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Clothes Co-Parsing Via Joint Image Segmentation
and Labeling With Application to

Clothing Retrieval
Xiaodan Liang, Liang Lin, Wei Yang, Ping Luo, Junshi Huang, and Shuicheng Yan

Abstract—This paper aims at developing an integrated system
for clothing co-parsing (CCP), in order to jointly parse a set
of clothing images (unsegmented but annotated with tags) into
semantic configurations. A novel data-driven system consisting of
two phases of inference is proposed. The first phase, referred as
“image cosegmentation,” iterates to extract consistent regions on
images and jointly refines the regions over all images by employing
the exemplar-SVM technique [1]. In the second phase (i.e., “region
colabeling”), we construct a multiimage graphical model by taking
the segmented regions as vertices, and incorporating several
contexts of clothing configuration (e.g., item locations and mutual
interactions). The joint label assignment can be solved using
the efficient Graph Cuts algorithm. In addition to evaluate our
framework on the Fashionista dataset [2], we construct a dataset
called the SYSU-Clothes dataset consisting of 2098 high-resolution
street fashion photos to demonstrate the performance of our
system. We achieve 90.29%/88.23% segmentation accuracy and
65.52%/63.89% recognition rate on the Fashionista and the SYSU-
Clothes datasets, respectively, which are superior compared with
the previous methods. Furthermore, we apply our method on a
challenging task, i.e., cross-domain clothing retrieval: given user
photo depicting a clothing image, retrieving the same clothing items
from online shopping stores based on the fine-grained parsing
results.

Index Terms—Clothes recognition, fashion understanding,
human-centric computing, image parsing.

I. INTRODUCTION

C LOTHING recognition and parsing have huge potentials
in Internet-based e-commerce, as the revenue of online

clothing sale keeps highly increasing every year. The related
techniques also benefit a wide range of human centric real
applications. For example, clothing parsing, i.e., segmenting
and labeling clothing items, can be utilized as one of the key
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components of virtual clothing try-on system [3] that simulates
the selected virtual clothing on user’s body in real-time. The
applications of clothing retrieval [4], and outfit recommenda-
tion [5]–[7] also strongly desire the fine-grained clothing pars-
ing and interpretation. Moreover, clothing recognition can be
also employed for person re-identification [8], especially under
the surveillance scenarios where identifiable faces are unavail-
able, since the good interpretation of one’s clothing may provide
extra useful cues to verify a person.

Despite several interesting works [2], [9]–[12] have been pro-
posed on this task and shown promising results, clothing pars-
ing has not been fully solved, especially for real-world photos
with large amounts of diverse clothing tags and dressing styles.
Specifically, the difficulties lie in the following aspects. First,
existing clothing parsing systems usually employ supervised
learning to assign semantic tags to all pixels within an image,
so that abundant pixel annotation of clothing items are required.
This annotation, however, often costs expensively and processes
inefficiently. Second, the appearances of clothing and garment
items have much larger variations due to different styles, textures
and materials, compared with other common objects. Third, se-
vere occlusions between clothing items and human bodies often
exist in unconstrained environments, as well as complex human
poses and self-occlusions. Finally, the number of fine-grained
clothing tags is very large, e.g., Fashionista dataset [2] contains
more than 50 tags of clothing items. In contrast, existing co-
segmentation systems [13], [14] have been developed to deal
with much fewer the semantic tags. These challenges thus limit
the clothing parsing performance of applying traditional object
recognition or semantic segmentation approaches.

The explosive development of social networks, photo shar-
ing and e-commerce websites provides possible access to large
amounts of fashion photos and user data, and further help asso-
ciate the clothing images with clothing tags [2]–[9]. Under this
background, an interesting problem arises: Is it possible to au-
tomatically transfer fine-grained clothing tags at image level to
the regions or pixels? To answer this question, in this paper, we
develop an engineered clothes co-parsing (CCP) framework1 to
jointly parse a batch of clothing images and produce accurate
pixelwise annotation of clothing items. Our system consists of
two sequential phases of inference over a set of clothing im-
ages, i.e., image co-segmentation for extracting distinguishable
clothing regions, and region co-labeling for recognizing various
garment items, as illustrated in Fig. 1. Furthermore, the con-

1[Online]. Available: http://vision.sysu.edu.cn/projects/clothing-co-parsing/
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Fig. 1. Illustration of the proposed clothes co-parsing framework, which consists of two sequential phases of optimization: (a) clothing co-segmentation for
extracting coherent clothes regions, and (b) region co-labeling for recognizing various clothes garments. Specifically, clothing co-segmentation iterates with three
steps: (a1) grouping superpixels into regions and detecting salient regions, (a2) selecting confident foreground regions according to the saliency maps to train
E-SVM classifiers, and (a3) propagating segmentations by applying E-SVM templates over all images. Given the segmented regions, clothing co-labeling is
achieved based on a multi-image graphical model, as illustrated in (b).

texts of clothing configuration are also exploited, e.g., spatial
locations and mutual relations of clothing items, inspired by the
successes of object/scene context modeling [15]–[17]. In the
following, we briefly discuss the motivations and main compo-
nents of our framework.

