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ABSTRACT
Temporal grounding of natural language in untrimmed videos is
a fundamental yet challenging multimedia task facilitating cross-
media visual content retrieval. We focus on the weakly supervised
setting of this task that merely accesses to coarse video-level lan-
guage description annotation without temporal boundary, which is
more consistent with reality as such weak labels are more readily
available in practice. In this paper, we propose a Boundary Adaptive
Refinement (BAR) framework that resorts to reinforcement learning
(RL) to guide the process of progressively refining the temporal
boundary. To the best of our knowledge, we offer the first attempt to
extend RL to temporal localization task with weak supervision. As
it is non-trivial to obtain a straightforward reward function in the
absence of pairwise granular boundary-query annotations, a cross-
modal alignment evaluator is crafted to measure the alignment
degree of segment-query pair to provide tailor-designed rewards.
This refinement scheme completely abandons traditional sliding
window based solution pattern and contributes to acquiring more
efficient, boundary-flexible and content-aware grounding results.
Extensive experiments on two public benchmarks Charades-STA
and ActivityNet demonstrate that BAR outperforms the state-of-
the-art weakly-supervisedmethod and even beats some competitive
fully-supervised ones.
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1 INTRODUCTION
Temporal grounding of natural language in untrimmed video is a
newly-raised and crucial task due to its potential applications in the
field of human-robot interaction and cross-media analysis. It aims to
locate the temporal segment that is most relevant to the given sen-
tence query in an untrimmed video. Albeit with varying degrees of
progress, most of its recent successes [3, 8, 10, 11, 16, 33, 35, 36, 42–
44] are involved in a fully supervised setting, i.e., mapping between
video interval and the corresponding statement description are
available in the training set. It is still arduous to acquire such granu-
lar annotations that require a huge amount of manual effort, which
becomes a critical bottleneck as this task is pushed toward a larger-
scale and more complicated scenario. To alleviate such expensive
and unwieldy annotations, [20] proposes to address this task in the
weakly supervised setting that learns to infer language-related tem-
poral range from video-level supervision. This weakly supervised
paradigm only has access to the video-level language description
annotations without their corresponding temporal boundary spec-
ification. This is an exceedingly favorable scheme since coarse
video-level annotations are more readily available on the internet.
In our work, we focus on this weakly supervised paradigm.

Many approaches [3, 8, 10, 16, 20] employ a two-stage “proposal-
and-rank” solution pattern to address the task of temporal ground-
ing of natural language. However, these works are indulged in learn-
ing more robust cross-modal representations in the rank branch
without explicitly considering and modeling boundary-flexible and
content-aware proposals. As shown in the left half of Figure 1,
“proposal-and-rank” pattern is inherently restrictive as it relies
heavily on pre-defined and inflexible sliding windows (e.g., 128 and
256 frames [20]), which results in lacking generalization for videos
with considerable variance in length. More rigorously, it raises two
additional challenges when it is extended to the weakly supervised
setting. First, offset regressive learning [8] for boundary adjustment
becomes impractical in the absence of granular annotation. Sec-
ond, accessing video-query pair during training, the leading model
[20] can merely learn cross-modal mappings from the inter-videos,
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while fails to take into account more subtle and fine-grained seman-
tic concepts within the intra-video. These suboptimal cross-modal
mappings generally lead to less accurate boundary prediction.

To better cope with the above issues, as shown in the right half
of Figure 1, we formulate the task as a cross-modal matching guided
heuristic process, a.k.a, Boundary Adaptive Refinement (BAR). BAR
resorts to a tailor-designed reinforcement learning paradigm to
adaptively optimize the temporal boundary towards shrinking the
cross-modal semantic gap. It is noted that reinforcement learn-
ing (RL) has been validated in various tasks of fully supervised
video understanding, including video recognition [40] and video
referring expression [11]. This work can be regarded as the first
attempt to extend RL to weakly supervised temporal localization
tasks. Due to the lack of matching supervision for specific video
intervals corresponding to the statement,it is non-trivial to design
an intensive learning state assessment and reward function which
can effectively drive the model to achieve efficient temporal bound-
ary optimization. Our proposed BAR framework hence includes
a context-aware feature extractor for encoding the current and
contextualized environment state, an adaptive action planner for
decision adjustment of direction and interval range, and most typi-
cally a cross-modal alignment evaluator for providing an estimate
of the alignment score between each segment-query pair in the
absence of pairwise supervisory information. This alignment eval-
uator is crafted to assign a corresponding reward by comparing
the alignment score of the consecutive segment-query pair under
the guidance of both inter-video and intra-video ranking loss. This
modularized component design and heuristic adaptive temporal
window adjustment strategy contributes to making the solution
pattern more flexible and conforming to the human perception
retrieval mechanism; Furthermore, it can be guided and pruned
with goal-oriented rewards in a larger search space to extract more
accurate temporal window positioning; Moreover, it also attempts
to occupy as little time as possible to reach more impressive results.

The contributions of this work are summarized as follows:
•We design a Boundary Adaptive Refinement framework that

resorts to reinforcement learning to address the task of weakly
supervised temporal grounding of language in video. To the best of
our knowledge, we are the first to employ RL to temporal localiza-
tion task with weak supervision.

• BAR abandons traditional sliding window based proposal-and-
rank pattern and employs a novel boundary adaptive refinement
process, which contributes to acquiring more efficient, boundary-
flexible and content-aware grounding results.

• Experimental results on two benchmark datasets Charades-
STA [8] and ActivityNet [12] demonstrate that BAR outperforms
the existing state-of-the-art weakly-supervised methods, and even
beats some competitive fully-supervised ones.

