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Abstract

Despite progress in visual perception tasks such as im-
age classification and detection, computers still struggle to
understand the interdependency of objects in the scene as
a whole, e.g., relations between objects or their attributes.
Existing methods often ignore global context cues captur-
ing the interactions among different object instances, and
can only recognize a handful of types by exhaustively train-
ing individual detectors for all possible relationships. To
capture such global interdependency, we propose a deep
Variation-structured Reinforcement Learning (VRL) frame-
work to sequentially discover object relationships and at-
tributes in the whole image. First, a directed semantic ac-
tion graph is built using language priors to provide a rich
and compact representation of semantic correlations be-
tween object categories, predicates, and attributes. Next,
we use a variation-structured traversal over the action
graph to construct a small, adaptive action set for each step
based on the current state and historical actions. In particu-
lar, an ambiguity-aware object mining scheme is used to re-
solve semantic ambiguity among object categories that the
object detector fails to distinguish. We then make sequen-
tial predictions using a deep RL framework, incorporating
global context cues and semantic embeddings of previously
extracted phrases in the state vector. Our experiments on
the Visual Relationship Detection (VRD) dataset and the
large-scale Visual Genome dataset validate the superior-
ity of VRL, which can achieve significantly better detection
results on datasets involving thousands of relationship and
attribute types. We also demonstrate that VRL is able to pre-
dict unseen types embedded in our action graph by learning
correlations on shared graph nodes.

1. Introduction

Although much progress has been made in image clas-
sification [7], detection [20] and segmentation [15], we
are still far from reaching the goal of holistic scene
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Figure 1. In each example (left and right), we show the bound-
ing boxes of objects in the image (top), and the relationships and
attributes recognized by our proposed VRL framework (bottom).
Only the top few results are illustrated for clarity.

understanding—that is, a model capable of recognizing
the interactions and relationships between objects, and de-
scribing their attributes. While objects are the core build-
ing blocks of an image, it is often the relationships and
attributes that determine the holistic interpretation of the
scene. For example in Fig. 1, the left image can be un-
derstood as “a man standing on a yellow and green skate-
board”, and the right image as “a woman wearing a blue wet
suit and kneeling on a surfboard”. Being able to extract and
exploit such visual information would benefit many real-
world applications such as image search [19], question an-
swering [1, 9], and fine-grained recognition [27, 4].

Visual relationships are a pair of localized objects con-
nected via a predicate; for example, predicates can be ac-
tions (“kick”), comparative (“smaller than”), spatial (“near
to”), verbs (“wear”), or prepositions (“with”). Attributes
describe a localized object, e.g., with color (“yellow”) or
state (“standing”). Detecting relationships and attributes is
more challenging than traditional object detection [20] due
to the following reasons: (1) There are a massive number of
possible relationship and attribute types (e.g., 13,894 rela-
tionship types in Visual Genome [13]), resulting in a greater
skew of rare and infrequent types. (2) Each object can be
associated with many relationships and attributes, making it
inefficient to exhaustively search all possible relationships
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Figure 2. An overview of the VRL framework that sequentially detects relationships (“subject-predicate-object”) and attributes (“subject-
attribute”). First, we build a directed semantic action graph G to configure the whole action space. In each step, the input state consists of
the current subject and object instances (“sub:man”, “obj:skateboard”) and a history phrase embedding, which captures the search paths
that have already been traversed by the agent. A variation-structured traversal scheme over G dynamically constructs three small action sets
∆a, ∆p, ∆c. The agent predicts three actions: (1) ga ∈ ∆a, an attribute of the subject; (2) gp ∈ ∆p, the predicate between the subject
and object; and (3) gc ∈ ∆c, the next object category of interest (“obj:helmet”). The new state consists of the new subject/object instances
(“sub:man”, “obj:helmet”) and an updated history phrase embedding.

for each pair of objects. (3) A global, holistic perspective of
the image is essential to resolve semantic ambiguities (e.g.,
“woman wearing wetsuit” vs. “woman wearing shirt”). Ex-
isting approaches [22, 10, 16] only predict a limited set of
relationship types (e.g., 13 in Visual Phrase [22]) and ig-
nore semantic interdependencies between relationships and
attributes by evaluating each region within a scene sepa-
rately [16]. It is impractical to exhaustively search all pos-
sibilities for each region, and also deviates from human per-
ception. Therefore, it is preferable to have a more principled
decision-making framework, which can discover all rele-
vant relationships and attributes within a small number of
search steps. To address the aforementioned issues, we pro-
pose a deep Variation-structured Reinforcement Learning
(VRL) framework which sequentially detects relationship
and attribute instances by exploiting global context cues.