At the first phase (i.e., image co-segmentation), our method
iteratively refines the regions grouped over all images by uti-
lizing the exemplar-SVM (E-SVM) technique [1]. At the be-
ginning, the superpixels for each image are extracted and then
grouped into regions, where most regions are often cluttered
and meaningless due to the diversity of clothing appearances
and human body variations, as shown in Fig. 1(a1). However,
some coherent regions [in Fig. 1(a2)] which satisfy some cer-
tain criteria (e.g., size and location constraints), can be still
selected. Then, several E-SVM classifiers are trained for the
selected regions using the HOG feature, i.e., one classifier for
one region, and then a set of region-based detectors are gen-
erated, as shown in Fig. 1(a3), which are employed as the
top-down templates to localize similar regions over all images.
In this way, segmentations are refined jointly, as more coher-
ent regions are generated by the trained E-SVM classifiers.
This process is inspired by the observation that clothing items
of the same fine-grained category often share similar patterns
(i.e., shapes and structures). In the literature, Kuettel et al. [18]
also proposed to propagate segmentations through HOG-based
matching.

Unlike the traditional approaches that perform supervised
learning to predict the labels of segmented regions of all images,
we design the second phase (i.e., region co-labeling) in a data-
driven manner. A multi-image graphical model is constructed by
taking the regions as vertices of graph, inspired by [19]. In our
graphical model, the adjacent regions within each image as well
as regions across different images are linked, which share sim-

ilar appearance and latent semantic tags. Thus we can borrow
statistical strength from similar regions in different images and
assign labels jointly, as Fig. 1(b) illustrates. The efficient Graph
Cuts algorithm [20] is finally utilized for co-labeling optimiza-
tion that incorporates several contextual constraints defined on
the clothing items.

Moreover, a large-scale clothing parsing dataset annotated
with pixel-wise labeling is proposed for evaluating clothing co-
parsing, which includes more realistic and general challenges,
e.g., disordered backgrounds and multiform human poses, com-
pared with the existing clothing datasets [2], [21], [22], and more
fine-grained clothing tags, compared with the recent clothing
dataset [23], [24]. We demonstrate promising performances and
applicable potentials of our system in the experiments.

The cross-domain clothing retrieval plays an important role
in human-centric applications, such as mobile product fashion
analysis [25], [26] and person re-identification [8]. To further
validate the effectiveness of our method, the cross-domain cloth-
ing retrieval based on the clothing parsing results is also explored
in this paper. The fine-grained semantic regions parsed by our
method enable precisely locating the region of interest for the
query and gallery images while the previous clothing retrieval
methods [4] just used the whole image or clothing detection
results as the query. Incorporating clothe parsing into clothing
retrieval can reduce the effect of the possible background clut-
ters included in the photo that may lead to unsatisfied retrieval
results. We collect a large dataset composed of cross-scenario
image pairs, which includes about 10 000 online (product pho-
tos from merchants) and offline (photos uploaded by customers)
image pairs, as shown in Fig. 3. Each image has 124 fine-grained
semantic attribute types. Given an offline clothing image from
the “street” domain as the query, we first parse this query image
into semantic regions of clothing items and then retrieve the
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same or similar clothing items from a large-scale gallery of
professional online shopping images. Based on the annotated
fine-grained clothing attribute types, the domain-specific neu-
ral network is finetuned based on the pre-trained convolutional
neural network (CNN) [27] for generating more effective fea-
ture representation. The top-20 retrieval accuracy is improved
by 4.9% when using the proposed method as the basic clothing
parser other than using the method [2].

The rest of this paper is organized as follows. Section I-A
presents a brief review of related work. We introduce the prob-
abilistic formulation of our framework in Section II, and then
discuss the implementation of the two phases in Section III.
The cross-domain clothing retrieval based on clothing pars-
ing is described in Section IV. The experiments and compar-
isons are presented in Section V, and the paper concludes in
Section VI.

A. Related Work

Currently, existing efforts on clothing/human segmentation
and recognition mainly focused on constructing expressive mod-
els to address various clothing styles and appearances [2], [22],
[28]–[33]. One classic work [22] proposed a composite And-
Or graph template for modeling and parsing clothing config-
urations. Later works studied on blocking models for highly
occluded group images [30], or deformable spatial priors model-
ing to improve performance of clothing parsing [28]. Recent ap-
proaches incorporated shape-based human model [29], or pose
estimation and supervised region labeling [2], and achieved im-
pressive results. For example, a shape-based human model was
presented in [29] for human/clothing segmentation, which as-
sembled candidate parts from an over-segmentation of the image
and matched them to a library of shape exemplars. Yamaguchi
et al. [2] demonstrated very impressive results on pixel-wise
clothing parsing by integrating pose estimation and supervised
region labeling. In addition, Liu et al. [34] proposed to utilize
the user-generated color-category as the weak supervision for
clothe parsing. And we believe the effort of our system will
further enhance their performances by providing reliable anno-
tations in an easy way.