2 RELATEDWORK
TemporalGrounding ofNatural Language inVideo. Temporal
grounding of natural language aims to determine the start and end
time of a temporal segment in an untrimmed video that corresponds
to a language query. It is a temporal extension of image referring
expression comprehension[37–39], and is also a challenging mul-
timedia task which requires cross-modal fusion and fine-grained

interactions between the verbal and visual modalities. Many ap-
proaches [3, 8, 10, 16, 20] employ a two-stage “proposal-and-rank”
manner, which first generates temporal proposals and then se-
lects the one with the highest confidence score. However, these
approaches rely on external sliding windows matching and ranking,
leading to boundary-inflexible and time consuming. To formulate a
computationally efficient framework, Chen et al. [2] designed an
end-to-end deep neural network that merely performs a single pass
to obtain the grounding result. Xu et al. [36] proposed a multi-level
model to integrate visual-query feature in the earlier stage and
further introduced the caption generation as an auxiliary task.
Weakly Supervised Learning. Weakly-supervised learning is a
research setup that aims at optimizing a model without substan-
tial manual labeled information. Many computer vision and multi-
modal tasks such as salient object detection [14], captioning [6],
language grounding [20, 22], referring expression grounding[18]
have explored the weakly-supervised setup, since granular annota-
tions are much more source-consuming compared to coarse annota-
tions. Wang et al. [31] proposed a weakly supervised collaborative
learning framework to resolve the task of weakly supervised ob-
ject detection, which only requires image-level labels. In the video
domain, Duan et al. [6] formulated a new task: weakly supervised
dense event captioning. The goal of this task is to detect and de-
scribe all events of interest contained in a video without dense
segment annotations for model training. The work that closely
related to ours is [20]. Mithun et al. [20] designed Text-Guided
Attention (TGA) mechanism to leverage latent alignment between
video frames and sentence descriptions to address the same task as
us.
Reinforcement Learning. Reinforcement learning (RL) is origi-
nated from the neuroscientific and psychological understandings
of how humans learn to optimize their behaviors in an environ-
ment. It can be mathematically formulated as a Markov Decision
Process (MDP) in a sequential decision-making manner. Recently,
RL technique [34] has been utilized to imitate human’s thinking
pattern to address various tasks, which generally can be formu-
lated as a MDP that executes a series of actions to accomplish the
task-specific objective[4, 11, 24, 26, 41]. Ranzato et al. [24] used the
REINFORCE algorithm to train the captioning model in sequence
level by optimizing the non-differentiable metric directly. Yeung
et al. [40] adopted REINFORCE algorithm to optimize an end-to-
end approach for reasoning the temporal bounds of action and its
category. He et al. [11] resorted to RL based method to address the
fully-supervised version of the studied task, which utilized the tem-
poral IoU as reward indicator. Our work offers the first attempt to
extend RL to accomplish the proposed task with weak supervision.
To estimate an accurate reward function in the absence of pair-
wise supervisory information, a cross-modal alignment evaluator
is crafted to provide tailor-designed rewards.

3 METHODOLOGY
3.1 Problem Formulation
Following the common-used formulation [8], we represent a video
V byN clips {V1,V2, ...,VN }, each clip corresponds to a small chunk
of sequential frames. Taking V and a text query T as inputs, the
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Figure 1: The diagrams of sliding window based proposal-and-rank pattern and the novel boundary adaptive refinement pro-
cess. The input query in this example is “person goes back to close the door.” Traditional pattern is constrained by fixed sliding
window templates and has to process extensive candidate segments one by one to localize queries. However, the boundary
adaptive refinement manages to flexibly adjust the boundary via a series of actions.
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Figure 2: The overall architecture of the Boundary Adaptive Refinement (BAR) framework, which consists of a context-aware
feature extractor, an adaptive action planner and a cross-modal alignment evaluator.

studied task aims to output a video segment [j,k] (j and k indi-
cate the start and end clip indices respectively) that semantically
matches the query description. Our work focuses on the weakly
supervised setting of this task. Specifically, only a set of V -T pairs
are provided but the video segment annotation for each pair is not
available. Inspired by the observation that humans usually locate
interest events during a long video with a heuristic search strategy,
we propose to formulate this task as a Markov Decision Process.
A Boundary Adaptive Refinement (BAR) framework is thus de-
signed: starting from an initial segment, the reinforcement learning
technique is utilized to refine its temporal boundary progressively.
The overall architecture of the proposed BAR framework is de-
picted in Figure 2. As illustrated, this modular framework employs
a context-aware feature extractor to encode the environment state
into cross-modal contextual concepts. The cross-modal alignment
evaluator is crafted to provide a tailor-designed reward and the
termination signal for the iterative refinement process. An adaptive
action planner is designed to reason the direction and amplitude of
the action from contextualized observation adaptively, instead of
shifting a fixed amplitude every step [11]. The details of these mod-
ularized components will be described in the following sections.