First, we use language priors to build a directed seman-
tic action graph G, where the nodes are nouns, attributes,
and predicates, connected by directed edges that represent
semantic correlations (see Fig. 2). This graph provides a
highly-informative, compact representation that enables the
model to learn rare relationships and attributes from fre-
quent ones using shared graph nodes. For example, the se-
mantic meaning of “riding” learned from “person-riding-
bicycle” can help predict the rare phrase “child-riding-
elephant”. This generalizing ability allows VRL to handle
a considerable number of possible relationship types.

Second, existing deep reinforcement learning (RL) mod-
els [24] often require several costly episodes of trial and
error to converge, even with a small action space, and our
large action space would exacerbate this problem. To ef-
ficiently discover all relationships and attributes in a small

number of steps, we introduce a novel variation-structured
traversal scheme over the action graph which constructs
small, adaptive action sets ∆a,∆p,∆c for each step based
on the current state and historical actions: ∆a contains can-
didate attributes to describe an object; ∆p contains candi-
date predicates for relating a pair of objects; and ∆c con-
tains new object instances to mine in the next step. Since
an object instance may belong to multiple object categories
which the object detector cannot distinguish, we introduce
an ambiguity-aware object mining scheme to assign each
object with the most appropriate category given the global
scene context. Our variation-structured traversal scheme of-
fers a very promising technique for extending the applica-
tions of deep RL to complex real-world tasks.

Third, to incorporate global context cues for better rea-
soning, we explicitly encode the semantic embeddings of
previously extracted phrases in the state vector. It makes a
better tradeoff between increasing the input dimension and
utilizing more historical context, compared to appending
history frames [28] or binary action vectors [2] as in pre-
vious RL methods.

Extensive experiments on the Visual Relationship Detec-
tion (VRD) dataset [16] and Visual Genome dataset [13]
demonstrate that the proposed VRL outperforms state-of-
the-art methods for both relationship and attribute detection,
and also has good generalization capabilities for predicting
unseen types.

2. Related Works

Visual relationship and attribute detection. There
has been an increased interest in the problem of visual



relationship detection [22, 21, 13]. However, most ex-
isting approaches [22] [13] can detect only a handful of
pre-defined, frequent types by training individual detectors
for each relationship. Recently, Lu et al. [16] leveraged
word embeddings to handle large-scale relationships. How-
ever, their model still ignores the structured correlations be-
tween objects and relationships. Furthermore, some meth-
ods [10, 23, 14] organized predictions into a scene graph
which can provide a structured representation for describing
the objects, their attributes and relationships in each image.
In particular, Johnson et al. [10] introduced a conditional
random field model for reasoning about possible ground-
ings of scene graphs while Schuster et al. [23] proposed a
rule-based and classifier-based scene graph parser. In con-
trast, the proposed VRL makes the first attempt to sequen-
tially discover objects, relationships and attributes by fully
exploiting global interdependency.

Deep reinforcement learning. Integrating deep learn-
ing methods with reinforcement learning (RL) [11] has
recently shown very promising results on decision-making
problems. For example, Mnih et al. [18] proposed using
deep Q-networks to play ATARI games. Silver et al. [24]
proposed a new search algorithm based on the integration
of Monte-Carlo tree search with deep RL, which beat the
world champion in the game of Go. Other efforts applied
deep RL to various real-world tasks, e.g., robotic manipu-
lation [6], indoor navigation [28], and object proposal gen-
eration [2]. Our work deals with real-world scenes that are
much more complex than ATARI games or images taken in
some constrained scenarios, and investigates how to make
decisions over a larger action space (e.g., thousands of at-
tribute types). To handle such a large action space, we pro-
pose a variation-structured traversal scheme over the whole
action graph to decrease the number of possible actions in
each step, which substantially reduces the number of trials
and thus speeds up the convergence.

