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Adaptive Object Tracking by Learning
Hybrid Template Online

Xiaobai Liu, Liang Lin, Shuicheng Yan, Senior Member, IEEE, Hai Jin, Senior Member, IEEE, and Wenbin Jiang

Abstract—This paper presents an adaptive tracking algo-
rithm by learning hybrid object templates online in video. The
templates consist of multiple types of features, each of which
describes one specific appearance structure, such as flatness,
texture, or edge/corner. Our proposed solution consists of three
aspects. First, in order to make the features of different types
comparable with each other, a unified statistical measure is
defined to select the most informative features to construct
the hybrid template. Second, we propose a simple yet pow-
erful generative model for representing objects. This model
is characterized by its simplicity since it could be efficiently
learnt from the currently observed frames. Last, we present
an iterative procedure to learn the object template from the
currently observed frames, and to locate every feature of the
object template within the observed frames. The former step
is referred to as feature pursuit, and the latter step is referred
to as feature alignment, both of which are performed over a
batch of observations. We fuse the results of feature alignment
to locate objects within frames. The proposed solution to object
tracking is in essence robust against various challenges, including
background clutters, low-resolution, scale changes, and severe
occlusions. Extensive experiments are conducted over several
publicly available databases and the results with comparisons
show that our tracking algorithm clearly outperforms the
state-of-the-art methods.

Index Terms—Adaptive tracking, hybrid template, matching
pursuit.

I. Introduction

THIS PAPER presents an adaptive tracking algorithm
which learns hybrid templates for objects in video on
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the fly. Herein, the input video is captured by a fixed cam-
era. The template consists of multiple types of features,
including sketchs/edges, texture regions, and flatness regions.
Sketch/edge regions usually consist of various links, ridges,
or their compositions, such as corners and junctions. Texture
regions are likely to contain a large number of objects that
are either too small or too distant relative to the camera. In
contrast, flatness regions are always filled with homogeneous
color or intensity. For the ease of descriptions, we call these
feature types as sketch, texture, and flatness, respectively. In
the past literature [27], the sketch features are well known as
the good features for tracking moving objects. In this paper,
nevertheless, we argue that both texture and flatness features
also contain discriminative information and are thus expected
to have substantial contribution in object tracking, especially
for the complex scenes with various challenges, such as
background clutters, large illumination changes, and severe
occlusions. Based on this argument, we propose to jointly
track various types of features extracted from the foreground
regions and fuse the results to locate the objects of interest
within frames.

A. Related Works

There exist wide varieties of research on feature selection
or feature combination in the visual tracking community [27],
[28], and it is well known that employing multiple diverse
features may lead to improved tracking performance [27].
For example, Stern and Efros [22] proposed to select color
spaces adaptively by a weighted probability measure. Collins
et al. [3] define a variance ratio of the foreground regions
against the local background regions. Grabner et al. [12], [13]
apply the online boosting techniques for realtime tracking to
adaptively choose the best features according to the fitness
with the strong classifier. Yang et al. [29] adopt the so-called
visual attention map to discover the most salient patches to
track. Although encouraging performance has been achieved,
most of these efforts utilize one single feature type, e.g., color
or sketch/corner, which may fail to work while the specific
feature type has less discriminative power. For example, the
object of interest that has similar sketch structure as the local
background regions may challenge the corner-based tracking
algorithms [27].

Therefore, it is better to employ multiple diverse types of
features, rather than using one single type, and adaptively
choose the most informative features while tracking the mov-
ing objects. There are also previous efforts [1], [14], [17],
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Fig. 1. Hybrid object template consists of multiple types of features, in-
cluding sketch, texture, and flatness. (a) Objects within images. (b) Hybrid
templates learned from the foreground regions. Each feature characterizes one
localized image patch.

[28] which focused on how to combine multiple visual cues
to achieve robust object tracking. Hua et al. [10] proposed
to study the problem of inconsistency with respect to the
measurement for fusing visual cues. One recently attempt by
Birchfield et al. [2] aimed to explore the image gradient
information to enhance the performance of object tracking.
These approaches are likely to first predict a single target
model at every tracking step and then fuse the learnt model
to estimate the target state for the newly observed frames.
However, fusing various cues is not trivial due to the uncertain-
ties and high-dimensional target distribution [1]. Therefore, in
this paper, our goal is not to approximate a fused distribution.
Instead, we argue that different types of features should have
equally important roles in tracking and propose to represent
objects of interest using the hybrid templates. Jointly and
adaptively tracking diverse types of features, especially the
texture features and the flatness features, distinguishes our
approach from the traditional corner-based algorithms [2],
[18], [21] which usually ignore the homogeneous features. As
Fig. 1 illustrates, the flatness region in the woman’s white bag
(in the bottom row of the figure) is notably distinctive against
the local surroundings and thus should also be considered as
a “good” feature to track.

B. Method Overview

We represent objects using the so-called hybrid templates,
which consist of three different types of features, namely,
sketch, texture, and flatness. For one given frame, we partition
it into a set of patches of equal size and describe each patch
as one certain feature. Features belonging to different types
usually bear different appearance distributions and thus are
likely to be complementary with each other while describing
the same object. In addition, different features may have
different discriminative power along with the changes of the
local surrounding background, and thus they should have
different confidences in the final decision of object tracking.
Once a hybrid template is constructed, each feature within
the template can be tracked by matching it into the incom-

ing frames, and jointly tracking all the features is able to
exploit the inter-patch geometry structure information, which
usually leads to an enhanced tracking performance. As the
discriminative power of features change along with the object
movements, the hybrid template should be adaptively updated
by either adjusting the feature confidences, or substituting the
old features with the newly discovered ones from the currently
observed frames.