Clothes co-parsing is also highly related to image/object co-
labeling, where a batch of input images containing similar ob-
jects are processed jointly [35]–[37]. For example, unsuper-
vised shape guided approaches were adopted in [38] to achieve
single object category co-labeling. Winn et al. [39] incorpo-
rated automatic image segmentation and spatially coherent la-
tent topic model to obtain unsupervised multi-class image label-
ing. These methods, however, solved the problem in an unsu-
pervised manner, and might be intractable under circumstances
with large numbers of categories and diverse appearances. To
deal with more complex scenario, some recent works focused
on supervised label propagation, utilizing pixelwise label map
in the training set and propagating labels to unseen images.
Pioneering work of Liu et al. [35] proposed to propagate la-
bels over scene images using a bi-layer sparse coding (BSC)
formulation.

Deep CNNs have achieved significant successes in many ar-
eas of computer vision [8],[23]. Recently, Liang et al. [23]
proposed to use two separate convolutional networks to predict
the template coefficients for label masks and the correspond-
ing locations, respectively. The quasi-parametric human pars-
ing model [24] has also been proposed to predict the matching
confidence and displacement of the best matched region for a
particular semantic region in one KNN image. These works
have conducted the experiments on the dataset with much fewer
tags (i.e., 18 tags) and required large-scale pixel-wise annota-
tions for network training. Besides, some interesting yet com-
mercially valuable applications such as clothing retrieval and
recommendation systems have also been proposed. Prior ap-
proaches for clothing retrieval based on deep learning have out-
performed previous methods based on traditional image rep-
resentations [40]. Several domain adaptation methods based
on deep learning have been recently proposed [4]. For exam-
ple, Huang et al. [4] proposed a Dual Attribute-aware Ranking
Network for retrieval feature learning. Different from all these
works, our retrieval system is capitalized on the clothing parsing
results by the proposed framework instead of a simple whole
image. This paper is an extension of our previous conference
paper [41].

II. PROBABILISTIC FRAMEWORK

In this paper, the CCP task is formulated as a probabilistic
model. Let I = {Ii}N

i=1 denote a set of clothing images with
tags {Ti}N

i=1 . Each image I is represented by a set of super-
pixels I = {sj}M

j=1 , which can be further grouped into a set
of coherent regions by utilizing the segmentation propagation.
Four additional variables are associated with each image I:

1) the regions {rk}K
k=1 , each of which consists of a set of

superpixels;
2) the garment label for each region: �k ∈ T, k = 1, . . . ,K;
3) the E-SVM weights wk trained for each selected region;

and
4) the segmentation propagations C = (x, y,m), where

(x, y) is the location and m is the segmentation mask
of an E-SVM, indicating segmentation mask m can be
propagated to the position (x, y) of I , as illustrated in
Fig. 1(a).

Let R = {Ri = {rik}}, L = {Li = {�ik}}, W = {Wi =
{wik}} and C = {Ci}. The model parameters can be optimized
by maximizing the following posterior probability:

{L∗,R∗,W∗,C∗} = arg max P (L,R,W,C|I) (1)

which can be factorized by

P (L,R,W,C}|I) ∝
co−labeling
︷ ︸︸ ︷

P (L|R,C)

×

co−segmentation
︷ ︸︸ ︷

N
∏

i=1

P (Ri |Ci, Ii)P (Wi |Ri) × P (Ci |W, Ii) . (2)
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The optimization of (2) is performed with two phases:
1) clothing image co-segmentation and 2) region co-labeling.

In phase (I), the optimal regions are obtained by maximiz-
ing P (R|C, I) in (2). We denote the superpixel grouping in-
dicator as oj ∈ {1, . . . ,K}, which represents which of the K
regions the superpixel sj belongs. Then each region can be
represented as several superpixels, as rk = {sj |oj = k}. Given
the current segmentation propagation C, P (R|C, I) can be
calculated as

P (R|C, I) =
∏

k

P (rk |C, I) ∝
∏

j

P (oj |C, I)

∝
M
∏

j=1

P (oj , sj )
∏

mn

P (om , on , sm , sn |C) (3)

where the unary potential P (oj , sj ) ∝ exp{−d(sj , oj )} indi-
cates the probability of superpixel sj belonging to a region,
d(sj , oj ) represents the spatial displacement between sj and its
corresponding region. P (om , on , sm , sn |C) is the pairwise po-
tential function, which encourages smoothness between neigh-
boring superpixels.

After grouping superpixels into regions, several coherent re-
gions can be selected to train an ensemble of E-SVMs, by max-
imizing P (W |R) defined as follows:

P (W |R) =
∏

k

P (wk |rk ) ∝
∏

k

exp{−E(wk , rk ) · φ(rj )}

(4)

where φ(rj ) is an indicator exihibiting whether rj has been
chosen for training E-SVM. E(wk , rk ) is the convex energy
function of E-SVM.