3. Deep Variation-structured Reinforcement
Learning

We propose a novel VRL framework which formulates
the problem of detecting visual relationships and attributes
as a sequential decision-making process. An overview is
provided in Fig. 2. The key components of VRL, including
the directed semantic action graph, the variation-structured
traversal scheme, the state space, and the reward function,
are detailed in the following sections.
3.1. Directed Semantic Action Graph

We build a directed semantic graph G = (V, E) to orga-
nize all possible object nouns, attributes, and relationships
into a compact and semantically meaningful representation
(see Fig. 2). The nodes V consist of the set of all candidate
object categories C, attributes A, and predicates P . Object

categories in C are nouns, and may be people, places, or
parts of objects. Attributes in A can describe color, shape,
or pose. Relationships are directional, i.e. they relate a sub-
ject noun and an object noun via a predicate. Predicates
in P can be spatial (e.g., “inside of”), compositional (e.g.
“part of”) or action (e.g., “swinging”).

The directed edges E consist of attribute phrases EA ⊆
C ×A and predicate phrases EP ⊆ C ×P ×C. An attribute
phrase (c, a) ∈ EA represents an attribute a ∈ A belonging
to a noun c ∈ C. For example, the attribute phrase “young
girl” can be represented by (“girl”, “young”) ∈ EA. A pred-
icate phrase (c, p, c′) ∈ EP represents a subject noun c ∈ C
and an object noun c′ ∈ C related by a predicate p ∈ P . For
example, the predicate phrase “a man is swinging a bat” can
be represented by (“man”, “swinging”, “bat”) ∈ EP .

The recently released Visual Genome dataset [13] pro-
vides a large-scale annotation of images containing 18,136
unique object categories, 13,041 unique attributes, and
13,894 unique relationships. We then select the types that
appear at least 30 times in Visual Genome dataset, resulting
in 1,750 object-, 8,561 attribute-, and 13,823 relationship-
types. From these attribute and relationship types, we build
a directed semantic action graph by extracting all unique
object category words, attribute words, and predicate words
as the graph nodes. Our directed action graph thus contains
|C| = 1750 object nodes, |A| = 1049 attribute nodes, and
|P| = 347 predicate nodes. On average, each object word
is connected to 5 attribute words and 15 predicate words.
This semantic action graph serves as the action space for
VRL, as we will see in the next section.

3.2. Variation-structured RL

Instead of learning in the entire action space as in tra-
ditional deep RL [18, 28], we propose a novel variation-
structured traversal scheme over the semantic action graph
that dynamically constructs small action sets for each step.

First, VRL uses an object detector to get a set S of candi-
date object instances, and then sequentially assigns relation-
ships and attributes to each instance s ∈ S. For our exper-
iments, we used state-of-the-art Faster R-CNN [20] as the
object detector, where the network parameters were initial-
ized using the pre-trained VGG-16 ImageNet model [25].

Since subject instances in an image often have multiple
relationships and attributes, we do a breadth-first search: we
predict all relationships and attributes with respect to the
current subject instance of interest, and then move onto the
next instance. We start from the subject instance with the
most confident classification score. To prevent the agent
from being trapped in a single search path (e.g., in a small
local region), the agent selects a new starting subject in-
stance if it has traversed through 5 neighboring objects in
the breadth-first search.

The same object in multiple scenarios may be described



State

347(d*predicate
actions

1049(d*attribute*
actions

Conv5_3* feature*map

ROI*
pooling

4096(d
image*feat.

Sub.

Obj.

4096(d*
subject*feat.

4096(d*
object*feat.

9600(d*history*
phrase

embedding

4096(d
fusion

2048(d

Directed*semantic**
action*graph

Variation(structured*
traversal*scheme

1751(d*object
category*actions

Variation(structured
action*space

Whole
action*space

State*features

obj:skateboard

sub:man

History
phrase*

embedding

Figure 3. Network architecture of deep VRL. The state vector f is a concatenation of (1) a 4096-dim feature of the whole image, taken from
the fc6 layer of the pre-trained VGG-16 ImageNet model [25]; (2) two 4096-dim features of the subject s and object s′ instances, taken
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Figure 4. The VRL does a sequential breadth-first search, predict-
ing all relationships and attributes with respect to the current sub-
ject instance before moving onto the next instance.

by different, semantically ambiguous noun categories that
cannot be distinguished by the object detector. To address
this semantic ambiguity, we introduce an ambiguity-aware
object mining scheme which leverages scene contexts cap-
tured by extracted relationships and attributes to help deter-
mine the most appropriate object category.

