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Abstract— This paper presents a decentralized strategy for
collision-free navigation of multiple agents. This strategy com-
bines the Optimal Reciprocal Collision Avoidance (ORCA) algo-
rithm and Model Predictive Control (MPC). Concretely, each
agent applies the decentralized ORCA algorithm to compute
the collision-avoiding velocities with respect to its neighbors.
The derived velocities serve as constraints of a MPC problem
whose solution provides the optimal control input that can
ensure optimal motion of the agent. The states predicted from
the agents’ dynamic models are used in the ORCA algorithm
to compute the ORCA velocity regions in future steps. This
ORCA-MPC combined approach doesn’t need a priori the
preferred velocity of each agent in comparison to the traditional
ORCA algorithm and its existing variants. Simulation results
illustrate the effectiveness of the proposed method, and show
that this new algorithm can reduce velocity vibrations in the
traditional ORCA algorithm.

I. INTRODUCTION

Navigation for a multi-agent system aims to generate
collision-free trajectories for all agents so that they can
move from their initial positions to target positions safely.
This problem usually needs to handle constraints such as
obstacles [1] and model dynamics of the agents [2], [3]. The
study of these problems can be applied not only for guiding
motions of robots, but also can be used for localization [4]
and simulation of human behaviors in the virtual world [5].

Multi-agent navigation algorithms can be divided into cen-
tralized algorithms and decentralized algorithms. Centralized
algorithms regard all agents as a single system, and a global
planner collects information from all agents and computes
their trajectories together [6], [7]. This method scales poorly
and it has to compute in very high dimensional spaces as
the number of agents increases. Decentralized planners tend
to decompose a group navigation problem into a set of
correlated individual agent navigation problems, where each
agent computes a collision-free trajectory independently.
Inter-agent correlations may be built on either communi-
cation systems or sensing devices. Some commonly used
distributed approaches include probabilistic road-maps [8],
dynamic window [9] or reciprocal velocity obstacle (RVO)
[10] based methods.

The Optimal Reciprocal Collision Avoidance (ORCA) [11]
algorithm, reformulated from the RVO algorithm in [10],
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is an effective decentralized navigation method for a large
number of agents. It assumes that all agents are willing to
cooperative with each other in the way that each agent takes
half the responsibility of avoiding pair-wise collision. Under
this reciprocal criterion, each agent first generates a set of
permitted velocities with respect to all its neighbors, from
which the velocity that is as close to the predefined preferred
velocity as possible is chosen as the new velocity for the
next motion. The permitted velocities form a linear set which
enables efficient computation of the optimal new velocity by
solving a low-dimensional linear programming problem.

The above procedure of the ORCA algorithm has two main
issues to be taken care of. The first one is to determine the
preferred velocity of every single agent. One simple way is
to use a vector pointing towards the direction of its target
position [12] while more complicated methods use global
motion planning algorithms [13], [14]. The other issue is the
assumption of instantaneous jump of the agents’ velocities,
which may require unlimited control forces in practical
applications. To fix this problem, one promising approach
is to take the agents’ dynamic models into consideration
when generating the velocity constraints. For example, the
paper [12] extended RVO to acceleration-velocity obstacles
(AVO) to compute velocity constraints. For agents with
linear differential constraints, the paper [14] proposed LQR-
Obstacles, while agents with non-holonomic dynamics are
investigated in [2]. However these algorithms would render
the velocity solution space non-convex, and the optimal
solution has to be derived from the convex subset of the
solution space.