Based on the philosophy of hybrid feature tracking, we
propose an adaptive tracking algorithm. Fig. 2 summarizes
the diagram of our algorithm. The basic idea is to track
objects by learning the hybrid templates and updating the
learnt templates adaptively. More specially, given a set of input
frames each containing the object of interest, our goals are
twofold. One is to learn the hybrid template by extracting the
most discriminative features from the foreground regions. The
other one is to locate each feature of the hybrid template in
the observed frames. We call the above two procedures as
feature pursuit and feature alignment, respectively. These two
steps are mutually supportive. On the one hand, accurately
locating the object of interest within each observed frame is
able to improve the quality of template learning. On the other
hand, a high quality object template is very likely to improve
the accuracy of feature alignment. Therefore, in this paper, we
propose to alternately perform these two procedures for object
tracking.

Moreover, we propose a simple yet efficient generative
model to guide the procedure of feature pursuit. The model is
formulated as maximizing the likelihood ratio of the feature
distributions over the foreground regions against the feature
distributions over the local background regions. Taking the
likelihood ratio as a general metric, different types of features
are made comparable with each other and are able to compete
to explain the same foreground region. This generative model
is characterized by its simplicity as it could be efficiently learnt
from the currently observed frames.

The remainder of this paper is organized as follows. We
first introduce the object representation of hybrid template in
Section II and then develop an adaptive tracking algorithm
in Section III. Extensive experiments with comparisons are
reported in Section IV. Last, we conclude this paper and
discuss the future works in Section V.

II. Hybrid Template Representation

A. Background and Motivation

Generally, objects or scenes can appear at a wide range
of distances or scales in the view of camera, and the same
structure at different scales may produce images with different
statistical properties. Wu et al. [26] proposed an information
scaling theory, which showed that the entropy rate of the image
data and the perceptual uncertainty usually change along with
the viewing distance, as well as the camera resolution. Based
on this theory, they proposed the primal sketch model [9]
which integrates the sparse coding formulation and the Markov
random field theory, and further extended the model to propose
a novel object representation, i.e., the active basis model [25].
In the above methods, the local image patterns are categorized
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Fig. 2. Diagram of the proposed algorithm. (a) Tracking by learning. Given a set of input frames, two iterative procedures, namely, feature pursuit and
feature alignment, are alternately performed to learn the object hybrid templates and match the features of the learnt template into each frame. (b) Hybrid
templates are updated by substituting the old less discriminative features with the new more discriminative ones from the current observations. To allow a
gradual update of the hybrid template, a set of candidate features are also kept. (c) Features of the hybrid template usually span different numbers of frames.

into the sketch-able regions and the non-sketch-able regions by
a sketch-ability criterion. Based on the same methodology of
categorization, we further divide the non-sketch-able regions
into two types, namely, the texture regions and the flatness
regions, and use all the three types of features to build the
hybrid templates while representing objects. Different types
of features usually capture different information of appearance
and are expected to be complementary with each other while
describing the same object.

In this paper, we first define a probabilistic metric to
choose the discriminative or confident features, and then use
the selected features to construct the hybrid template. Each
feature within the template is matched into the current frame
and all the matching results are fused to estimate the object
location as well as object scale. It is predicted that, jointly
tracking different features of the template can exploit the inter-
feature geometry structure, which may lead to an enhanced
performance for visual tracking.

B. Object Model

Let {I1, · · · , IT } denote the consecutive T frames containing
the object of interest and Xt denote the object bounding box to
predict at the tth frame. We assume that each frame contains
one single object and shall discuss the case of multiple objects
tracking in Section III. Given Xt and It , we can crop the
images for the foreground regions and denote the cropping
process as Jt = It[Xt]. Thus, our goals are twofold. One is
to calculate the object locations {Xt}Tt=1 and the other one is
to further learn a hybrid template B from the cropped images
{Jt}Tt=1, which consists of n (n = 10 ∼ 100) features as follows:

B = (B1, · · · , Bi, · · · , Bn) (1)

Bi = (li, �xi, si) (2)

where Bi denotes the ith feature of the template B, li denotes
the feature type, vector �xi denotes the feature location, and si

denotes the scale factor. In this paper, the feature scale is fixed
to be a constant, which is chosen such that every feature is
large enough to be tracked.

The hybrid template consists of a set of features, each
characterizing one local image patch. These features can be
learnt from the observed frames and are allowed to slightly
perturb their locations before they are linearly combined to

generate the observed frames. We illustrate the basic idea
in Fig. 1, where the right column shows the learnt hybrid
templates. The sketch features are illustrated by the ellipsoids
at certain positions and with certain orientations, while the tex-
ture features and flatness features are shown by circles in red
and blue colors, respectively. Formally, letting Bt

i = (li, �xt
i, si)

denote the perturbed version of Bi at the frame t, we have
�xt

i = �xi±�δt
i, where the vector �δt,i represents the shift in location

at the horizontal and vertical directions. These activities are
used to account for the local shape deformations. Thus, the
deformed template Bt contains additional information about
the translation of each feature, denoted as follows:

Bt = (Bt
1, · · · , Bt

i, · · · , Bt
n). (3)

We restrict the displacement in location �δt
i to be smaller than

a small pre-specified value a.

C. Probabilistic Formulation of Modeling Objects

Suppose {Jt}Tt=1 are cropped from the frame sequence,
we can formulate the goal of hybrid template learning as
maximizing a posterior probability, denoted as p(Jt, Bt|B, �),
where � denotes the parameters set. Furthermore, we have

p(Jt, Bt|B; �) ∝ p(Bt|B)p(Jt|B, Bt) (4)

where p(Jt|B, Bt) indicates the likelihood term and p(Bt|B)
indicates the prior term.

Since the deformation from B to Bt is performed for each
feature independently, we can further factorize the prior model
p(Bt|B) as follows:

p(Bt|B) ∝
n∏
i

p(Bt
i|Bi) (5)

where p(Bt
i|Bi) is the probability in term of the deformation

between feature Bi and Bt
i. In this paper, the related energy

function of p(Bt
i|Bi) is calculated as the shift in translation,

namely, �δt
i.