3.2 Context-aware Feature Extractor
The context-aware feature extractor takes a video-query pair (V -T )
from the external environment and encodes it into the context-
aware cross-modal concepts. Each word in query T is firstly en-
coded using GloVe [23] embeddings and then fed into the GRU
[5] to capture long-range dependencies. The summarized query
representation E is obtained from the last hidden state of the GRU.
A pre-trained video feature extractor (C3D [30] or TSN [32]) is used
to extract the clip-level feature for each video clip. A video segment
is represented as a set of clip features, i.e., F = {F1; ...; Fi; ...; FM} ∈
Rdk×M . Fi ∈ Rdk denotes the clip-level feature for the video clipVi
andM is the number of clips in the corresponding video segment.
At each time step, the updated boundary divides the whole video
into three parts: left segment, current segment and right segment.
And we collect all clip-level features within the corresponding
boundary into a set to obtain the three corresponding segment-
level features. Rather than directly taking the current segment’s
feature as independent inputs [11], this extractor also leverages
context-aware contextual cues derived from other segments in the
video (i.e., left and right segment feature) for state encoding. Fur-
thermore, the extractor explicitly involves the normalized boundary
location Lt−1 into the encoded features to provide some notion of
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relative position:

Lt−1 = [
lst−1
N
,
let−1
N

] (1)

where lst−1 and let−1 denote the start and end clip indices of the
boundary, respectively. t = {1, · · · ,Tmax } and Tmax indicates the
maximum iterations in the refinement process.

3.3 Cross-modal Alignment Evaluator
The cross-modal alignment evaluator is designed specially to ad-
dress two critical issues in our RL-based approach. On the one
hand, this evaluator is crafted to assign a target-oriented reward to
address the difficulty that the adaptive action planner can not di-
rectly obtain a reliable reward function without granular boundary
annotations. On the other hand, this alignment evaluator manages
to determine an accurate stop signal to terminate the refinement
process. Given a video segment, the dimension of each clip feature
is reduced to the same as the summarized query representation
E via a filter function θ , which consists of a fully-connected layer
followed by ReLU [13] and Dropout [28] function. E is taken to
create a temporal attention over all video clips, which manages to
emphasize crucial video clips and weaken inessential parts. Con-
cretely, the scaled dot-product attention mechanism [19] is utilized
to obtain attention weight ai and the segment attention feature A:

ai = so f tmax(E ⊙ θ (Fi)√
k

), A =
M∑
i=1

aiθ (Fi) (2)

where ⊙ indicates the dot product operation between two vectors.
k is the dimension of E. Then the segment attention feature and
query representation are mapped to a joint embedding space to
compute the alignment score S :

S = L2Norm(A) ⊙ L2Norm(E) (3)

The alignment score can be regarded as a reward estimate to provide
reliable reward. Specifically, the evaluator measures the alignment
score of the consecutive segment-query pairs, and assigns the cor-
responding reward rt :

rt = sign(Sct − Sct−1) (4)

where Sct denotes the alignment score of the current segment and
sentence query at time step t . This reward function returns +1 or -1.
Basically, if the next boundary has a higher alignment score than
the current one, the reward rt of the action at moving from the
current window to the next one is +1, and -1 otherwise. Such binary
rewards reflect more clearly which action can drive the boundary
towards the ground-truth and thus facilitate the agent’s learning.

3.4 Adaptive Action Planner
The adaptive action planner is designed to infer action sequences
to refine the temporal boundary. To get a fixed-length visual rep-
resentation, we utilize a mean pooling layer over feature set F of
the global, current, left and right segment, obtaining the pooling
features Fg, fct−1, f

l
t−1, f

r
t−1 respectively. Then the cross-gated in-

teraction method [7] is further adopted to enhance the effects of
the relevant segment-query pairs. Concretely, the current pooling
feature fct−1 is gated by query representation E, and meanwhile the

gate of E depends on fct−1:

˜fct−1 = σ (W
sE) ⊙ fct−1, Ẽ = σ (Wv fct−1) ⊙ E (5)

where Ws andWv are parameter matrices and σ denotes the sig-
moid function. These cross-modal features are then concatenated
and fed into two cascaded fully-connected layers ϕ to get the state
activation representation st :

st = ϕ(Ẽ, ˜fct−1, f
g, f lt−1, f

r
t−1, Lt−1). (6)

Such contextual features encourage the planner to perform a left-
right tradeoff on the video contents and infer a more accurate action.
st is further fed into a GRU cell to enable the agent to incorporate
the memory information about the video segments that have been
explored. Then the output state of the GRU is followed by two
separate fully-connected layers (i.e., actor and critic) to respectively
estimate a policy function π (at |st ) and a value approximatorvπ (st ).
A primitive action at ∈ A is sampled from the policy function
π (at |st ) in the training procedure. In our work, the action space
A is composed of four primitive actions: shifting the start/end
point backward/forward N /ν clips. ν is an amplitude factor that
empirically sets as:

ν = ⌊10 × (1 + 2 × tanh(Sct − Sд))⌋+, (7)

where ⌊⌋+ denotes the lower bound of a positive integer. Sд and Sct
denotes the global and current alignment score estimated by the
alignment evaluator. tanh is used to constrain the action amplitude
to fluctuate around N /10 (an empirical number used in [11]). Sд
plays as a baseline of the alignment degree to determine ν : when
Sct is lower, ν becomes smaller and the agent markedly shifts the
boundary; when Sct becomes higher, ν is larger and the boundary
is marginally refined. This adaptive setting enables the agent to
determine the action amplitude based on the current observation,
which is also in line with human habits.

The state-value vπ (st ) predicted by the critic is the value esti-
mation of the current state. Under the assumption that the critic
produces the exact values, the actor is trained based on an unbiased
estimation of the gradient.