Finally, P (Ci |W, Ii) in (2) is defined based on the responses
of E-SVM classifiers. The P (Ci |W, Ii) is maximized by se-
lecting the top k detections of each E-SVM classifier as the
segmentation propagations by the sliding window scheme.

In phase (II), we assign a garment tag to each region by
modeling the region co-labeling problem as the optimization of
a multi-image graphical model

P (L|R,C) ∝
N
∏

i

K
∏

k

P (�ik , rik )

·
∏

mn

P (�m , �n , rm , rn )
∏

uv

Q(�u , �v , ru , rv |C) (5)

where P (�ik , rik ) indicates the singleton potential of assigning
label �ik to region rik , and P (�m , �n , rm , rn ) the interior affin-
ity model capturing compatibility among regions within one
image, and Q(�u , �v , ru , rv |C) the exterior affinity model for
regions belonging to different images, in which ru and rv are
connected under the segmentation propagation C. More details
are discussed in Section III-B.

III. CO-SEGMENTATION

In this section, the two phases of CCP as well as their im-
plementation details are described. The overall procedure is
outlined in Algorithm 1.

Algorithm 1: The Sketch of Clothes Co-parsing.
Input:

A set of clothing images I = {Ii}N
i=1 with tags {Ti}N

i=1 .
Output:

The segmented regions R with their corresponding
labels L.

PHASE (I): Image Co-Segmentation
Initialize the segmentation propagation C as the whole
image.

Repeat
1 For each image I , group its superpixels into regions

R under the guidance of the segmentation propaga-
tions C by maximizing P (R|C, I) in (3);

2 Train E-SVM parameters for each selected region by
minimizing the energy in (7).

3 Propagate segmentations across images by detections
from the trained E-SVM classifiers by (8).

Until Regions are not changed during the last iteration
PHASE (II): Contextualized Co-Labeling

1 Construct the multi-image graphical model;
2 Solving the optimal label assignment L∗ by optimi-

zing the probability defined on the graphical model as
in (5) by Graph Cuts.

A. Unsupervised Image Co-Segmentation

The optimization in the co-segmentation is to estimate a vari-
able while keeping others fixed, e.g., estimating R, with W,C
fixed. Thus the first phase iterates across the whole dataset (in-
cluding both training and testing images) between three steps,
as follows.

1) Superpixel Grouping: The MRF model defined in (3) is
the standard pipeline for superpixel grouping. However,
the number of regions need to be specified, which is not an
applicable assumption of our problem, since the number
of garment tags does not strictly correspond to the number
of semantic regions.
To automatically determine the number of semantic re-
gions, the superpixel indicator oj is replaced by a list
of binary variables oe defined on the edges between the
neighboring superpixels. Let e denote an edge, oe = 1
if two superpixels se

1 and se
2 connected by e belong to

the same semantic region, otherwise oe = 0. The binary
variable oc with oc = 1 is denoted to indicate all the super-
pixels within the mask of the segmentation propagation c
belonging to the same semantic region, otherwise oc = 0.
Then maximizing (3) can be equivalently optimized by
the following linear programming problem:

arg min
oe ,oc

∑

e

d(se
1 , s

e
2) · oe −

∑

c∈C

h({sj |sj ⊂ c}) · oc

(6)
where d(se

1 , s
e
2) indicates the dissimilarity between two

superpixels, and h(·) measures the consistence of group-
ing all superpixels covered by an E-SVM mask into one
region. h({sj |sj ⊂ c}) is defined as the normalized total
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area of the superpixels covered by the template c. The
dissimilarity d(se

1 , s
e
2) in (6) is calculated according to

the contextual relationship between the detected contours,
that is, d(se

1 , s
e
2) = 1 if there exists any contour across the

area covered by se
1 and se

2 , otherwise d(se
1 , s

e
2) = 0. (6) can

be efficiently solved by using the cutting plane algorithm
as introduced in [42]. Intuitively, C is initialized as the
whole image, since we have no additional segmentation
information at the beginning.

2) Training E-SVMs: The energy E(wk , rk ) in (4) can be
reformulated as the convex energy function of E-SVM as
follows:

E(wk , rk ) =
1
2
||wk ||2 +λ1max(0, 1−wT

k f(rk ))

+ λ2

∑

rn ∈NE

max(0, 1−wT
k f(rn )) (7)

where NE indicates the negative examples, and f(·) is
the appearance feature of a region, following [1]. λ1 and
λ2 are two regularization parameters. Thus maximizing
P (W |R) in Eqn. (4) is equivalent to minimizing the en-
ergy in Eqn. (7), i.e., training the parameters of the E-SVM
classifiers by the gradient descent.
We train an E-SVM classifier for each of the selected re-
gions: each selected region is considered as a positive
example (exemplar), and a number of patches outside
the selected region are cropped as negative examples. In
the implementation, we use HOG as the feature for each
region. The region selection indicator φ(rj ) in (4) is de-
termined by the automated saliency detection [43], which
aggregates various bottom-up cues and priors to generate
spatially coherent yet detail-preserving pixel-accurate and
fine-grained saliency, as shown in Fig. 1(a1). For compu-
tational efficiency, we only train E-SVMs for high confi-
dent foreground regions, i.e., regions containing garment
items.

