamental Research
Funds for the Central Universities. The authors thank
Dr. Zengya Sun for his help to implement RSRank. Yan
Pan is the corresponding author of this paper.

REFERENCES

[1] S.S. Shwartz and Y. Singer, “On the Equivalence of Weak
Learnability and Linear Separability: New Relaxations and
Efficient Boosting Algorithms,” Machine Learning J., vol. 80, no. 2,
pp. 141-163, 2010.

[2] J. Borwein and A. Lewis, Convex Analysis and Nonlinear Optimiza-
tion. Springer, 2006.

[3] C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Halmilton, and G. Hullender, “Learning to Rank Using
Gradient Descent,” Proc. Int’l Conf. Machine Learning
(ICML ’05), pp. 89-96, 2005.

[4] Z. Cao, T. Qin, T.Y. Liu, M.F. Tsai, and H. Li, “Learning to Rank:
From Pairwise Approach to Listwise Approach,” Proc. Int’l Conf.
Machine Learning (ICML ’07), pp. 129-136, 2007.

[5] Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer, “An Efficient
Boosting Algorithm for Combining Preferences,” J. Machine
Learning Research, vol. 4, pp. 933-969, 2003.

[6] T. Joachims, “Optimizing Search Engines Using Clickthrough
Data,” Proc. ACM Conf. Knowledge Discovery and Data Mining
(KDD ’02), pp. 133-142, 2002.

[7] P. Li, C.J.C. Burges, and Q. Wu, “McRank: Learning to Rank Using
Multiple Classification and Gradient Boosting,” Proc. Neural
Information Processing System (NIPS ’07), pp. 845-852, 2007.

[8] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A Support Vector
Method for Optimizing Average Precision,” Proc. ACM SIGIR
Conf. Research and Development in Information Retrieval (SIGIR ’07),
pp. 271-278, 2007.

[9] M. Taylor, J. Guiver, S. Robertson, and T. Minka, “SoftRank:
Optimising Non-Smooth Rank Metrics,” Proc. Int’l Conf. Web
Search and Data Mining (WSDM ’08), pp. 77-86, 2008.

[10] Z.Y. Sun, T. Qin, J. Wang, and Q. Tao, “Robust Sparse Rank
Learning for Non-Smooth Ranking Measures,” Proc. ACM SIGIR
Conf. Research and Development in Information Retrieval (SIGIR ’09),
pp. 259-266, 2009.

1232 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 6, JUNE 2013

TABLE 8
Ranking Accuracies on the Five

Data Sets from the LETOR Distribution

TABLE 9
p-Value on OHSUMED and HP2004



[11] D.P. Bertsekas, Nonlinear Programming, second ed. Athena
Scientific, 1999.

[12] J. Xu and H. Li, “AdaRank: A Boosting Algorithm for Information
Retrieval,” Proc. ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR ’07), pp. 391-398, 2007.

[13] Y. Cao, J. Xu, T.Y. Liu, H. Li, Y. Huang, and H.W. Hon, “Adapting
Ranking SVM to Document Retrieval,” Proc. ACM SIGIR Conf.
Research and Development in Information Retrieval (SIGIR ’06),
pp. 186-193, 2006.

[14] T. Qin, X.D. Zhang, D.S. Wang, W.Y. Xiong, and H. Li,
“Ranking with Multiple Hyperplanes,” Proc. ACM SIGIR Conf.
Research and Development in Information Retrieval (SIGIR ’07),
pp. 279-286, 2007.

[15] V. Vapnik, S. Golowich, and A.J. Smola, “Support Vector Method
for Function Approximation, Regression Estimation, and Signal
Processing,” Proc. Ann. Conf. Neural Information Processing Systems
(NIPS ’97), pp. 281-287, 1997.

[16] O. Chapelle and S.S. Keerthi, “Efficient Algorithms for Ranking
with SVMs,” Information Retrieval J., vol. 13, no. 3, pp. 201-215,
2010.

[17] J.I. Marden, Analyzing and Modeling Rank Data. Chapman & Hall,
1995.

[18] F. Xia, T.Y. Liu, J. Wang, W. Zhang, and H. Li, “Listwise Approach
to Learning to Rank: Theory and Algorithm,” Proc. Int’l Conf.
Machine Learning (ICML ’08), pp. 1192-1199, 2008.

[19] T. Joachims, “Training Linear SVMs in Linear Time,” Proc. ACM
Conf. Knowledge Discovery and Data Mining (KDD ’06), pp. 217-226,
2006.

[20] T.Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li, “LETOR: Benchmark
Data Set for Research on Learning to Rank for Information
Retrieval,” Proc. ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR ’07), pp. 129-136, 2007.

[21] R.B. Yates and B.R. Neto, Modern Information Retrieval. Addison
Wesley, 1999.

[22] W.R. Hersh, C. Buckley, T.J. Leone, and D.H. Hickam,
“OHSUMED: An Interactive Retrieval Evaluation and New
Large Test Collection for Research,” Proc. ACM SIGIR Conf.
Research and Development in Information Retrieval (SIGIR ’94),
pp. 192-201, 1994.