Let Jt
i indicate the image patch matched by the feature

Bt
i. To simplify the model, we assume that: 1) the features

of the hybrid template Bt are approximately orthogonal to
each other, i.e., one image patch Jt

i can only be explained
by one single feature Bt

i, and 2) the deformation from the the
given B to Bt

i, i = 1, . . . , n are independent under p(Jt|B, Bt).
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Let q(Jt) denote the reference distribution pooled over the
local background regions surrounding the objects of interest,
following the active basis model in [25], we can define a log-
probability ratio model as follows:

p(Jt|B, Bt)

q(Jt)
=

n∏
i

p(Jt
i |Bt

i)

q(Jt
i )

. (6)

The hybrid templates, including the feature types, location, and
scales of the feature elements, can be learnt from the observed
images by maximizing (6).

In this paper, one feature descriptor may consist of one or
multiple filters. Let Ki denote the number of filters, and Fj(Jt

i )
denote the response of the jth filter projected on the image
patch Jt

i . Being similar to the active basis model proposed in
[25], the probability ratio of different feature types can share
the same form, as follows:

p(Jt
i |Bt

i)

q(Jt
i )

=
1

Z(λi)
exp{−λi

Ki∑
j=1

h[Fj(Jt
i )]} (7)

where h(·) is a nonnegative function of filter responses,
λi is the weight of the ith feature, and Z(λi) =∑

i exp(−λi

∑
t,j h[Fj(Jt

i )]) is the normalization factor. Note
that: 1) the function h(·) can be designed to perform various
transformations, such as whitening and Sigmoid, up to the
types of features to model, and 2) different features of the same
object template may have different feature weights. While it
is usually difficult to accurately calculate the feature weight λi

and the normalization factor Z(λi), we use a simple method
to directly estimate them as follows.

Parameters Estimation: For a feature Bk, let rk =
∑T

t=1 rt
k

and rt
k =

∑
j h[Fj(Jt

i )], we need to find λk such that

r̄ = Ep(λk) = rk (8)

which matches the theoretical mean value r̄ = Ep(λk) and the
observed mean value rk. We calculate λk by searching a lookup
table. Let {λ̂1, λ̂2, · · · , λ̂M} denote M possible values of λk,
which are sorted in ascending order. For each λ̂m, m ∈ [1, M],
we can estimate Z(λ̂m) and Ep(λ̂m) by

Z(λ̂m) =
∑

i

exp{−λ̂mri} (9)

Ep(λ̂m) =
∑

i

ri exp{−λ̂mri} 1

Z(λ̂m)
. (10)

Thus, the lookup table consists of two vectors,
{Z(λ̂1), · · · , Z(λ̂M)} and {Ep(λ̂1), · · · , Ep(λ̂M)}, both of
which have the ascending order. Therefore, for a given rk,
we can first determine the appropriate position m according
to the inequations Ep(λ̂m) ≤ rk ≤ Ep(λ̂m+1), and further
estimate the parameter λk by performing linear interpolation
between λm and λm+1, namely

λk = λ̂m + (λ̂m+1 − λ̂m)
rk − Ep(λ̂m)

Ep(λ̂m+1) − Ep(λ̂m)
. (11)

We can also compute Z(λk) in a similar way. Note that this
estimation approach is reasonable because λk is 1-D and a
moderate sample size M would be able to provide a robust
estimation for Z(λk). In this paper, we set M = 40 empirically.

Fig. 3. Illustration of the filters for different types of features (see text for
more details).

D. Feature Set

In this section, we discuss how to generalize the unified
model 7 for each of the three types of features, namely, sketch,
texture, and flatness. The main issues include the designs of
filters as well as the filter transformation function h(·).

1) Sketch: We describe the sketch features using Gabor
wavelets. Let Gi = (θi, �xi, si) denote the wavelet for the
feature Bi, where θi denotes the orientation of the wavelet,
�xi denotes the location, and si denotes the scale factor. We set
the location and scale of the wavelet Gi the same as that of
the feature Bi. Let Gcos,�x,θ and Gsin,�x,θ be the Gabor cosine
and Gabor sine filters at location �x and orientation θ. Let
< Jt, Gi > denote the coefficient of the Gabor wavelet Gi

projected on the image Jt , or the filter response, we have
< Jt, Gi >=

∥∥〈
Jt

i , Gcos,�xi,θi

〉∥∥2
+

∥∥〈
Jt

i , Gsin,�xi,θi

〉∥∥2
. Thus, the

orientation of Gi can be determined to maximize the filter
response as follows:

θi = arg max
θ

∑
t

max
�ζt
i

∥∥∥〈
Jt

i , Gcos,�xi+�ζt
i ,θ

〉∥∥∥2

+
∥∥∥〈

Jt
i , Gsin,�xi+�ζt

i ,θ

〉∥∥∥2
(12)

where θ ∈ [−π, π], and the vector �ζt
i contains the allowed

local displacements at the horizontal and vertical directions.
This local maximization operation is used for deforming the
Gabor basis to fit the observed images.

The transformation function h(·) for sketch features is cho-
sen as a crude approximation to the whitening transformation
function as follows:

hsk[< Jt, Gi >] = min(< Jt, Gi >, ζ) (13)

where ζ is a threshold, and set to be ζ = 16 in this paper.
Thus, the probability model 7 can be generalized for the

sketch features as follows:

p(Jt
i |Bt

i)

q(Jt
i )

=
1

Z(λsk
i )

exp{−λsk
i hsk[< Jt, Gi >]}. (14)

2) Texture: We use the locally normalized histogram of
oriented gradient (HOG) [6] to describe texture features. As
illustrated in Fig. 3, we uniformly divide each patch into
2 × 2 cells of equal size, and extract a 9-bin HOG for each
cell. We further concatenate these four HOG histograms to
form a 36-bin histogram, each bin of which is considered as
one independent filter, denoted as F txt

j (Jt
i ), and thus the total

number of filters for texture features is K = 36. Since the
probability distributions over texture regions usually bear the
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bandpass form [26], as illustrated in Fig. 3, we can define the
corresponding filter transformation as follows:

htxt[F txt
j (Jt

i )] =

∣∣∣∣∣F txt
j (Jt

i ) − 1

K

K∑
l=1

F txt
l (Jt

i )