3.5 Training
Due to its efficiency, the advantage actor-critic (A2C) [29] algorithm
is chosen to train our adaptive action planner. Multiple instance
learning algorithmwith a combined ranking lossLrank is designed
to train the cross-modal alignment evaluator and context-aware
feature extractor. The total loss in BAR is summarized as:

L = LA2C + ηLrank , (8)

where LA2C denotes the loss function in the A2C algorithm. η is a
trade-off factor between the two losses.
A2C Loss. The adaptive action planner runs Tmax steps for ad-
justment during training. Given a trajectory in an episode Γ =
⟨st ,π (·|st ),vπ (st ),at , rt ⟩, the loss function of the actor Lactor is
formulated as:

Lactor = −
Tmax∑
t=1

[Aπ (st , at )logπ (at |st ) + αH (π (at |st ))], (9)

where Aπ (st ,at ) denotes the advantage function and the entropy
H () of the policy is introduced into the objective for improving
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exploration. Aπ (st ,at ) = Qπ (st ,at ) −vπ (st ) measures whether or
not and how much the action is better than the policy’s default
behaviour. Temporal-difference (TD) learning is adopted to estimate
the Q-value function Qπ (st ,at ) by k-step returns with function
approximation:

Qπ (st ,at ) =
k−1∑
l=0

γ l rt+l + γ
kvπ (st+k ) (10)

where γ is a constant discount factor. It is noted that the BAR does
not suffer from sparse reward issue during training since the reward
can be obtained at every step. To optimize the critic, we minimize
the mean squared error (MSE) loss Lcr it ic between the Q-value
function and the estimated value [21]. And the total A2C loss is
a combination of the losses from the actor branch and the critic
branch: LA2C = Lactor + Lcr it ic .
Ranking Loss. In general, the content discrepancy between the
inter-videos is higher than that within the intra-video. Hence we
resort to multiple instance learning algorithm and first leverage
coarse-level semantic concepts from the inter-videos to optimize
the framework. Concretely, given the global video feature Fд and
its query representation E , it is expected that the alignment score
S(Fд ,E) (positive pair) is higher than the score S(Fд ′,E) / S(Fд ,E ′)
(negative pairs) for any video Fд ′ / query Ẽ taken from other sample
pairs. The inter-video ranking loss [25] is thus defined as:

Linter =
∑
E′

[ϵ + S(Fд ,E ′) − S(Fд ,E)]+

+
∑
Fд ′

[ϵ + S(Fд ′,E) − S(Fд ,E)]+,
(11)

where [x]+ denotes a ramp function defined by max(0,x) and ϵ
indicates a margin. S(Fд ,E) and Sд are equivalent. The positive and
negative pairs are obtained from the same mini-batch.

Inter-videos generally include substantially broad semantic ab-
stractions that are hard to distinguish similar contents in a specific
video. To this end, we design the intra-video ranking loss Lintra
to capture more subtle concepts in the intra-video to further opti-
mize the network. Expressly, if the score of any one of left, current
and right segment-query pairs surpasses the global one during
the refinement process, we assume this pair should have higher
alignment score than the other two pairs:

Lintra = ψ (Sct > Sд ) × ([ϵ + S lt − Sct ]+ + [ϵ + Srt − Sct ]+)

+ψ (S lt > Sд ) × ([ϵ + Sct − S lt ]+ + [ϵ + Srt − S lt ]+)

+ψ (Srt > Sд ) × ([ϵ + Sct − Srt ]+ + [ϵ + S lt − Srt ]+),

(12)

where Slt and S
r
t are the alignment scores of the left segment-query

pair and the right segment-query pair at the time step t , respectively.
ψ () is a binary indicator function. If the inequality in parentheses
holds,ψ () will output 1, otherwise 0. Specifically, when the score of
a segment-query pair, say Sct , surpasses Sд , the optimization target
is to increase the gap between Sct and the other two (Slt and Srt )
by increasing Sct or decreasing Slt and S

r
t . Noted that by lowering

Sct below Sд might be another option, but this usually becomes
increasingly impractical with the progress of inter-video training.
In addition, when there exist more than one segment-query pairs
of score surpass Sд , the optimization target of Lintra will usually

guide the alignment evaluator to suppress the score of the sub-
optimal matching pair(s) to be lower than Sд and at the same time
drive the action planner to adjust the boundary. Intuitively, Lintra
encourages the text query to be closer to a semantically matched
video moment than other possible moments from the same video,
which contributes to obtaining a content-aware alignment score.

Lintra manages to i) widen the score gap between matched
and unmatched segment-query pair to increase the confidence of
the alignment evaluation; ii) improve the reward calculation by
affecting the alignment evaluator to drive the action planner to
achieve better temporal boundary adjustments. To sum up, the
combined ranking loss Lrank is defined as:

Lrank = Linter + λ

Tmax∑
t=1

Lintra , (13)

where λ is a weighting parameter to achieve a ranking loss trade-off
between the intra-video and the inter-video. In the early stage of
this collaborative training scheme, it is very unlikely that the score
of a segment-query pair exceeds Sд and Lintra tends to 0, hence
Linter plays a dominant role that learns to transfer the matching
between video-query pair to segment-query pair. As the training
progresses, Linter converge gradually and it is more common for
the score of segment-query pair to exceed Sд , Lintra begins to play
a critical role.
Alternating Update. BAR is trained from scratch and an alternat-
ing update strategy is applied to facilitate stable training. Specif-
ically, for each set of 2K iterations, we first fix the parameters of
the action planner and employ Lrank for model optimization. This
setting guarantees a trustworthy initial reward for the action plan-
ner. When K iterations are reached, we fix the parameters of the
alignment evaluator and feature extractor, and switch Lrank to
LA2C to optimize the action planner for K more iterations. This
alternating update mechanism repeats until the model converges.