[23] K. Jarvelin and J. Kekalainen, “Cumulated Gain-Based Evaluation
of IR Techniques,” ACM Trans. Information Systems, vol. 20, no. 4,
pp. 422-446, 2002.

[24] R.M. Rifkin and R.A. Lippert, “Value Regularization and Fenchel
Duality,” J. Machine Learning Research, vol. 8, pp. 441-479, 2007.

[25] Y. Freund and R.E. Schapire, “A Short Introduction to Boosting,”
J. Japanese Soc. for Artificial Intelligence, vol. 14, no. 5, pp. 771-780,
1999.

[26] T. Joachims, “Making Large-Scale SVM Learning Practical,”
Advances in Kernel Methods - Support Vector Learning, B. Scholkopf,
C. Burges, and A. Smola eds., MIT Press, 1999.

[27] G.X. Yuan, K.W. Chang, C.J. Hsieh, and C.J. Lin, “A Comparison
of Optimization Methods and Software for Large-Scale
‘1-Regularized Linear Classification,” J. Machine Learning Research,
vol. 11, no. 1, pp. 3183-3234, 2010.

[28] P. Tseng and S. Yun, “A Coordinate Gradient Descent Method for
Nonsmooth Separable Minimization,” Math. Programming,
vol. 117, nos. 1/2, pp. 387-423, 2009.

[29] J. Duchi, S.S. Shwartz, Y. Singer, and T. Chandra, “Efficient
Projections onto the ‘1-Ball for Learning in High Dimensions,”
Proc. Int’l Conf. Machine Learning (ICML ’08), pp. 272-279, 2008.

[30] J. Kim, Y. Kim, and Y. Kim, “A Gradient-Based Optimization
Algorithm for LASSO,” J. Computational and Graphical Statistics,
vol. 17, no. 4, pp. 994-1009, 2008.

[31] J. Liu, J. Chen, and J.P. Ye, “Large-Scale Sparse Logistic
Regression,” Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery
and Data Mining (KDD ’09), pp. 547-556, 2009.

[32] D.L. Donoho and Y. Tsaig, “Fast Solution of ‘1 Minimization
Problems when the Solution May be Sparse,” IEEE Trans.
Information Theory, vol. 54, no. 11, pp. 4789-4812, Nov. 2008.

[33] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Optimization
with Sparsity-Inducing Penalties,” Technical Report HAL
00613125-v2, HAL, 2011.

[34] W. Chen, T.Y. Liu, Y.Y. Lan, Z.M. Ma, and H. Li, “Ranking
Measures and Loss Functions in Learning to Rank,” Proc. Advances
in Neural Information Processing Systems (NIPS ’09), pp. 315-323,
2009.

Hanjiang Lai received the BS degree from Sun
Yat-sen University in 2009, and is currently
working toward the PhD degree in the School of
Information Science and Technology, Sun Yat-
sen University. His main research interests
include machine learning algorithms and learn-
ing to rank.

Yan Pan received the BS and PhD degrees in
computer science from Sun Yat-sen University
in 2002 and 2007, respectively. He is currently
an assistant professor at Sun Yat-sen Univer-
sity. His research interests include machine
learning algorithms, learning to rank, and com-
puter vision.

Cong Liu received the BS degree in microelec-
tronics from South China University of Technol-
ogy in 2002, the MS degree in computer
software and theory from Sun Yat-sen Univer-
sity, Guangzhou, China, in 2005, and the PhD
degree in the Department of Computer Science
and Engineering, Florida Atlantic University. He
is currently an assistant professor at Sun Yat-
sen University. His main research interests
include routing in mobile ad hoc networks and
delay-tolerant networks.

Liang Lin received the BS and PhD degrees
from Beijing Institute of Technology in 1999 and
2008, respectively. He studied in the Depart-
ment of Statistics at the University of California,
Los Angeles (UCLA), as a visiting scholar during
2006-2007. He was a postdoctoral research
fellow at the Center for Image and Vision
Science at UCLA. He is currently an associate
professor at Sun Yat-sen University. His re-
search interests include object recognition,

graph and shape matching, image parsing, and visual tracking.

Jie Wu is the chair and a professor in the
Department of Computer and Information
Sciences, Temple University. Prior to joining
Temple University, he was a program director at
US National Science Foundation. His research
interests include wireless networks and mobile
computing, routing protocols, fault-tolerant com-
puting, and interconnection networks. He has
published more than 550 papers in various
journals and conference proceedings. He

serves in the editorial board of the IEEE Transactions on Computers,
Journal of Parallel and Distributed Computing, IEEE Transactions on
Mobile Computing. He was also a general cochair for IEEE MASS
2006, IEEE IPDPS 2008, and DCOSS 2009. He is a program cochair
for IEEE INFOCOM 2011. He has served as an IEEE Computer
Society distinguished visitor. Currently, he is the chairman of the IEEE
Technical Committee on Distributed Processing (TCDP) and an ACM
distinguished speaker. He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LAI ET AL.: SPARSE LEARNING-TO-RANK VIA AN EFFICIENT PRIMAL-DUAL ALGORITHM 1233



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