∣∣∣∣∣
2

. (15)

Thus, the unified model 7 can be generalized for texture
features as follows:

p(Jt
i |Bt

i)

q(Jt
i )

=
1

Z(λtxt
i )

exp{−λtxt
i

∑
j

htxt[F txt
j (Jt

i )]}. (16)

3) Flatness: We describe the flatness features using the
intensity values at different positions. The range of intensity
value is evenly quantized into multiple bins, e.g., 16. Thus,
the total number of filters for the flatness features is the
product of the patch size and the number of bins. This leads
to a large number of filter parameters to estimate, which
may be computationally infeasible. Since the intensities at
different positions within the same flatness patch are usually
concentrated to one specific value, it is reasonable to assume
that filters of the same bin at different positions have the
same response. This assumption reduces the number of filters
for flatness features to be the same as the number of bins.
Formally, let Jt

i (�x) denote the intensity value at the position
�x, |Jt

i | denote the number of pixels within the patch Jt
i ,

Ffl
j [Jt

i (�x)] be the response of the jth filter at the position �x, and
Ffl

j (Jt
i ) denote the corresponding position-free filter response.

Actually, Ffl
j [Jt

i ] is calculated as the fraction of pixels with
that particular intensity bin and we have

Ffl
j [Jt

i ] =
1

|Jt
i |

∑
�x∈Jt

i

Ffl
j [Jt

i (�x)] (17)

Ffl
j [Jt

i (�x)] =

{
1, J t

i (�x) ∈ jthbin

0, otherwise.
(18)

The transformation function for the flatness features is sim-
plified as hfl[Ffl

j (Jt
i )] = Ffl

j (Jt
i ), since the intensity distributions

over flatness patches are usually with the form of an indicator
function, as illustrated in Fig. 3. Accordingly, we have the
model for flatness features as follows:

p(Jt
i |Bt

i)

q(Jt
i )

=
1

Z(λi)
exp{−

∑
j

λih
fl[Ffl

j (Jt
i )]}. (19)

In summary, our proposed hybrid template consists of three
types of features, namely, sketch, texture, and flatness, each
of which is described as one or multiple filters. For a given
image patch, we first associate it with different feature types
and calculate the likelihood ratios defined in 14, 16, and
19, respectively. Next, the feature type can be heuristically
determined in favor of the type that achieves the maximum
ratio. In this way, the ratio is used as a general metric, with
which the features of different types are made comparable to
each other and thus can compete to explain the same patch of
the observed frame.

III. Object Tracking Via Learning

Hybrid Template

As mentioned above, our goals are twofolds: 1) to estimate
the optimal object location Xt within each observed frame It ,
and 2) to build and maintain the hybrid object template from
the foreground images {Jt = It[Xt]}. We formulate these two
targets as maximizing a posterior as follows:

max
{Xt},{Bt}

p
({Xt}, {Bt}, {It}|B; �

)
(20)

which can be further rewritten as follows:

max
{Xt},{Bt}

p({Bt}, {It}|B, {Xt}; �)p({Xt}; �) (21)

or

max
{Xt},{Bt}

p({Xt}, {It}|B, {Bt}; �)p({Bt}|B)

⇒ max
{Xt},{Bt}

p({Jt}|B, {Bt}; �)p({Bt}|B) (22)

where p({Xt}; �) is the prior term and � indicates the motion
parameter which shall be further defined in the following
sections.

On the one hand, 21 indicates that if we have an accurate
object position Xt in the frame It , we can crop the image of
foreground region, denoted as Jt = It[Xt], and learn the hybrid
template from these roughly aligned images {Jt}Tt=1. On the
other hand, 22 indicates that if we have a good object template
B, the tracking task may degenerate to matching the given
object template with the observed frames. More specially, we
can match every feature within B with the local patches in
the frame It to estimate the feature positions within It , and
further fuse all the estimated positions of individual features
to determine the object bounding box Xt . Therefore, we could
introduce an iterative procedure to alternately optimize the
object location and the hybrid template.

A. Feature Pursuit on Roughly Aligned Images

Suppose the object bounding boxes {Xt}Tt=1 are estimated
and the corresponding images of foreground regions, i.e.,
{Jt}Tt=1, are cropped, we propose a feature pursuit procedure
to learn the templates {Bt}Tt=1. We formulate this task by

maximizing the probability ratio, namely,
∏

t
p(Jt ,Bt |B)

q(Jt ) , as
introduced in Section II-C, with the given distribution q(Jt)
over the local background regions. After expanding the above
ratio and applying the logarithm, we have

max
Bt

∏
t

p(Jt, Bt|B)

q(Jt)
(23)

⇒ max
Bt

∏
t

p(Bt|B)p(Jt|B, Bt)

q(Jt)

⇒ max
Bt

∑
i,t

log p(Bt
i|Bi) + log

p(Jt
i |Bt

i)

q(Jt
i )

⇒ max
Bt

∑
i

GD(Bi) + GF (Bi)

⇒ max
Bt

∑
i

G(Bi)
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Algorithm 1 Feature pursuit on roughly aligned images

1: Input: Images J = {J1, · · · , JT } that contains the same
object only.
Output: Hybrid template B = {B1, · · · , Bn} and parameter
λ = {λ1, . . . , λn}.

2: Collect candidate feature set: We partition each image into
a set of patches of equal size, and collect the patches that
have the same position but locate within different images
to form one candidate feature, denoted as Bj . Let 	 = {Bj}
denote the candidate feature set.

3: Parameter estimation: For each candidate feature Bj ∈ 	,
estimate its feature weight λj using 11.

4: Feature measurement: For each Bj ∈ 	, calculate its
feature gain G(Bj) = GD(Bj)+GF (Bj) using 23. Let i = 1
and B = ∅.

5: Feature selection: Let Bi denote the candidate feature that
has the largest gain among all the features in 	. B =
B

⋃
Bi and i = i + 1.