Variation-structured action space. The directed se-
mantic graph G serves as the action space for VRL. For any
object instance s ∈ S in an image, denote its object category
by sc ∈ C and its bounding box by B(s) = (sx, sy, sw, sh)
where (sx, sy) is the center coordinate, sw is the width, and
sh is the height. Given the current subject instance s and
object instance s′, we select three actions ga ∈ A, gp ∈ P ,
gc ∈ C according to the VRL network as follows:

(1) Select an attribute ga describing s from the set ∆a =
{a : (sc, a) ∈ EA\HA(s)}, where HA(s) denotes the set
of previously mined attribute phrases for s.

(2) Select a predicate gp relating the subject noun sc and
object noun s′c from ∆p = {p : (sc, p, s

′
c) ∈ EP}.

(3) To select the next object instance s̃ ∈ S in the im-
age, we select its corresponding object category gc from
a set ∆c ⊆ C, which is constructed using an ambiguity-

aware object mining scheme as follows (also illustrated
in Fig. 5). Let N(s) ⊆ S be the set of objects neigh-
boring s, where a neighbor of s is defined to be any ob-
ject s̃ ∈ S such that |s̃x − sx| < 0.5(s̃w + sw) and
|s̃y − sy| < 0.5(s̃h + sh). For each object s̃, let C(s̃) ⊆ C
be the set of object categories of s̃ whose confidence scores
are at most 0.1 less than that of the most confident cate-
gory. Let ∆c =

⋃
s̃∈N(s)\HS

C(s̃) ∪ {Terminal}, where
HS is the set of previously extracted object instances and
Terminal is a terminal trigger indicating the end of the ob-
ject mining scheme for this subject instance. If N(s)\Hs

is empty or the terminal trigger is activated, then we select
a new subject instance following the breadth-first scheme.
The terminal trigger allows the number of object mining
steps for each subject instance to be dynamically specified
and limited to a small number.

In each step, the VRL selects actions from the adaptive
action sets ∆a,∆p, and ∆c, which we call the variation-
structured action space due to their dynamic structure.

State space. A detailed overview of the state feature ex-
traction process is shown in Fig. 3. Given the current subject
s and object s′ instances in each time step, the state vector
f is a concatenation of (1) the feature vectors of s and s′;
(2) the feature vector of the whole image; and (3) a history
phrase embedding vector, which is created by concatenat-
ing the semantic embeddings of the last two relationship
phrases (relating s and s′) and the last two attribute phrases
(describing s) that were mined via the variation-structured
traversal scheme. More specifically, each phrase (e.g., “per-
son riding bicycle”) is embedded into a 2400-dim vector
using a pre-trained Skip-thought language model [12], thus
resulting in a 9600-dim history phrase embedding.

The feature vector of the whole image provides global
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context cues which not only help in recognizing relation-
ships and attributes, but also allow the agent to be aware
of other uncovered objects. The history phrase embedding
captures the search paths and scene contexts that have al-
ready been traversed by the agent.

Rewards: Suppose we have groundtruth labels, which
consist of the set Ŝ of object instances in the image, and
attribute phrases ÊA and predicate phrases ÊP describing
the objects in Ŝ. Given a predicted object instance s ∈ S ,
we say that a groundtruth object ŝ ∈ Ŝ overlaps with s
if they have the same object category (i.e., sc = ŝc ∈ C),
and their bounding boxes have at least 0.5 Intersection-over-
Union (IoU) overlap.

We define the following reward functions to reflect the
detection accuracy of taking action (ga,gp,gc) in state f ,
where the current subject and object instances are s and s′,
respectively:

(1)Ra(f ,ga) returns +1 if there exists a groundtruth ob-
ject ŝ ∈ Ŝ that overlaps with s, and the predicted attribute
relationship (sc,ga) is in the groundtruth set ÊA. Other-
wise, it returns -1.

(2) Rp(f ,gp) returns +1 if there exists ŝ, ŝ′ ∈ Ŝ that
overlap with s and s′ respectively, and (sc,gp, s

′
c) ∈ ÊP .

Otherwise, it returns -1.
(3) Rc(f ,gc) returns +5 if the next object instance s̃ ∈

S corresponding to category gc ∈ C overlaps with a new
groundtruth object ŝ ∈ S . Otherwise, it returns -1. Thus, it
encourages faster exploration over all objects in the image.