3) Segmentation Propagation: All possible propagations can
be searched by sliding window method. However, because
we train each E-SVM classifier independently, their re-
sponses may not be compatible. Thus the calibration step
is performed by fitting a logistic distribution with param-
eters αE and βE on the training set. In this way, the
resulting E-SVM response can be computed as

SE (f ;w) =
1

1 + exp(−αE (wT f − βE )
(8)

where f is the feature vector of the image patch covered
by the sliding window.

B. Co-Labeling

In terms of contextualized clothing co-labeling, each image
is described by several coherent regions, and a garment tag is
assigned to each region by optimizing a multi-image graphical
model. In this paper, the graphical model in (5) is defined as an
MRF connecting all the images. We utilize two types of edges
on this graph: the interior edges connecting neighboring regions

Fig. 2. We perform co-labeling by optimizing a multi-image graphical model,
i.e., an MRF connecting all the images in the database. A toy example of the
model is illustrated above, where the green solid lines are interior edges between
adjacent regions within the same images while the black dashed lines are exterior
edges across different images. Note that the connections among different images
are determined by the segmentation propagation.

within an image, and the exterior edges connecting regions of
different images matched by the propagated segmentation. We
show a toy example of the graphical model in Fig. 2.

First, the singleton potential P (�k , rk ) defined in (5) inte-
grates a region appearance model with the garment item location
context. For each garment item, its appearance model is trained
as an SVM classifier based on local region appearance.

To classify each region rk to a specific class of garment,
we train the appearance model as a multi-class SVM classifier
using one-versus-one decomposition based on local region ap-
pearance. Ground-truth label of each region, which is required
to train the SVM classifier, is determined by the most frequently
occurring pixel label inside the region. Let S(f(rk ), �k ) indicate
the score of the appearance model, and f(rk ) be a feature vector
of 40-bins concatenated by the color and gradient histograms.
The singleton potential of assigning label �k to region rk can be
defined as

P (�k , rk ) = sig(S(f(rk ), �k )) · G�k
(Xk ) (9)

where sig(·) is the sigmoid function, and Xk denotes the center
of region rk . The location context G�k

(Xk ) is defined upon the
2-D Gaussian distribution as

G�k
(Xk ) ∼ N (μ�k

,Σ�k
) (10)

where μ�k
and Σ�k

indicate the mean and the covariance of
the location of garment item �k , respectively, which can be
estimated by the training set.

There are two types of pairwise potentials considered in con-
structing the graphical model, that is, interior affinity and exte-
rior affinity respectively.

We define the interior affinity P (�m , �n , rm , rn ) in (5) of two
adjacent regions rm and rn by considering their appearance
compatibility and mutual interactions within an image. The in-
terior affinity can be computed as

P (�m , �n , rm , rn ) = Φ(�m , �n , rm , rn )Ψ(�m , �n ). (11)
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Fig. 3. Some exemplar image pairs in our cross-domain clothing retrieval dataset. For each pair, the image on the left is the online image on the shopping website,
and the right one is the photo uploaded by customers, i.e., offline image. These images appear with diverse human poses, illumination, and varying background
clutters.

Specifically, the appearance compatibility function Φ(�m , �n ,
rm , rn ) encourages regions with similar appearance to be as-
signed as the same tag

Φ(�m , �n , rm , rn ) = exp{−1(�m = �n )d(rm , rn )} (12)

where 1(·) is the indicator function, and d(rm , rn ) is the X 2-
distance between the appearance feature of two regions.

The mutual interactions of two different garment items �m

and �n are modeled by Ψ(�m , �n ). Ψ(�m , �n ) accumulates the
frequency of they appearing as neighbors over all adjacent im-
age patches in the training data. The computation is simple yet
effective, since some garments are likely to appear as neighbors
in an image, e.g., coat and pants, while others are not, e.g., hat
and shoes.

The exterior affinity Q(�u , �v , ru , rv |C) of (5) across different
images constrains that regions of different images that share
similar appearance and locations should have high probability
to be assigned as the same garment tag. It can be thus defined as

Q(�u , �v , ru , rv |C) = G�u
(Xu )G�v

(Xv )Φ(�u , �v , ru , rv )
(13)

where each individual term has been clearly defined in (10) and
(12). Finally, the Graph Cuts algorithm is adopted to optimize
the multi-image graphical model. The final clothing parsing
result can thus be generated according to the outputs from this
graphical model.

IV. APPLICATION: CLOTHING RETRIEVAL

In this section, we will show how we facilitate cross-domain
clothing retrieval by employing our fine-grained clothing
parsing.