6: Local inhibition:

6.1 let ∇Bi = {Bj = {
j, �xj, sj}; ∀j, |�xi − �xj| ≤ ε} for a
small ε > 0;

6.2 	 ← 	 \ (∇Bi ∪ Bi).

7: Let i ← i + 1, if i ≤ n, go to 5; otherwise, exit.

where G(Bi) indicates the gain of feature Bi, i.e., how well
the feature Bi fits with the observed frames. We further divide
G(Bi) into two independent parts, namely, the deformation
part GD(Bi) = 1

T

∑
t log p(Bt

i|Bi) and the feature fitting part

GF (Bi) =
∑

i
1
T

∑
t log p(Jt

i
|Bt

i
)

q(Jt
i
) .

We apply the matching pursuit algorithm [20] to learn the
object template {B} from the observed images {Jt}Tt=1, by
maximizing the total gain defined in 23. Fig. 4 illustrates
the feature pursuit procedure. When a feature is selected, the
feature should be shared by all the observed images, in the
sense that a perturbed version of this feature is generated to
fit with the specific image. Therefore, the perturbed versions
of the selected feature locate within different images often
characterize the same pattern. For example, in Fig. 4, when
the feature with yellow color is selected, it is attracted to the
nearby region of “white hat” in each observed image.

We summarize the pursuit procedure in Algorithm 1. Note
that we assume one image patch can only be explained by
one feature, which leads to the local inhibition operation after
selecting the current feature, as described in Step 6. Herein,
we set ε as the half of the lattice width such that there is no
overlapping between the selected features. However, it is pos-
sible to allow overlapping to some extent in implementation.

B. Feature Alignment Via Heuristic Search

Suppose the object template B is learnt, the goal of feature
alignment is to match the features of B into the observed
frames [I1, . . . , It, . . . , IT ]. In order to exploit the inter-feature
geometry structure information, we represent the features of B
using an adjacent graph, denoted as GS = (VS, ES), where VS

indicates a set of graph vertices each representing one feature
from the template B, and ES indicates a set of graph edges

each linking two spatially adjacent features. For each vertex of
GS , there are at most four edges linking to other four nearest
vertices. In addition, we evenly partition every observed frame
It into a set of local patches of equal size, and further collect
the patches that roughly have the same position but locate
within different frames to construct one candidate feature. Let
	 denote the candidate feature set. Taking these candidates
features as graph vertices, we build another adjacent graph,
denoted as GT = (VT , ET ). Note that, every vertex in VT indi-
cates a set of image patches. In this context, we can formulate
the problem of feature alignment between B and the candidate
feature set 	 as seeking the optimal correspondence between
the source graph GS and the target graph GT . Formally, we
denote the desired mapping relationship as C : VS → VT .

We use the branch-and-bound method to heuristically seek
the optimal correspondence between the source graph GS and
the target graph GT . Each vertex v ∈ VS is initially matched
to all vertices in the graph GT , and we denote this initial
mapping as M(v) = VT . The branch-and-bound method
starts with a graph vertex in GS and branch to other vertices
while pruning the bad mappings. Each graph vertex in GS is
originally matched to a set of vertices in GT , depicted as the
plots in the lines.

Let U denote the seed set that stores the currently explored
vertices of GS and C be a set of mapping, each indicating one
possible correspondence of U . The feature alignment proce-
dure contains three main repetitive steps: 1) select one vertex
from VS and add it into the seed set U ; 2) branch the seed set U
to one of its adjacent vertices u′, and meanwhile, branch every
mapping of U to the matches of u′, i.e., C = C⊗M(u′), where
⊗ denotes the Cartesian product of two sets; and 3) prune the
bad mappings that achieve poor confidences in term of a bound
cost function, which returns the shape similarity between two
position sets. The above steps are conducted iteratively until
the seed set U contains all the vertices of VS .

We use the squared Procrustes distance [16] to define the
bound function BCost(·). Denote Y and Y ′ as two matched
position sets, and their corresponding complex forms as J (Y )
and J (Y ′). We have

BCost(Y, Y ′) = 1 − |J (Y )∗ · J (Y ′)|2
J (Y )∗ · J (Y ) · J (Y ′)∗ · J (Y ′)

(24)

where J (Y )∗ and J (Y ′)∗ are the conjugations of J (Y ) and
J (Y ′) [16].

The procedure of feature alignment via heuristic search is
summarized in Algorithm 2. Note the following.

1) The inputs of Algorithm 2 include the object template
B, which is previously learnt from the frame sequence,
and the currently observed frames {It}Tt=1. The outputs
are the optimal correspondence between the feature set
VS and the candidate feature set VT extracted from the
observed frames.

2) While constructing the target graph GT , each vertex
indicates a set of image patches which roughly have the
same positions but locate within different frames.

3) In Step 3, we initially match each vertex v ∈ VS to
all the vertices VT in the graph GT . In implementation,
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Fig. 4. Feature pursuit procedure. (a) Input frame. The red box indicates the foreground region and the yellow box indicates the local background region
surrounding the object. p denotes the feature distribution pooled over the foreground region and q denotes the feature distribution pooled over the local
surrounding background region. (b) Shared feature pursuit. While one patch of one image is selected, it must be shared by other images. (c) Illustrations of
information gain GF + GD for different patches. The patches are selected sequentially according to the information gain.

Algorithm 2 Feature alignment via heuristic search

1: Input: Template B and the observed frames {It}, t =
1, . . . , T .
Output: The optimal correspondence C∗; object bounding
box Xt within It .

2: Build the source graph GS = (VS, ES) for the object
template B.
Collect candidate features from the observed frames and
build the target graph GT = (VT , ET ).

3: For each v ∈ VS , set M(v) = VT .
4: Select v0 ∈ VS , set U = {v0}, C = {M(v0)}, V = VS \ {v0}.
5: While V �= ∅:

5.1 select one vertex u ∈ U, u′ ∈ ∇u, u′ ∈ V , where
∇u indicates the set of vertices being adjacent to
the vertex u;

5.2 branch the seed set, U = U ∪ {u′},V = V \ {u′},
C = C ⊗ M(u′), ⊗ indicates the Cartesian product
of two sets;

5.3 for each C ∈ C,
if BCost(C,U) > η (set to be η = 0.5), C = C \ {C}.