3.6 Inference
At each time step, BAR executes an action ât via greedy decoding
algorithm to adaptively adjust the temporal boundary. And the
cross-modal alignment evaluator computes a score Sct to provide
confidence for alignment degree and termination. Empirically, the
final grounding result corresponding to the query usually occupies
a reasonable and appropriate video length. Hence to penalize the
video segment with abnormal lengths, we propose to update the
confidence score with a Gaussian penalty function as follows:

Pt =
let − lst
N

− δ , Ŝct = Sct e
− P2t

τ (14)

where δ denotes the penalty factor corresponds to abnormal lengths.
τ is a modulating factor that as τ increases the effect of the penalty
degree is likewise decreased. The segment with the max Ŝct during
testing is regarded as the final grounding result.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
Datasets. We conduct extensive experiments on two benchmark
datasets: Charades-STA [8] and ActivityNet [12]. Charades-STA is
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Table 1: The performance comparison (in %) of the state-of-the-art methods in fully supervised and weakly supervised setting.
“-” indicates that the corresponding values are not available.

Charades-STA [8] ActivityNet [12]
Supervision Feature Baseline tIoU@0.7 tIoU@0.5 tIoU@0.3 tIoU@0.5 tIoU@0.3

Full Supervision
C3D

ROLE [17], ACM MM 2018 - 12.12 25.26 - -
MCN [1], ICCV 2017 4.44 13.66 28.99 10.17 22.07
CTRL [8], ICCV 2017 8.89 23.63 - 14.36 29.10
ACRN [16], SIGIR 2018 9.65 26.74 47.64 16.53 31.75
MAC [10], WACV 2019 12.23 29.39 53.34 - -
SAP [3], AAAI 2019 13.36 27.42 - - -

QSPN [36], AAAI 2019 15.80 35.60 54.7 27.70 45.30
ABLR [42], AAAI 2019 - - - 36.79 55.67
SM-RL [33], CVPR 2019 11.17 24.36 - - -
RWM [11], AAAI 2019 13.74 34.12 55.16 34.91 53.00

TSN RWM [11], AAAI 2019 17.72 37.23 61.73 37.46 57.29
I3D MAN [43], CVPR 2019 22.72 46.53 - - -

Weak Supervision C3D

TGA [20], CVPR 2019 8.84 19.94 32.14 - -
WS-DEC [6], NIPS 2018 - - - 23.34 41.98
WSLLN [9], EMNLP 2019 - - - 22.70 42.80
SCN [15], AAAI 2020 9.97 23.58 42.96 29.22 47.23

BAR (our) 12.23 27.04 44.97 30.73 49.03
TSN BAR (our) 15.97 33.98 51.64 33.12 53.41

extended from the Charades dataset [27] with generated sentence-
clip annotations, which comprises a series of sentence-clip pairs
with 12,408 for training and 3,720 for testing. The average length of
each video in this dataset is 29.8 seconds and the described clips are
8 seconds long in average. ActivityNet dataset [12] is introduced
to validate the robustness of the proposed model with longer and
more diverse videos. It contains 37,421 and 17,505 video-sentence
pairs for training and testing. The average duration of the videos
is 2 minutes and the described temporally annotated clips are 36
seconds long on average.
Evaluation Metrics. We adopt “tIoU@ χ” to evaluate the ground-
ing result. “tIoU @ χ” means the percentage of the queries that
have temporal IoU larger than threshold χ .

4.2 Implementation Details
We leverage C3D and the TSNmodel to encode video representation.
The initial boundary is set to L0 = [N /4; 3N /4]. N /4 and 3N /4
denote the start and end clip indices of the boundary respectively.
Tmax is set to 12 and the size of the hidden state in GRU is 1024.
The batch size is 12 and the total loss is optimized via the Adam
optimizer with the learning rate of 0.001. The margin ϵ in ranking
loss is 0.2. The hyper-parameters α and γ is fixed to 0.1 and 0.4,
receptively. The factor η and λ are empirically set to 1 and 0.1. The
modulating factor τ is set to 0.5 by cross validation. And penalty
baseline factor δ is fixed to 0.35 and 1.0 receptively on Charades-
STA and ActivityNet. We use K = 500 in the alternating update
procedure.

4.3 Comparison with the State-of-the-art
We compare the proposed BAR with several state-of-the-art mod-
els based on the weakly-supervised and fully-supervised settings

in Table 1. On the one hand, BAR significantly outperforms the
weakly-supervised method and establishes new state-of-the-art
performance on both datasets. Employing the C3D based video
feature, BAR boosts the tIoU@0.5 to 27.04% and 30.73%, with an
improvement of 3.46%, 1.51% compared with SCN [15] on the two
datasets, receptively. Furthermore, it manages to achieve 33.98%
(33.12%) in tIoU@0.5 via more powerful TSN feature. It reveals that
our approach helps to better obtain accurate video segments. On the
other hand, BAR even achieves better or comparable results than
some fully-supervised methods. For instance, BAR outperforms
QSPN [36] by 3.03% w.r.t tIoU@0.5 on the ActivityNet dataset. This
is an inspiring result as it reveals that our model can get impressive
results via learning from massive coarse video-level annotations,
which is of great benefit to practical application.

4.4 Ablation Studies
We perform extensive ablation studies and demonstrate the effec-
tiveness of several essential components in BAR. The experiments
are conducted on the Charades-STA with the TSN feature. The
results are reported in Table 2.

• Effectiveness of Reinforcement Learning.More accurate
measurement of the factual RL contribution is to directly remove it
and use the generated proposals of an off-the-shelf weakly-supervised
action localization method [20]. Hence we design a variant (ab-
breviated as “Ours w/o RL”) to follow the above setting. We can
observe that removing RL from BAR will lead to a noticeable drop
in performance. For example, tIoU@0.5 declines from 33.98% to
25.89%. It reveals that the introduction of RL is fundamental and can
bring more flexible and adaptable temporal proposals, this alone is
an advantage that cannot be achieved with traditional two-stage
frameworks, not to mention its high efficiency.
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Table 2: Performance of ablation models.