3.3. Deep Variation-structured RL

We optimize three policies to select three actions for each
state by maximizing the sum of discounted rewards, which
can be formulated as a decision-making process in the deep
RL framework. Due to the high-dimensional continuous
image data and a model-free environment, we resort to the
deep Q-Network (DQN) framework proposed by [17, 18],

which generalizes well to unseen inputs. The detailed archi-
tecture of our Q-network is illustrated in Fig. 3. Specifically,
we use DQN to estimate three Q-value sets, parametrized
by network weights θa, θp, θc, which correspond to the ac-
tion sets A,P, C. In each training episode, we use an ε-
greedy strategy to select actions ga,gp,gc in the variation-
structured action space ∆a,∆p,∆c, where the agent selects
random actions with probability ε, and selects actions with
the highest estimated Q-values with probability 1− ε. Dur-
ing testing, we directly select the best actions with high-
est estimated Q-values in ∆a,∆p,∆c. The agent sequen-
tially determines the best actions to discover objects, rela-
tionships, and attributes in the given image, until either the
maximum search step is reached or there are no remaining
uncovered object instances.

We also utilize a replay memory to store experience
from past episodes. In each step, we draw a random mini-
batch from the replay memory to perform the Q-learning
update. The replay memory helps stabilize the training by
smoothing the training distribution over past experiences
and reducing correlation between training samples [17, 18].
Given a transition sample (f , f ′,ga,gp,gc,Ra,Rp,Rc),
the network weights θ(t)a , θ(t)p , θ(t)c are updated as follows:

θ(t+1)
a =θ(t)a + α(Ra + λmax

ga′
Q(f ′,ga′ ; θ

(t)−
a )

−Q(f ,ga; θ(t)a ))5
θ
(t)
a
Q(f ,ga; θ(t)a ),

θ(t+1)
p =θ(t)p + α(Rp + λmax

gp′
Q(f ′,gp′ ; θ

(t)−
p )

−Q(f ,gp; θ
(t)
p ))5

θ
(t)
p
Q(f ,gp; θ

(t)
p ),

θ(t+1)
c =θ(t)c + α(Rc + λmax

gc′
Q(f ′,gc′ ; θ

(t)−
c )

−Q(f ,gc; θ
(t)
c ))5

θ
(t)
c
Q(f ,gc; θ

(t)
c ),

(1)

where ga′ , gp′ , gc′ represent the actions that can be taken in
state f ′, α is the learning rate, and λ is the discount factor.
The target network weights θ(t)−a , θ(t)−p , θ(t)−c are copied
every τ steps from the online network, and kept fixed in all
other steps.

4. Experiments
Dataset. We conduct our experiments on the Visual

Relationship Detection (VRD) dataset [16] and the Visual
Genome dataset [13]. VRD [16] contains 5000 images
(4000 for training, 1000 for testing) with 100 object cat-
egories and 70 predicates. In total, the dataset contains
37,993 relationship instances with 6,672 relationship types,
out of which 1,877 relationships occur only in the test
set and not in the training set. For the Visual Genome
Dataset [13], we experiment on 87,398 images (out of
which 5000 are held out for validation, and 5000 for test-
ing), containing 703,839 relationship instances with 13,823
relationship types and 1,464,446 attribute instances with



Table 1. Results for relationship phrase detection (Phr.) and rela-
tionship detection (Rel.) on the VRD dataset. R@100 and R@50
are abbreviations for Recall@100 and Recall@50.

Method Phr. R@100 Phr. R@50 Rel. R@100 Rel. R@50

Visual Phrases [22] 0.07 0.04 - -

Joint CNN+R-CNN [25] 0.09 0.07 0.09 0.07

Joint CNN+RPN [25] 2.18 2.13 1.17 1.15

Lu et al. V only [16] 2.61 2.24 1.85 1.58

Faster R-CNN [20] 3.31 3.24 - -

Joint CNN+Trained RPN [20] 3.51 3.17 2.22 1.98

Faster R-CNN V only [20] 6.13 5.61 5.90 4.26

Lu et al. [16] 17.03 16.17 14.70 13.86

Our VRL 22.60 21.37 20.79 18.19

Lu et al. [16] (zero-shot) 3.76 3.36 3.28 3.13

Our VRL (zero-shot) 10.31 9.17 8.52 7.94

8,561 attribute types. There are 2,015 relationship types
that occur in the test set but not in the training set, which
allows us to evaluate VRL on zero-shot learning.