6: Set C∗ = arg minC BCost(C,U), for ∀C ∈ C.
7: Estimate the object location and scale, namely, Xt , accord-

ing to C∗ : VS → VT .

we can compute the appearance similarities between v

and the vertices in VT , and remove the bad matches to
improve the computational efficiency.

4) We denote C as a set of mappings, i.e., each element of
C represents one possible correspondence between the
seed set U and the candidate feature set. In Step 5.2,
while branching the seed set to one adjacent vertex u′,
we set C = C ⊗M(u′) to branch every mapping in C to
the matches of u′.

5) The branch-and-bound method may generate multiple
mappings, and in Step 6, we set C∗ as the best mapping,
which bears the minimum cost in terms of BCost().

C. Simultaneous Feature Alignment and Feature Pursuit
(SFAFP)

We alternately perform Algorithm 1, i.e., the feature pursuit
procedure, and Algorithm 2, i.e., the feature alignment proce-
dure, to learn the object template from the frame sequence
{It}, and meanwhile, track each feature of the template for
the observed frames.

Algorithm 3 Procedure for SFAFP

1: Input: Observed frame sequence I = {I1, · · · , IT }, initial
hybrid template B = {B1, . . . , Bn}, and parameters λ =
{λ1, . . . , λn}.

2: Do (iteration body):

1) Feature alignment.

1.1 Call Algorithm 2 with the inputs of {It} and B,
to obtain the optimal mapping C∗ : VS → VT

and the object bounding boxes {Xt}, t ∈ [1, T ];
1.2 For each t ∈ [1, T ], crop the image of fore-

ground region, denoted as Jt = It[Xt].

2) Set N = ∅; for each Bj ∈ VT , ∀Bi ∈ VS, C∗(Bi) �=
Bj , set N = N

⋃
Bj .

3) Feature pursuit.
Call Algorithm 1 with the inputs of {Jt}Tt=1 to obtain
a new object template B̂ = {B̂1, . . . , B̂n} and the
feature parameters λ̂ = {λ̂1, . . . , λ̂n}.

4) Template update.

4.1 Parameters update: For each Bi = (li, �xi, θi) ∈ B,
i ∈ [1, n]

λi ← (1 − β)λi + βλ̂i

�xi ← (1 − β)�xi + β�̂xi

where β is the constant forgotten factor.
4.2 Features update: First, select m > 1 features

from the newly occurred feature set N which
achieve the most feature gains and add them into
the template B. Second, re-rank all features of
B according to feature parameters λi. Last, the
top n features are labeled as formal features, the
bottom feature is removed, and the remaining
features are labeled as candidate features.

3: Output: Object location {Xt}Tt=1 and refined hybrid tem-
plate B.

We summarize the tracking procedure in Algorithm 3. Note
the following.

1) The inputs of this procedure are a set of observed frames
and the hybrid template B learnt from the previous
frames. The choice of the observed window size, namely,
T , is essentially a tradeoff between performance and
efficiency. We set T = 15 empirically in this paper. We
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Algorithm 4 Procedure for Real-time Adaptive Object Tracking

1: Input: Real-time Video Sequence
2: Initialization

2.1 For each observed frame,
Update the background modeling module [11] using
the current observations;

2.2 Set templates set R = ∅;

3: For each currently observed frame It ,

3.1 Extract foreground regions using the background
model [11];

3.2 For each object, (B, λ) ∈ R, (tracking)

3.2.1 Call Algorithm 3 with the inputs of frames
{It−T , · · · , It} and (B, λ);

3.2.2 Output: the object bounding box Xt in frame It;

3.3 For each foreground bounding box X in frame It ,
which is not matched with any interest objects,

3.3.1 Crop image J = It[X];
3.3.2 Call Algorithm 1 with the input of a single image

J , to obtain the initial template (Bnew, λnew);
3.3.3 R = R ∪ {(Bnew, λnew)};

shall extend Algorithm 3 to tackle the real-time frame
sequence in the later section.

2) The algorithm contains three main steps as follows:

a) feature alignment;
b) feature pursuit;
c) template update.

The first two steps are used to alternately optimize the
object locations {Xt} and the object template B, while
the third step is used to gradually update the learnt
template.

3) All the features in the hybrid template are labeled
as “formal” or “candidate” according to their weights,
namely, λi. Only the formal features are used while
conducting feature alignment.

D. Motion Prior

We introduce the multiframe motion prior, formulated as
p({Xt}; �) in 21 and 22, into our tracking algorithm. The
model is first learnt from the current tracking results and then
applied to the the newly occurred frames to predict the object
locations and scales within frames. Formally, we denote the
motion parameter as � = (v, η, σ), which consists of three
components, i.e., the velocity v, the initial position η, and
the noise level σ. Each component has four sub-components,
including its horizontal coordinate, vertical coordinate, width,
and height. Formally, we have v = (vx, vy, vw, vh)′, η =
(ηx, ηy, ηw, ηh)′, and σ = (σx, σy, σw, σh)′. Thus, we can
estimate the object bounding box X̂t at frame t by X̂

t
= η+ vt.

Herein, we assume X̂t follow with a Gaussian distribution, i.e.,
X̂t ∼ N (Xt , σ), which can be learnt from the previous tracking
results. This multiframe motion prior can be used to improve
the robustness against the common tracking challenges, such
as background clutters, full/partially occlusions, or objects
intersections.

E. Adaptive Object Tracking for Real Video Sequence

Taking all above components, we now extend the proposed
SFAFP procedure in Algorithm 3 to track multiple objects
in real-time video sequences. As illustrated in Fig. 2, the
observed frames are accumulated from the real video sequence
and taken as inputs to call Algorithm 3. We move the observa-
tion window of size T with a fixed step, e.g., two frames, and
process each window step by step. Herein, we summarize the
entire real-time tracking procedure in Algorithm 4 and remark
several discussions as follows.