A. Data Collection

Notably, current specialized e-commercial websites (e.g.,
amazon.com, tmall.com) usually allow customers to post their
photos with the clothing they have purchased, except exhibit-
ing photos of on sale clothing. Thus, we can collect a large set
of online-offline image pairs by crawling the web data. Specifi-
cally, the online image indicates the product photos uploaded by
merchants and the offline image is the one posted by customers.
Initially, we crawled online-offline image pairs from the cus-
tomer review pages and request several annotators to remove un-
suitable images (e.g., heavily occluded or very low resolutions).
We have collected about 10 000 online-offline upper-clothing
image pairs in high-resolution (about 800 × 500 on average)
from the shopping website, i.e., tmall.com. By extracting from
the text tags of images, semantic attribute category (e.g., color)
and the specific attribute types for each category (e.g., red, black,
white) can be conveniently obtained by parsing these tags. In
this dataset, six categories of clothing attributes (i.e., clothing
category, clothing color, clothing length, clothing shape, collar
shape and sleeve length) and 124 attribute types of all categories
are collected. Note that for different attribute category, there are
different number of attribute types, i.e., 20 types for clothing
category (e.g., T-shirt, Coat), 56 types for color attribute (e.g.,
black, white), six types for clothing length (e.g., long, short), ten
types for clothing shape (e.g., slim, loose), 25 types for collar
shape (e.g., round, lapel) and seven types for sleeve length (e.g.,
long, sleeveless). Some examples of online-offline image pairs
are presented in Fig. 3. As can be seen, the online image and its
corresponding offline image often appear with different scenar-
ios, various poses, lighting, and background clutters while the
fashion images often contain the whole human body and show
with high resolution.
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Note that our main target is the clothing retrieval task, which
aims to match the online images for each query image. It highly
relies on the good feature representation for clothing under di-
verse scenarios. Our large-scale dataset annotated with fine-
grained clothing attribute types enables to learn a powerful
semantic representation of clothing.

B. Clothing Retrieval Via Fine-Grained Parsing

Given a query image, we first parse it into semantic clothing
regions for both online and offline images using the proposed
CCP method, and the parsing model is trained based on the pro-
posed dataset. Note that only the upperbody images are included
in the retrieval dataset. Thus, only segmentation regions labeled
with upperbody related labels are used for describing the image.
Among all tags in the dataset, ten tags including cardigan, top,
blazer, coat, dress, blouse, jackets, shirt, t-shirt, sweater, are se-
lected. After obtaining the parsing results, all segments of these
ten tags are combined into a complete upperbody region. The
region masks of upperbody are cropped and fed as the inputs
for extracting feature representation, and the background pixels
within the masks are set as the mean image values. Benefiting
from the parsing results of the photos, the background clutters
and body parts can be excluded for feature representation of
clothing which enables more accurate clothing localization and
high-level information abstraction.

It is well known that deep CNNs have achieved dramatic
performances in many areas of computer vision [44],[45], in-
cluding the attribute prediction [46] and image retrieval [8].
In this work, we utilize the deep features for describing the
parsed semantic regions. Note that the semantic attributes in-
cluded in the clothing retrieval dataset can provide a powerful
semantic level representation and help obtain better high-level
features for clothing. In this way, we fine-tune the publicly avail-
able ImageNet pretrained VGG-16 classification network [27]
for attributes prediction. Specifically, we transmit the last fully
connected layer into several branches, where each branch cor-
responds to the classification layer for each attribute category.
The neuron number in the output-layer of each branch equals to
the number of attribute types of all categories (i.e., 124 types).
For each branch, we use the cross-entropy loss as the objective
function because each attribute category can have only one ac-
tivated attribute type. If some attribute categories are missed for
some images, the gradients from the corresponding attributes
are set as zeros. The loss weight for each branch is set as 1.
Following the previous works [4], [47], we use the response of
first fully connected layer as feature representation for parsed
regions. We then use the �2 normalization to obtain the final
4096-D features. At last, the Euclidean distance between query
and gallery image is calculated and used as the ranking criterion
according to the relevance to the query.

V. EXPERIMENTS

We first introduce the clothing parsing datasets, and present
the quantitative results and comparisons. Then the comparison
results on clothing retrieval based on clothe parsing are reported.

Fig. 4. Average recall of some garment items with high occurrences in Fash-
ionista. The standard deviation measure (vertical bar) is also shown for the
average recall of each label.

TABLE I
CLOTHING PARSING RESULTS (%) ON

FASHIONISTA AND SYSU-CLOTHES DATASETS

Fashionista SYSU-Clothes

Methods aPA mAGR aPA mAGR

PECS [2] 89.00 64.37 85.97 51.25
BSC [35] 82.34 33.63 81.61 38.75
STF [49] 68.02 43.62 66.85 40.70
Baseline 77.63 9.03 77.60 15.07
Ours-exterior 89.69 61.26 87.12 61.22
Ours-interior 88.55 61.13 86.75 59.80
Ours-grouping 84.44 47.16 85.43 42.50
Ours-full 90.29 65.52 88.23 63.89

We compare our full system (Ours-full) to three previous
methods and other versions.