Implementation Details. We train a deep Q-network
for 60 epochs with a shared RMSProp optimizer [26]. Each
epoch ends after performing an episode on all training im-
ages. We use a mini-batch size of 64 images. The maxi-
mum search step for each image is empirically set to 300.
During ε-greedy training, ε is annealed linearly from 1 to
0.1 over the first 20 epochs, and is fixed to 0.1 in the re-
maining epochs. The discount factor λ is set to 0.9, and
the network parameters θ(t)−a , θ(t)−p and θ(t)−c are copied
after every τ = 10000 steps. The learning rate α is initial-
ized to 0.0007 and decreased by a factor of 10 after every 10
epochs. Only the top 100 candidate object instances, ranked
by objectness confidence scores by the trained object detec-
tor, are selected for mining relationships and attributes in an
image, in order to balance efficiency and effectiveness. On
VRD [16], VRL takes about 8 hours to train an object de-
tector with 100 object categories, and two days to converge.
On the Visual Genome dataset [13], VRL takes between 4
to 5 days to train an object detector with 1750 object cat-
egories, and one week to converge. On average, it takes
300ms to feed-forward one image into VRL. More details
about the dataset are provided in Sec. 4. The implementa-
tions are based on the publicly available Torch7 platform on
a single NVIDIA GeForce GTX 1080.

Evaluation. Following [16], we use recall@100 and
recall@50 as our evaluation metrics. Recall@x computes
the fraction of times the correct relationship or attribute in-
stance is covered in the top x confident predictions, which
are ranked by the product of objectness confidence scores
for the relevant object instances (i.e., confidence scores of
the object detector) and Q-values of the selected predicates
or attributes. As discussed in [16], we do not use the mean
average precision (mAP), which is a pessimistic evaluation
metric because the dataset cannot exhaustively annotate all

Table 2. Results for relationship detection on Visual Genome.
Method Phr. R@100 Phr. R@50 Rel. R@100 Rel. R@50

Joint CNN+R-CNN [25] 0.13 0.10 0.11 0.08

Joint CNN+RPN [25] 1.39 1.34 1.22 1.18

Lu et al. V only [16] 1.66 1.54 1.48 1.20

Faster R-CNN [20] 2.25 2.19 - -

Joint CNN+Trained RPN [20] 2.52 2.44 2.37 2.23

Faster R-CNN V only [20] 5.79 5.22 4.87 4.36

Lu et al. [16] 10.23 9.55 7.96 6.01

Our VRL 16.09 14.36 13.34 12.57

Lu et al. [16] (zero-shot) 1.20 1.08 1.13 0.97

Our VRL (zero-shot) 7.98 6.53 7.14 6.27

Table 3. Results for attribute detection on Visual Genome.
Method Attribute Recall@100 Attribute Recall@50

Joint CNN+R-CNN [25] 2.38 1.97

Joint CNN+RPN [25] 3.48 2.63

Faster R-CNN [20] 7.36 5.22

Joint CNN+Trained RPN [20] 9.77 8.35

Our VRL 26.43 24.87

possible relationships and attributes in an image.

Following [16], we evaluate on three tasks: (1) In re-
lationship phrase detection [22], the goal is to predict a
“subject-predicate-object” phrase, where the localization
of the entire relationship has at least 0.5 overlap with a
groundtruth bounding box. (2) In relationship detection, the
goal is to predict a “subject-predicate-object” phrase, where
the localizations of the subject and object instances have
at least 0.5 overlap with their corresponding groundtruth
boxes. (3) In attribute detection, the goal is to predict a
“subject-attribute” phrase, where the subject’s localization
has at least 0.5 overlap with a groundtruth box.

Baseline models. First, we compare our model with
state-of-the-art approaches, Visual Phrases [22], Joint
CNN+R-CNN [25] and Lu et al. [16]. Note that the lat-
ter two methods use R-CNN [5] to extract object propos-
als. Their results on VRD are reported in [16], and we also
experiment their methods on the Visual Genome dataset.
Lu et al. V only [16] trains individual detectors for ob-
ject and predicate categories separately, and then combines
their confidences to generate a relationship prediction. Fur-
thermore, we train and compare with the following mod-
els: “Faster R-CNN [20]” directly detects each unique re-
lationship or attribute type, following Visual Phrases [22].
“Faster R-CNN V only [20]” model is similar to Lu et al.
V only [16], with the only difference being that Faster R-
CNN is used for object detection. “Joint CNN+RPN [25]”
extracts proposals using the pre-trained RPN [20] model on
VOC 2012 [3] and then performs the classification. “Joint
CNN+Trained RPN [20]” trains a separate RPN model on
our dataset to generate proposals.
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Figure 6. Qualitative comparison between VRD [16] and our VRL.