1) The real-time tracking algorithm begins with an initial-
ization stage, where the background model [11] is built
for detecting the foreground regions within each frame.

2) While processing the tth frame, the current learnt tem-
plates R as well as the previous T frames are used
as inputs to call Algorithm 3. This leads to a sliding-
window-based tracking procedure, which is also widely
employed in the previous papers [27].

3) In Step 3, we first track each object in R into the
current frame It , and then detect the newly occurred
objects from the remaining foreground regions using the
approach proposed by Hu et al. [11]. Next, for each new
object, the Steps 4.1.1–4.1.3 are conducted to initialize
the corresponding object template.

F. Discussions About Model Drift

Online model-based tracking algorithms are usually exposed
to the risk of model drift that roots in their ill-posed nature
[27]. Although it is still an open problem in tracking commu-
nity, we enforce three novel characteristics of our approach.

1) Our method adaptively updates the learnt object tem-
plates by using both the jump dynamic, such as replacing
the older and lower confident features with the newer
and higher confident ones, and the diffusion dynamic,
such as updating the feature parameters. Thus, the over-
all update procedure is well driven by the bottom data
information, as justified in [32].

2) The model pursuit procedure is conducted on a batch of
deferred observations, which is more robust compared
to the traditional sequential inference [27], especially
when there exist various scene noises, lighting changes
or occlusions in video scenes.

3) In the step of feature alignment, we only use the formal
features, namely, the features that are more confident,
for localizing the objects. Although the above compo-
nents cannot completely solve the problem of model
drift, we can obtain encouraging experiment results over
challenging video scenarios as demonstrated in the later
section.

IV. Experiments

In this section, we apply our approach to visual tracking
and carry out the experiments with comparisons to the state-
of-the-art algorithms.

A. Experiment Settings

1) Parameters: We start by introducing the parameter
setting for our proposed approach. The size of the observed
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TABLE I

Details of Databases Used in This Paper

TRECVID08 [23] LHI [30] PETS [8] I-80
No. of clips 10 8 8 8

No. of frames 13 450 8644 6455 7920
No. of objects 436 241 112 104

window is set as T = 15 frames. The size of image patch
is fixed to be 12 × 12 pixels. The allowed displacement in
location is set to be a = 5 pixels. We use three types of features
to describe image patches.

1) For sketch features, the size of the Gabor wavelets is
fixed to be 12 × 8 pixels. The orientation θ takes 15
equally spaced angles within the range of [0, 2π].

2) For texture features, we first partition each patch into
four cells, as illustrated in Fig. 3. Then, we extract a
9-bin normalized gradient histogram from each cell and
concatenate them to form a 36-bin histogram.

3) For flatness features, we use a 16-bin local histogram
of image intensity. Note that, for texture and flatness
features, each bin of the histogram is considered as
one filter in the unified probability model 7. We fix the
number of features in the hybrid template to be n = 60.

We perform Algorithm 4 every two frames and update the
hybrid template through replacing one candidate feature with a
newly selected feature, and gradually update model parameters
with the forgotten factor β = 0.2 (see Algorithm 3). The
maximum number of iterations is set to be 10 empirically.

2) Platform: We implement Algorithm 4 using the C/C++
language and integrate it with a surveillance system, INT-
MON [11], which has been applied in industry. The system is
able to process 15–20 f/s on an Intel Xeon X5450 Computer
with 3.0 GHz central processing unit and memory size of
4 GB.

3) Dataset: The video clips we used are selected from
four public datasets: TRECVID08 [23], Lotus Hill Institute
(LHI) [30], PETS [8], and I-80.1 These datasets include
challenging scenes with severe occlusions, scale changes, or
complex background structure. We manually annotate the ob-
ject bounding boxes within each frame as the ground truths of
object trajectories. Table I depicts the details of each database.

4) Benchmark: The benchmark baselines include four
state-of-the-art algorithms as follows.

a) The method proposed by Birchfield et al. [2] which
combines the ideas of Lucas-Kanade and Horn-Schunck
to jointly trace sparse interest points and edges, named
JLK.

b) The spatial selection algorithm for attentional visual
tracking (AVT ) proposed by Yang et al. in [29].

c) The online feature space selection algorithm proposed by
Collins et al. [3] (Collins), which uses the two-class log-
likelihood variance ratio to measure feature salience.

d) The particle filtering (PF) tracking method [4]. We keep
the parameter settings of the above baselines the same as
in their original papers.

1Available at http://ngsim.fhwa.dot.gov.

Fig. 5. Adaptive tracking by feature pursuit. Each type of feature is plotted
with different color.

Fig. 6. Sample results on TRECVID08, PETs, I-80, and LHI test videos.
Each row shows the images of one scene overlaid with the object bounding
boxes.

5) Metric: The evaluation metrics we use are listed as
follows.

a) Recall (frame-based), defined as number of correctly
matched objects/total number of ground-truth objects.

b) Precision (frame-based), number of correctly matched
objects/total number of output objects.

c) Fa/Frm, number of false alarms per frame (the smaller
is the better), calculated by averaging over all the test
videos.

d) Mostly tracked (%), MT, percentage of ground truth
trajectories which are covered by tracker output for more
than 80% in length.

e) Mostly lost (%), ML, percentage of ground-truth trajec-
tories which are covered by tracker output for less than
20% in length (the smaller the letter).

A program is written to compute above metrics automatically.
The key point is the matching between ground-truth and the
tracking results, which is non-trivial itself. We implemented
this part by the Hungarian algorithm based on the VACE
evaluation software [15].