Some qualitative results of clothe parsing and clothing retrieval
are exhibited as well.

A. Implementation Details:

We utilize the public gPb contour detector [48] to produce
superpixels and contours, and the threshold of the detector is
adapted to obtain about 500 superpixels for each image. Con-
tours help define d(se

1 , s
e
2) in (6) were obtained by setting the

threshold to 0.2. For training E-SVMs, we set λ1 = 0.5 and
λ2 = 0.01 in (7) to train E-SVMs. The appearance model in Sec-
tion III-B is trained by a multi-class SVM using one-against-one
decomposition with an Gaussian kernel.

B. Clothing Parsing Datasets

Our clothe parsing framework is extensively evaluated on two
datasets: SYSU-Clothes2 and Fashionista [2]. SYSU-Clothes is
a newly constructed dataset by us, which consists of 2098 high-
resolution fashion photos with huge human/clothing variations,
e.g., in a wide range of styles, accessories, garments, and poses.
More than 1000 images of SYSU-Clothes are annotated with

2[Online]. Available: http://vision.sysu.edu.cn/projects/clothing-co-parsing/
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Fig. 5. Some successful parsing results on (a) Fashionista and (b) SYSU-Clothes Better viewed in color.

superpixel-level labeling with totally 57 tags, and the rest of im-
ages are only annotated with image-level tags. Some examples
are shown in Fig. 5. Fashionista contains 158 235 fashion pho-
tos from fashion blogs which are further separated into an anno-
tated subset containing 685 images with superpixel-level ground
truth, and an unannotated subset associated with possibly noisy
and incomplete tags provided by the bloggers. The annotated
subset of Fashionista contains 56 labels, and some garments
with high occurrences in the dataset are shown in Fig. 4.

C. Quantitative Evaluation

To evaluate the effectiveness of our framework, we compare
our method with three state-of-art methods: 1) PECS [2] which
is a fully supervised clothing parsing algorithm that combines
pose estimation and clothing segmentation, 2) the BSC [35] for
uncovering the label for each image region, and (3) the semantic
texton forest (STF) [49], a standard pipeline for semantic label-
ing. Note that, we can not compare our performance with Dong
et al. [10] because their results are evaluated on the merged 18
labels instead of using full clothing label set as we used.

The experiment is conducted both on Fashionista and SYSU-
Clothes datasets. Following the evaluation protocol in [2], all

measurements use ten-fold cross validation, thus nine folds for
training as well as for tuning free parameters, and the remaining
for testing. The performances are measured by average Pixel
Accuracy (aPA) and mean Average Garment Recall (mAGR), as
in [2]. As background is the most frequent label appearing in the
datasets, simply assigning all regions to be background achieves
77.63% / 77.60% accuracy, and 9.03% / 15.07% mAGR, on
Fashionista and SYSU-Clothes dataset respectively. We treat
them as the baseline results.

Table I reports the clothing parsing performance of each
method on the Fashionista and SYSU-Clothes datasets. On both
datasets, our method achieves much superior performances over
the BSC and STF methods, as they did not address the specific
clothing knowledge. We also outperform the clothing parsing
system PECS on both datasets. As images of SYSU-Clothes
include more complex backgrounds and clothing styles, the ad-
vantage of our approach is better demonstrated. In fact, the pro-
cess of iterative image co-segmentation effectively suppresses
the image clutters and generates coherent regions, and the co-
labeling phase handles better the variants of clothing styles by
incorporating rich priors and contexts. In addition, we report the
average recall of several frequently occurring garment items in
Fashionista dataset in Fig. 4.
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Fig. 6. Some failure cases on Fashionista (first row) and SYSU-Clothes (second row). Best viewed in color.

Evaluation of Components. We also present an empirical
analysis to demonstrate the effectiveness of the main compo-
nents of our system. Ours-exterior and Ours-interior in Table I
evaluate the effectiveness of the co-labeling phase by only
employing the exterior affinity, and by only using the inte-
rior affinity, respectively. Ours-grouping evaluates the perfor-
mance of superpixel grouping in the co-segmentation phase.
Ours-exterior achieves the best result compared to Ours-interior
and Ours-grouping due to the importance of mutual interac-
tions between garment items, thus performing co-labeling on
a multi-image graphical model benefits the clothing parsing
problem.

D. Visualization

Fig. 5 shows some successful clothing parsing results for
exemplary images from both Fashionista and SYSU-Clothes. It
can be observed that our framework can be able to parse clothing
accurately even in some challenging illumination and complex
background clutters (r1c2,3 r4c2). Moreover, our framework
can also successfully parse some small garments such as belt
(r1c1, r2c1, r2c2, r3c2), purse (r1c3), hat (r1c4, r2c3), and sun-
glasses (r4c2). For reasonably ambiguous clothing patterns such
as dotted t-shirt or colorful dress, our framework could give sat-
isfying results (r2c4, r5c2). In addition, the proposed method
could parse the images with several persons in a single image
simultaneously (r5c5).