4.1. Comparison with State-of-the-art Models

Comparison of results with baseline methods on VRD
and Visual Genome are reported in Tables 1, 2, and 3.

Shared Detectors vs Individual Detectors. The com-
pared models can be categorized into two classes: (1)
Models that train individual detectors for each predicate
or attribute type, i.e., Visual Phrases [22], Joint CNN+R-
CNN [25], Joint CNN+RPN [25], Faster R-CNN [20], Joint
CNN+Trained RPN [20]. (2) Models that train shared de-
tectors for predicate or attribute types, and then combine
their results with object detectors to generate the final pre-
diction, i.e., Lu et al. V only [16], Faster R-CNN V
only [20], Lu et al. [16] and our VRL. Since the space of all
possible relationships and attributes is often large, there are
insufficient training examples for infrequent relationships,
leading to poor average performance of the models that use
individual detectors.

RPN vs R-CNN. In all cases, we obtain performance
improvements using RPN network [20] over R-CNN [5]
for proposal generation. Additionally, training the proposal
network on VRD and VG datasets can also increase the re-
calls over the pre-trained networks on other datasets.

Language Priors. Unlike baselines that simply train
classifiers from visual cues, VRL and Lu et al. [16] leverage
language priors to facilitate prediction. Lu et al. [16] uses
semantic word embeddings to finetune the likelihood of
a predicted relationship, while VRL follows a variational-
structured traversal scheme over a directed semantic action
graph built from language priors. Both VRL and Lu et
al. [16] achieve significantly better performance than other
baselines, which demonstrates the necessity of language
priors for relationship and attribute detection. Moreover,
VRL still shows substantial improvements comparison to
Lu et al. [16]. Therefore, VRL’s directed semantic action
graph provides a more compact and rich representation of
semantic correlations than the word embeddings used in Lu
et al. [16]. The significant performance improvement is also
due to the sequential reasoning of RL.

Qualitative Comparisons We show some qualitative
comparison with Lu et al. [16] in Fig. 6, and more detection

VRL w/o ambiguity boy holding stickman wearing pant

skier wearing pant boy holding batVRL

Figure 7. Comparison between “VRL w/o ambiguity” and VRL.
Using ambiguity-aware object mining, VRL successfully resolves
vague predictions into more concrete ones (“man”→ “skier” and
“stick”→ “bat”).

results of VRL in Fig. 8. Our VRL generates a rich under-
standing of the image, including the localization and recog-
nition of objects, and the detection of object relationships
and attributes. For instance, VRL can correctly detect inter-
actions (“person on elephant”, “man riding motor”), spatial
layouts (“picture hanging on wall”, “car on road”), parts of
objects (“person has shirt”, “wheel of motor”), and attribute
descriptions (“television old”, “woman standing”).

4.2. Discussion

We give further analysis on the key components of VRL,
and report the results in Table 4.

Reinforcement Learning vs. Random Walk. The vari-
ant “RL” is a standard deep RL model that selects three
actions over the entire action space instead of the variation-
structured action space. We compare RL with a simple
“Random Walk” traversal scheme where in each step, the
agent randomly selects one object instance in the image,
and predicts relationships and attributions for the two most-
recently selected instances.“Random Walk” only achieves
slightly better results than “Joint+Trained RPN [20]” and
performs much worse than the remaining variants, again
demonstrating the benefit of sequential mining in RL.

Variation-structured traversal scheme. VRL achieves
a remarkably higher recall compared to RL (e.g., 13.34% vs
6.23% on relationship detection and 26.43% vs 12.47% on
attribute detection, in terms of Recall@100). Thus, we con-
clude that using a variation-structured traversal scheme to
dynamically configure the small action set for each state can
accelerate and stabilize the learning procedure, by dramati-
cally decreasing the number of possible actions. For exam-
ple, the number of predicate actions (347) can be dropped
to 15 on average.