Metrics tIoU@0.7 tIoU@0.5 tIoU@0.3
Ours w/o RL 12.37 25.89 45.36

Ours w/ random reward 5.76 8.97 28.82
Initial boundary [N/3; 2N/3] 15.72 33.36 51.33
Initial boundary [N/5; 4N/5] 15.83 33.47 51.20

Ours w/ N/5 amplitude 13.60 31.88 49.65
Ours w/ N/10 amplitude 14.27 32.02 50.25
Ours w/ N/15 amplitude 13.73 31.66 49.29

Ours w/o context 13.62 31.45 49.22
Ours w/o Lintra 14.24 30.73 46.82
Ours w/ stop 10.13 24.38 43.22

Ours w/o penalty 13.78 30.97 50.27
Ours 15.97 33.98 51.64

(a) Varying δ ∈[0.1,0.5], τ =0.5 (b) Varying τ ∈[0.1,5.0], δ=0.35

Figure 3: The performance curve of with varying hyper-
parameters δ and τ . Best viewed in color.

• Effectiveness of Tailor-designed Reward. In order to val-
idate that a target-oriented reward is essential for this task, we
design a baseline (abbreviated as “Ours w/ random reward”) that
samples a random scalar value from the uniform distribution of
[-1,1] as the reward for optimization. Table 2 shows that this base-
line obtains an exceedingly inferior result, which is approximate
to a stochastic one. It indicates that a tailor-designed reward is
definitely necessary for the RL setting.

•Effectiveness of Boundary Initialization.The initial bound-
ary in this paper is fixed to L0 = [N /4; 3N /4]. To compare different
boundary initializations, we design two baselines (denoted as “Ini-
tial boundary [N/3; 2N/3]” and “Initial boundary [N/5; 4N/5]”) that
sets the initial boundary as [N /3; 2N /3] and [N /5; 4N /5], respec-
tively. As reported in Table 2, different boundary initialization is
not sensitive to the performance of the algorithm, and all can obtain
competitive experimental results, which reflects the robustness of
BAR.

• Effectiveness of Adaptive Setting. Rather than shifting a
fixed distance for each action, BAR can adaptively adjust its action
amplitude according to the current state. To demonstrate the su-
periority of this adaptive setting, we design three variants (named
as “Ours w/ N/5 amplitude”, “Ours w/ N/10 amplitude” and “Ours
w/ N/15 amplitude”) that the agent shifts N /5, N /10 and N /15
clips at each step, respectively. As summarized in Table 2, “Ours w/
N/10 amplitude” when set with fixed adjustment strategy. However,
our approach with the adaptive setting manages to achieve more
impressive performance, which reveals that this adaptive setting is
more flexible and effective in our proposed framework.

• Effectiveness of Context Information. BAR additionally
builds contextualized video representations for action decisions. To
investigate the effectiveness of the context information, we design
a baseline that removes the context concepts (f lt−1, f

r
t−1) from st in

Equation 6, abbreviated as “Ours w/o context”. From Table 2, we
can see that although the model without context representation can
still achieve promising results, our model with context involved
gains 2.35% and 2.53% improvement w.r.t tIoU@0.7 and tIoU@0.5
respectively, which demonstrates that contextual concepts helps
for obtaining more content-aware results.

• Effectiveness of Intra-video Ranking Loss. To verify the
effectiveness of the Lintra , we construct a comparison variant that
merely uses Linter to optimize the evaluator, named as “Ours w/o
Lintra”. Table 2 reveals that the grounding result suffers from an
obvious drop without Lintra . For example, tIoU@0.3 declines from
51.64% to 46.82%. Our approach with intra-video ranking loss man-
ages to achieve more precise alignment scores and more accurate
grounding results. To further demonstrate the effectiveness of the
alignment score S obtained by our model, we additionally calculate
the correlation coefficient (CC) between S and ground-truth IoU.
It shows that CC can reach 0.79, which reveals the obtained S is
reliable enough to correctly reflect the matching degree and infer
the target-oriented rewards.

•Analysis of Stop Signal.We did not include an ending signal
in the action space [11] as there is no absolutely reliable and stable
internal segment-query matching that can help to effectively termi-
nate the iteration. We further introduce an alignment threshold as a
stopping signal (abbreviated as“Ours w/ stop”), which led to inferior
results. In order to validate the significance of the length penalty
strategy, we design a baseline that directly takes the score Sct to
determine the termination time, denoted as “Ours w/o penalty”.
The results indicate that this baseline suffers from performance
degradation. It may be due to the fact that “Ours w/o penalty” tends
to provide an excessive score when the length of the video segment
is too long or too short.

Figure 3 depicts the performance curves with varying δ or τ
respectively in the procedure of cross-validation. We can see that
a factor δ with too large or too small value will lead to obvious
performance decline, which reveals that a video with suitable length
is more likely to produce impressive results. A similar changing
trend can be observed with varying τ . It demonstrates that an
appropriate gaussian penalty encourages the model to perform
better. we empirically observed that δ=0.35 and τ=0.5 contribute
to obtaining the most promising performance in different levels of
tIoU.