Some failure cases are illustrated in Fig. 6. Our co-parsing
framework may lead to wrong results under following scenar-
ios: 1) ambiguous patterns exist within a clogging garment item;
2) different clothing garment items share similar appearance;
3) background is extremely disordered; 4) illumination condi-
tion is poor.

E. Efficiency

We conduct all the experiments on an Intel Dual-Core E6500
(2.93 GHz) CPU and 8GB RAM PC. The run-time complexity
of the co-segmentation phase scales linearly with the number
of iterations, and each iteration costs about 10 s/image. The co-
labeling phase costs less than 1 min to assign labels to a database

3We use “r1c1” to denote the image in row 1, column 1.

Fig. 7. Top-k retrieval accuracy on 5000 retrieval gallery images. We test nine
different numbers of k range from 1 to 80. The number in the parentheses is the
top-20 retrieval accuracy.

of 70 images, which is very effective due to the consistent re-
gions obtained from the co-segmentation phase. And the Graph
Cuts algorithm converges in 3–4 iterations in our experiment.

F. Evaluation on Clothing Retrieval

For training the domain-specific network for clothing attribute
prediction, about 5000 online-offline image pairs are randomly
selected for network training. During the training process, we
augment the training images with the horizontal reflections, and
the network is trained and tested based on Caffe [50] on a single
NIVIDIA Tesla K40c. The network is trained using stochastic
gradient descent with a batch size of 20 images, momentum of
0.9, and weight decay of 0.0005. The learning rate for classifi-
cation layers is initialized at 0.001 and divided by 10 after 30
epochs, and the learning rate of other layers initialized by VGG
network is set as 0.0001. We train the network for roughly 90
epochs. For testing, we used 5000 online-offline image pairs,
and the offline images from customers are treated as queries and
online images are used as the retrieval gallery. On average, the
attribute-aware feature extraction process costs about 0.01 s per
image. Given a parsed semantic region of the query image, it
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Fig. 8. Top-6 retrieval result of our method. The images in first column are the queries, and the retrieved images with red boxes are the same clothing images.
Best viewed in original PDF file.

costs about 0.5 s for feature extraction and clothing retrieval in
our experiment.

To evaluate the effectiveness of the usage of parsing re-
sults for clothing retrieval, we compare our full version
(“Ours_Parsing_FT”) with the version (“Ours_Image_FT”) that
extracts features for the whole image instead of parsed semantic
regions. To further analyze the retrieval performance of deep
features, “Ours_Parsing” reports the results by directly using
the pre-trained VGG network to extract the deep features for
clothing regions. The retrieval performance of using parsing re-
sults by PECS [2] is also reported as “PECS_Parsing_FT” to
enable further comparison with our CCP method. Following the
previous retrieval method [4], we used the top-k retrieval accu-

racy in which we denote a hit if we find the exact same clothing
in the top k results otherwise a miss.

We give full detailed top-k retrieval accuracy results for
different methods in Fig. 7. The k is varied as it is an important
indicator for a real retrieval system. The top-20 retrieval accu-
racy of each model is listed in the corresponding parentheses.
Our method (“Ours_Parsing_FT”) achieves superior retrieval
performance over the version (“PECS_Parsing_FT”) based on
the baseline [2], i.e., 64.2% versus 59.3% on top-20 retrieval
accuracy. Compared to “Ours_Parsing,” the finetuned network
by using attribute annotations can significantly improve the
retrieval performance by 13.9%. This attests the effectiveness of
attributes for learning powerful semantic features for clothing
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retrieval. By comparing with the baseline (“Ours_Image_FT”)
that uses the whole image for extracting clothing features, our
parsing-based clothing retrieval method greatly improve the
performance by 7.6%. It verifies well that our CCP method can
be treated as a effective pre-processing step for better clothing
retrieval performance. Some exemplar retrieval results are
illustrated in Fig. 8.

VI. CONCLUSION

This paper has presented a novel system for jointly parsing
a batch of clothing images given the image-level clothing tags.
Our framework consists of two phases of inference: image co-
segmentation and region co-labeling. The large high-resolution
street fashion photos dataset annotated with pixel-wise labeling
and fine-grained clothing tags is made available to the public for
promoting further academic research on clothing analysis. The
experiments demonstrate that our framework is effective and
applicable compared with the existing methods. In addition, the
parsing-based clothing retrieval pipeline has also been proposed
to utilize the clothing parsing results for clothing retrieval. The
large cross-domain image retrieval dataset with 10 000 online-
offline image pairs has been proposed. The significant improve-
ment on retrieval performance over the baselines further verifies
well the effectiveness of our parsing framework. In future work,
we plan to utilize our framework for the real-world clothing-
related applications, such as virtual outfit try-on system and
clothing attribute prediction. In addition, we will extend our
framework on generic image segmentation tasks and incorpo-
rate deep learning architecture into our framework to further
boost the performances. In addition, the parallel implementa-
tion would be studied to adapt the large scale applications.
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