History phrase embedding. To validate the effective-
ness of history phrase embeddings, we evaluate two variants
of VRL: (1) “VRL w/o history phrase” does not incor-
porate history phrase embedding into state features. This
variant causes the recall to drop by over 4% compared to
the original VRL. Thus, leveraging history phrase embed-
dings can help inform the current state what has happened



picture

wall

hanging.on

television

old chair

sitting

browncouch

against

brown

small

clockon

near.to woman

standing
elephant

water

in

elephant

in

elephant

in

person

shirt

has

blue

big
small

blending. over

muddy

tree

green
skier

jacket

wearing

blue

has pole

has vest

white

ononon

chair

by

black

black metal

dog

black

standing

table

large

car

black

car

blue

sky

under

blue

man

riding

motor

wheel

of wheel car

parked red

on

roadon

wearing
pants

shirt

jeans

orange

person person

Figure 8. Examples of relationship and attribute detection results generated by VRL on the Visual Genome dataset. We show the top
predictions for each image: the localized objects (top) and a semantic graph describing their relationships and attributes (bottom).

Table 4. Performance of VRL and its variants on Visual Genome.
Method Rel. R@100 Rel. R@50 Attr. R@100 Attr. R@50

Joint CNN+Trained RPN [20] 2.37 2.23 9.77 8.35

Random Walk 3.67 3.09 10.21 8.59

RL 6.23 5.10 12.47 10.09

VRL w/o history phrase 9.05 8.12 20.09 19.45

VRL w/ directional actions 10.66 9.85 20.31 18.62

VRL w/ historical actions 11.98 10.01 23.02 22.15

VRL w/o ambiguity 12.01 11.20 24.78 22.46

Our VRL 13.34 12.57 26.43 24.87

VRL w/ LSTM 13.86 13.07 25.98 25.01

in the past and stabilize search trajectories that might get
stuck in repetitive cycles. (2) “VRL w/ historical actions”
directly stores a historical action vector in the state [2].
Each historical action vector is the concatenation of four
(|C|+|A|+|P|)-dim action vectors corresponding to the last
four actions taken, where each action vector is zero in all el-
ements except the indices corresponding to the three actions
taken in C, A, P . This variant still causes the recall to drop,
demonstrating that semantic phrase embeddings learned by
language models can capture richer history cues (e.g., rela-
tionship similarity).

Ambiguity-aware object mining. “VRL w/o ambigu-
ity” only considers the top-1 predicted category of each ob-
ject for the action set ∆c. It obtains lower recall than VRL,
suggesting that incorporating semantically ambiguous cat-
egories into ∆c can help identify a more appropriate cate-
gory for each object under different scene contexts. Fig. 7
illustrates two examples where VRL successfully resolves
vague predictions of “VRL w/o ambiguity” into more con-
crete ones (“man”→“skier” and “stick”→“bat”).

Spatial actions. Similar to [2], we experiment using spa-
tial actions in the deep RL setting to sequentially extract ob-
ject instances. The variant “VRL w/ directional actions”
replaces the 1751-dim object category action vector with a
9-dim action vector indexed by directions (N, NE, E, SE,
S, SW, W, NW) plus one terminal trigger. In each step, the
agent selects a neighboring object instance with the highest

confidence whose center lies in one of the eight directions
w.r.t. that of the subject instance. The diverse spatial layouts
of object instances across different images make it difficult
to learn a spatial action policy, and causes this variant to
perform poorly.

Long Short-Term Memory “VRL w/ LSTM” is a vari-
ant where all fully-connected layers in Fig. 3 are replaced
with LSTM [8] layers, which have shown promising results
in capturing long-term dependencies. However, “VRL w/
LSTM” has no noticeable performance improvements over
VRL, while requiring much more training time. This shows
that history phrase embeddings can sufficiently model his-
torical context for sequential prediction.

4.3. Zero-shot Learning

We also compare VRL with Lu et al. [16] in the zero-
shot learning setting (see Tables 1 and 2). A promising
model should be capable of predicting unseen relationships,
since the training data will not cover all possible relation-
ship types. Lu et al. [16] uses word embeddings to project
similar relationships onto unseen ones, while our VRL uses
a large semantic action graph to learn similar relationships
on shared graph nodes. Our VRL achieves > 5% perfor-
mance improvements over Lu et al. [16] on both datasets.

5. Conclusion and Future Work
We proposed a novel deep variation-structured reinforce-

ment learning framework for detecting visual relationships
and attributes. The VRL sequentially discovers the relation-
ship and attribute instances following a variation-structured
traversal scheme on a directed semantic action graph. It in-
corporates global interdependency to facilitate predictions
in local regions. Our experiments on VRD and the Visual
Genome dataset demonstrate the power and efficiency of
our model over baselines. As future work, a larger directed
action graph can be built using natural language sentences.
Additionally, VRL can be generalized into an unsupervised
learning framework to learn from a massive number of un-
labeled images.
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