B. Results with Analysis

Fig. 5 depicts a set of hybrid templates learnt from one
test video from the LHI database [30]. The top row shows
four frames overlaid with tracking results and the numbers
of three different types of features contained in the current
template. The bottom row shows the learnt hybrid templates



LIU et al.: ADAPTIVE OBJECT TRACKING BY LEARNING HYBRID TEMPLATE ONLINE 1597

TABLE II

Results on TRECVID08 Database [23]

Recall (%) Precision (%) Fa/Frm MT (%) ML (%)
PF [4] 68.3 63.50 3.352 65.6 15.4
Collins [3] 79.4 75.1 1.723 71.4 12.2
JLK [2] 84.7 85.9 0.224 81.5 3.9
AVT [29] 82.4 85.1 0.245 82.6 5.6%
Ours 88.3 87.7 0.145 83.6 3.6

TABLE III

Results on LHI database [30]

Recall (%) Precision (%) Fa/Frm MT (%) ML (%)
PF [4] 75.4 73.2 0.558 76.9 15.8
Collins [3] 80.5 81.6 0.347 84.7 8.2
JLK [2] 86.3 84.7 0.257 87.5 6.3
AVT [29] 87.2 83.4 0.369 88.6 3.6
Ours 89.3 85.7 0.235 90.5 2.8

TABLE IV

Results on PETs database [8]

Recall (%) Precision (%) Fa/Frm MT (%) ML (%)
PF [4] 65.6 68.0 1.251 72.1 19.2
Collins [3] 78.1 80.6 0.859 76.8 8.7
JLK [2] 85.2 86.4 0.378 79.2 4.9
AVT [29] 86.6 84.1 0.457 81.3 4.5
Ours 87.1 85.9 0.360 82.7 4.3

while tackling ten different frames. From the results, we can
draw the following conclusions.

1) The hybrid templates are adaptively updated according
to the local background regions.

2) The feature parameters, such as orientation and lo-
cations, are also adaptively changed to maximize the
information gains defined in 23.

3) Most of the foreground regions of interest have been
explained by more than one types of features, which
coincides with our motivation, namely, different types of
features play equally important roles in visual tracking.

Fig. 6 shows several video frame sequences overlaid with
the tracking results. Most of the videos are very challenging
due to the crowded objects, scale changes, severe occlusions,
and low resolution. For example, in the first scenario from
the TRECVID test videos, the pedestrians with the IDs of
#0, #3, #4, #5, #6, #7 step out the airport with severe inter-
object occlusions and interactions. Also, there are about 10
pedestrians in the second scenario from the PETs database and
about 15 cars in the third scenario from the I-80 database. Our
method can work very well on above videos against various
challenges. In addition, it is interesting to observe that, while
there are severe occlusions in the videos, our method can still
work correctly, because it combined the multiframe motion
prior to predict the object locations.

Tables II–V show the comparisons of different metrics
among our approach and other four algorithms, includ-
ing PF [4], Collins [3], JLK [2], and AVT [29], on the
TRECVID08 [23], LHI [30], PETs, and I-80 datasets. From

TABLE V

Results on I-80 Database

Recall (%) Precision (%) Fa/Frm MT (%) ML (%)
PF [4] 67.4 65.1 3.48 69.8 12.5
Collins [3] 80.8 81.4 0.926 72.3 7.8
JLK [2] 89.1 85.6 0.318 85.2 5.1
AVT [29] 88.1 86.8 0.227 85.7 4.9
Ours 90.2 87.5 0.139 86.3 2.3

the results, we can have the following observations.
1) Among all the algorithms, ours achieves the best recall

rates and precision rates on all the four databases. For
JLK [2], which uses the similar idea of jointly tracking
multiple features, although its performance is already
good, our approach outperforms it with the margin of
3.6 percentage in term of the precision rate and the
margin of 1.8 percentage in term of the recall rate on
the TRECVID database.

2) Our approach achieves the false alarm number per frame
(Fa/Frm) of 0.145, 0.235, 0.360, and 0.139, on the
TRECVID08, LHI, PETs, and I-80 databases, respec-
tively. In contrast, the corresponding best results of other
four baselines are 0.224, 0.257, 0.378, and 0.227, which
is much lower than the proposed solution. In addition,
the MT (and ML) of our approach are 83.6% (3.6%),
90.5% (2.8%), 82.7% (4.3%), and 86.3% (2.3%) on the
TRECVID08, LHI, PETs, and I-80 databases, respec-
tively. These results also clearly outperform the corre-
sponding best results achieved by other four baselines,
namely, 82.6% (3.9%), 88.6% (3.6%), 81.3% (4.5%),
and 85.7% (4.9%). The comparisons on the above three
metrics show that our approach is much more applicable
for practical applications, e.g., video surveillance.

V. Conclusion

This paper proposed to jointly track different types of fea-
tures, including sketch, texture, and flatness, by representing
the objects of interest with the hybrid templates. A simple
yet effective generative model was developed to learn the
hybrid template from the batch of observations, and meanwhile
to estimate the object location and scale robustly. Extensive
experiments with comparisons showed that our algorithm
clearly outperforms several popular tracking algorithms and
works very well over various challenging scenarios against
various challenges, such as background clutters, scale changes,
or frequent object intersection.

The proposed model in 7 naturally decomposes a color
image into three components, i.e., flatness regions, texture,
and sketch/shape. The proposed feature pursuit algorithm have
to compare among these three dictionaries. Each time, we
choose a sketch, a texture feature or a flatness feature so that it
tells the maximum statistic difference between the foreground
and background images, i.e., achieves the maximum likelihood
ratio as defined in 7. Actually, our work can be considered as a
practical extension of the perceptual transition theory proposed
by Wang and Zhu [24] and the active basis theory proposed
by Wu et al. [25].
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We plan to further investigate this work from two aspects.
First, the hybrid template can be extended by introducing
a hierarchical structure of image patches. The patches at
multilevel scales may be overlapped within each other and thus
expected to capture rich information with images. Second, in
order to improve the robustness against large-scale changes,
we plan to introduce additional feature generation stage when
tracking the hybrid templates. This idea is motivated by the
following observation: when an object moves toward (or away
from) the camera, one older patches shall be split into several
new patches (or several older patches shall be merged into one
single patch).
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