4.5 Efficiency
To further investigate the efficiency of this boundary adaptive re-
finement process, we compare BAR with TGA [20] in terms of
average running time and number of candidate segments. As sum-
marized in Table 3, BAR reduces the localization time and candidate
boundaries by a sizeable margin. Please notice that the boundary
in BAR is equivalent to the temporal proposal number to some
extent, but the “boundary” here is more flexible and adaptable. BAR
merely needs to refine an initial temporal boundary progressively,
which manages to avoid redundant computations and employ a
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Query: person opening the refrigerator doors.

Ground Truth

Initial State

2.7s 12.2s
9.0s 27.9sIoU: 12.7%

1.8s
1.8s

27.9s
18.9s

IoU: 36.4%

IoU: 55.6%

� = 1

� = 2

� = 3

� = 4

14.4sIoU: 75.4%1.8s
12.0sIoU: 89.4%1.8s

shifting start point backwardN/5 clips

shifting end point backwardN/4 clips

shifting end point backwardN/15 clips

shifting end point backwardN/8 clips

Figure 4: An illustration of how the proposed BAR framework accomplishes the task on Charades-STA.

Query: Once his face is lathered completely he grabs hands full of water and rinses his face off until all of the soap is off.

Ground Truth

Initial State

19.5s 42.0s
10.2s 31.3sIoU: 36.9%

10.2s
10.2s

36.6s
41.9s

IoU: 53.8%

IoU: 70.4%

� = 1

� = 2

� = 3

� = 4

IoU: 81.2%14.4s
IoU: 90.3%17.2s

� = 5
IoU: 98.7%19.3s

shifting end point forwardN/8 clips

shifting end point forwardN/8 clips

shifting start point forwardN/10 clips

shifting start point forwardN/15 clips

41.9s
41.9s
41.9sshifting start point forwardN/20 clips

Figure 5: An illustration of how the proposed BAR framework accomplishes the task on ActivityNet.

time-efficient and space-efficient manner. Based on the above dis-
cussion, we can conclude that BAR is better than the previous
competitive methods in both accuracy and efficiency.

4.6 Qualitative Visualizations
We illustrate two qualitative results in Figure 4, 5 to show the
whole process of how BAR obtains the described event location.
We observe that our algorithm mainly performs optimization from
coarse to fine. The agent will choose a larger movement adjustment
at the initial stage of the iteration to quickly narrow the seman-
tic difference between language and vision, and as the iteration
progresses, the adjustment range of the movement will change
rapidly to achieve local fine-tuning, this is also more consistent
with humans performing cross-modal target retrieval.

5 CONCLUSIONS
We propose a Boundary Adaptive Refinement framework that
resorts to reinforcement learning to address the task of weakly-
supervised temporal grounding of natural language in videos. This

Table 3: The average running time and number of candidate
proposals to localize a moment in a video on Charades-STA.

Methods Time(s) Candidate Proposal Number
TGA [20] 0.104 65.11
BAR (Ours) 0.068 1

refinement scheme completely abandons traditional slidingwindow-
based solution patterns and contributes to obtaining more efficient,
boundary-flexible and content-aware grounding results. Extensive
experiments show that our approach establishes new state-of-the-
art performance on the widely used Charades-STA and ActivityNet
datasets. Furthermore, our method even achieves a better result
than some competitive fully-supervised methods.

REFERENCES
[1] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell,

and Bryan Russell. 2017. Localizing moments in video with natural language. In
Proceedings of the IEEE International Conference on Computer Vision. 5803–5812.



Reinforcement Learning for Weakly Supervised Temporal Grounding of Natural Language in Untrimmed Videos MM’20, October 12âĂŞ16, 2020, Seattle, WA, USA

[2] Jingyuan Chen, Xinpeng Chen, Lin Ma, Zequn Jie, and Tat-Seng Chua. 2018. Tem-
porally grounding natural sentence in video. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing. 162–171.

[3] Shaoxiang Chen and Yu-Gang Jiang. 2019. Semantic Proposal for Activity Local-
ization in Videos via Sentence Query. In Proceedings of the AAAI Conference on
Artificial Intelligence.

[4] Tianshui Chen, Zhouxia Wang, Guanbin Li, and Liang Lin. 2018. Recurrent
attentional reinforcement learning for multi-label image recognition. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[6] Xuguang Duan, Wenbing Huang, Chuang Gan, Jingdong Wang, Wenwu Zhu,
and Junzhou Huang. 2018. Weakly supervised dense event captioning in videos.
In Advances in Neural Information Processing Systems. 3059–3069.

[7] Yang Feng, Lin Ma, Wei Liu, Tong Zhang, and Jiebo Luo. 2018. Video re-
localization. In Proceedings of the European Conference on Computer Vision (ECCV).
51–66.

[8] Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. 2017. Tall: Temporal
activity localization via language query. In Proceedings of the IEEE International
Conference on Computer Vision. 5267–5275.

[9] Mingfei Gao, Larry S Davis, Richard Socher, and Caiming Xiong. 2019. WSLLN:
Weakly Supervised Natural Language Localization Networks. (2019).

[10] Runzhou Ge, Jiyang Gao, Kan Chen, and Ram Nevatia. 2019. MAC: Mining
Activity Concepts for Language-based Temporal Localization. In IEEE Winter
Conference on Applications of Computer Vision. IEEE, 245–253.

[11] Dongliang He, Xiang Zhao, Jizhou Huang, Fu Li, Xiao Liu, and Shilei Wen. 2019.
Read, Watch, and Move: Reinforcement Learning for Temporally Grounding
Natural Language Descriptions in Videos. In Proceedings of the AAAI Conference
on Artificial Intelligence.

[12] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles.
2017. Dense-captioning events in videos. In Proceedings of the IEEE International
Conference on Computer Vision. 706–715.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[14] Guanbin Li, Yuan Xie, and Liang Lin. 2018. Weakly supervised salient object
detection using image labels. In Thirty-second AAAI conference on artificial intel-
ligence.