The model predictive control (MPC) method can predict
future trajectories of a system subject to the system dynamics
and various constraints. So, it is an attractive approach to
controlling agent motions as well as avoiding obstacles. The
usage of MPC for navigation of a single agent has been
reported in [15]–[17] recently. Motivated by these results,
this paper proposes an ORCA-MPC combined approach for
multi-agent navigation. Concretely, the ORCA algorithm is
used by each agent to generate independently its set of
permitted velocities. These velocities serve as constraints
in a MPC problem whose solution can provide the optimal
control input for an agent by minimizing a cost function
that penalizes its control cost and its distance to the target
position. Since the cost function is irrelevant to any agent’s
preferred velocity, this ORCA-MPC algorithm doesn’t need
an additional procedure to compute the preferred velocity.
Moreover, each agent’s trajectory and velocity are optimized
and smoothed due to the incorporation of the agents’ dynam-



Fig. 1. Left: position configurations of two agents. Right: V Oτ
A|B (light

blue shadow), and ORCAτ
A|B (grey shadow) for agent A when (vA−vB)

lies in V Oτ
A|B .

ic models. Another advantage of this new approach is that the
permitted velocity set generated by the ORCA algorithm is
still convex regardless of the dynamic models of the agents.

The rest of this paper is organized as follows. In section
II, the ORCA algorithm is reviewed. The ORCA-MPC algo-
rithm is designed in Section III. Section IV presents some
simulation examples and Section V concludes this paper.

II. INTRODUCTION OF THE ORCA ALGORITHM

The optimal reciprocal collision avoidance (ORCA) al-
gorithm is a distributed collision avoidance algorithm that
allows each agent to compute independently the optimal
moving velocities in each step [11]. Briefly speaking, this
algorithm assumes that each agent can obtain the relative
distance and velocity with respect to every neighboring
agent. Based on these information, the agent computes the set
of velocities, namely the velocity obstacles, that will cause
collision with any agent in a finite time horizon. Then, a
velocity, which is outside of the velocity obstacle and is
the closest to the agent’s preferred velocity, is chosen as
the new velocity in the next step of movement. The details
of this ORCA algorithm can be found in [11], and the key
definitions that are useful in this paper are presented in the
following.

An open ball of radius r centered at p is defined as

D(p, r) = {q| ‖q− p‖ < r}. (1)

The velocity obstacle V OτA|B of agent A with respect to
agent B in the time horizon τ is defined as

V OτA|B = {v|∃t ∈ [0, τ ] :: vt ∈ D(pB−pA, rA+rB)} (2)

where pA and pB are the positions of agent A and agent B,
respectively. rA (rB) is the radius of the safe zone of agent
A (agent B), and is chosen slightly larger than the radius of
the agent. The illustration of these definitions in 2-D space
can be found on the left-hand side of Fig. 1. Clearly, V OτA|B
represents the set of relative velocities that the two agents
will collide with each other within time τ . Note that for agent
B, its velocity obstacle is V OτB|A = −V OτA|B .

Let vA and vB be the two agents’ current velocities,
respectively. Denote by u the vector with minimum length

Fig. 2. ORCAτ
A|B when (vA − vB) is out of V Oτ

A|B .

that points from (vA − vB) to the boundary of V OτA|B :

u = (argminv∈∂V Oτ
A|B
‖v − (vA − vB)‖)

− (vA − vB).
(3)

In other words, u is the smallest velocity change required
so that the relevant velocity vA−vB can “escape” from the
velocity obstacle V OτA|B .

In this paper, the definition of the optimal reciprocal
collision avoidance region, ORCAτA|B , for agent A with
respect to agent B within time τ consists of two parts. The
first part is the same as that in [11] and is defined for the
case that vA − vB belongs to V OτA|B as shown in Fig. 1,

ORCAτA|B = {v|(v − (vA +
1

2
u))n ≥ 0}, (4)

where n is the normal vector of u. The increment
1

2
u means

that agent A takes half the responsibility of avoiding potential
collision with agent B, while the remaining half will be taken
by agent B.