[15] Zhijie Lin, Zhou Zhao, Zhu Zhang, Qi Wang, and Huasheng Liu. 2020. Weakly-
Supervised Video Moment Retrieval via Semantic Completion Network. (2020).

[16] Meng Liu, Xiang Wang, Liqiang Nie, Xiangnan He, Baoquan Chen, and Tat-Seng
Chua. 2018. Attentive moment retrieval in videos. In The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval. ACM,
15–24.

[17] Meng Liu, Xiang Wang, Liqiang Nie, Qi Tian, Baoquan Chen, and Tat-Seng Chua.
2018. Cross-modal moment localization in videos. In Proceedings of the 26th ACM
international conference on Multimedia. 843–851.

[18] Xuejing Liu, Liang Li, Shuhui Wang, Zheng-Jun Zha, Li Su, and Qingming Huang.
2019. Knowledge-guided pairwise reconstruction network for weakly supervised
referring expression grounding. In Proceedings of the 27th ACM International
Conference on Multimedia. 539–547.

[19] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[20] Niluthpol Chowdhury Mithun, Sujoy Paul, Roy-Chowdhury, and Amit K. 2019.
Weakly supervised video moment retrieval from text queries. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 11592–11601.

[21] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning. 1928–1937.

[22] Sujoy Paul, Sourya Roy, and Amit K Roy-Chowdhury. 2018. W-talc: Weakly-
supervised temporal activity localization and classification. In Proceedings of the
European Conference on Computer Vision. 563–579.

[23] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on

empirical methods in natural language processing. 1532–1543.
[24] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.

2015. Sequence level training with recurrent neural networks. arXiv preprint
arXiv:1511.06732 (2015).

[25] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 815–823.

[26] Yukai Shi, Guanbin Li, Qingxing Cao, Keze Wang, and Liang Lin. 2019. Face
hallucination by attentive sequence optimization with reinforcement learning.
IEEE transactions on pattern analysis and machine intelligence (2019).

[27] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and
Abhinav Gupta. 2016. Hollywood in homes: Crowdsourcing data collection for
activity understanding. In European Conference on Computer Vision. Springer,
510–526.

[28] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[29] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[30] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
2015. Learning spatiotemporal features with 3d convolutional networks. In
Proceedings of the IEEE international conference on computer vision. 4489–4497.

[31] JiajieWang, Jiangchao Yao, Ya Zhang, and Rui Zhang. 2018. Collaborative learning
for weakly supervised object detection. arXiv preprint arXiv:1802.03531 (2018).

[32] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and
Luc Van Gool. 2016. Temporal segment networks: Towards good practices for
deep action recognition. In European conference on computer vision. Springer,
20–36.

[33] Weining Wang, Yan Huang, and Liang Wang. 2019. Language-Driven Temporal
Activity Localization: A Semantic Matching Reinforcement Learning Model. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
334–343.

[34] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. In Reinforcement Learning. Springer, 5–32.

[35] Jie Wu, Guanbin Li, Si Liu, and Liang Lin. 2020. Tree-Structured Policy based
Progressive Reinforcement Learning for Temporally Language Grounding in
Video. In Proceedings of the AAAI Conference on Artificial Intelligence.

[36] Huijuan Xu, Kun He, L Sigal, S Sclaroff, and K Saenko. 2019. Multilevel Language
and Vision Integration for Text-to-Clip Retrieval. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 2. 7.

[37] Sibei Yang, Guanbin Li, and Yizhou Yu. 2019. Cross-modal relationship inference
for grounding referring expressions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 4145–4154.

[38] Sibei Yang, Guanbin Li, and Yizhou Yu. 2019. Dynamic graph attention for
referring expression comprehension. In Proceedings of the IEEE International
Conference on Computer Vision. 4644–4653.

[39] Sibei Yang, Guanbin Li, and Yizhou Yu. 2020. Graph-Structured Referring Ex-
pression Reasoning in The Wild. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 9952–9961.

[40] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei. 2016. End-to-end
learning of action detection from frame glimpses in videos. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2678–2687.

[41] Tong Yu, Yilin Shen, Ruiyi Zhang, Xiangyu Zeng, and Hongxia Jin. 2019. Vision-
language recommendation via attribute augmented multimodal reinforcement
learning. In Proceedings of the 27th ACM International Conference on Multimedia.
39–47.

[42] Yitian Yuan, Tao Mei, and Wenwu Zhu. 2019. To find where you talk: Tempo-
ral sentence localization in video with attention based location regression. In
Proceedings of the AAAI Conference on Artificial Intelligence.

[43] Da Zhang, Xiyang Dai, Xin Wang, Yuan-Fang Wang, and Larry S Davis. 2019.
Man: Moment alignment network for natural language moment retrieval via
iterative graph adjustment. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 1247–1257.

[44] Songyang Zhang, Jinsong Su, and Jiebo Luo. 2019. Exploiting Temporal Relation-
ships in Video Moment Localization with Natural Language. In Proceedings of
the 27th ACM International Conference on Multimedia. 1230–1238.


	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Problem Formulation
	3.2 Context-aware Feature Extractor
	3.3 Cross-modal Alignment Evaluator
	3.4 Adaptive Action Planner
	3.5 Training
	3.6 Inference

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Implementation Details
	4.3 Comparison with the State-of-the-art
	4.4 Ablation Studies
	4.5 Efficiency
	4.6 Qualitative Visualizations

	5 Conclusions
	References