The second part is defined for the case that (vA − vB)
is outside of V OτA|B . Since agents are collision free within
time τ , the set ORCAτA|B is the whole velocity space, and
agent A’s new velocity vnewA will be chosen as the preferred
velocity vprefA [11]. However, the relative preferred velocity
vprefA − vprefB (and thus the new relative velocity vnewA −
vnewB ) may lie in V OτA|B . If so, the agent has to abandon
this new velocity at the next step. This could cause sharp
vibrations for the new velocities between two steps. To avoid
this adverse situation, we define ORCAτA|B as follows:

ORCAτA|B = {v|(v − (voptA +
1

2
u))n ≤ 0}. (5)

This set is illustrated in Fig. 2. By this definition, the
chosen new relative velocities will not enter V OτA|B , and
consequently the velocities of the agent can be smoothed.

The set of optimal reciprocal collision avoiding velocities
for agent A within time τ is the intersection of the half-
planes ORCAτA|B for all neighbors B of A, that is,

ORCAτA = D(0,vmaxA ) ∩ (
⋂
B 6=A

ORCAτA|B) (6)



where vmaxA is the maximum allowed velocity of agent A.
At last, the new velocity vnewA is chosen from ORCAτA and
is supposed to be as close to the preferred velocity vprefA as
possible, i.e.

vnewA = argmin
v∈ORCAτA

∥∥∥v − vprefA

∥∥∥ . (7)

Agent B would take a similar procedure to generate its new
velocity.

III. ORCA-MPC COMBINED COLLISION
AVOIDANCE

The primary task of this paper is to navigate multiple
agents moving towards their target locations as fast as possi-
ble while avoiding collisions. This problem is formulated as
a combination of distributed MPC control problems for all
agents, where each agent solves a single MPC problem to
generate the optimal control input for itself. The formulation
of each agent’s MPC problem takes the ORCA region
presented in Section II as the agent’s permitted velocity set.

In the remaining part of this section, the formulation of the
MPC problem for a single agent is presented first. Then, how
the ORCA algorithm provides velocity constraints for the
MPC problem formulation is discussed. The last subsection
presents how to cope with obstacles in the workspace.

A. Model Predictive Control Problem

In this paper, the dynamic model of each agent is described
by the following second order difference equation:

pt = pt−1 + vt−1τs +
1

2
at−1τ

2
s , (8)

vt = vt−1 + at−1τs, (9)

where t = 1, 2 . . ., and pt and vt are the position and veloc-
ity of an agent at time t, respectively. at is the acceleration
and is treated as the control input. τs is the sampling time
period which is smaller than τ in (2).

Define a cost function c(zk,ak) as follows:

c(zk,ak) = wobj‖pk − p∗‖2 + wa‖ak‖2. (10)

Here, wobj > 0 and wa > 0 are weighting factors.
‖pk − p∗‖ is the distance between the position pk at step k
and the target position p∗. The minimization of this term
represents the demand for fast target reaching. The term
‖ak‖2 represents control cost.

Using the above cost function, the MPC problem at each
time t takes the following form:

argmin
zk,ak

N∑
k=1

c(zk,ak) (11)

s.t. ∀k = 1, 2, . . . , N,

z0 = zt

zk = f(zk−1;ak−1)

g(zk, {zneigh,k}) ≤ 0

a ≤ ak ≤ a

z ≤ zk ≤ z.

(12)

where N is the number of predicted steps, and N · τs is
supposed to be no larger than the time horizon τ of the
ORCA algorithm; zk = (pk,vk) represents the agent’s state
at the kth prediction step, and its initial value z0 at each
prediction period [t+ 1, t+N ] is set as the agent’s current
state zt. f(zk−1;ak−1) is the state equation of the agent as
defined in (8) and (9). The function g(zk, {zneigh,k}) ≤ 0
are the linear velocity constraints generated by the ORCA
algorithm in (4) and (5) with respect to all neighboring
agents’ states {zneigh,k}. The states zk and control inputs
ak in all prediction steps k = 1, 2, . . . , N are confined
by corresponding lower and upper bounds. Note in (12)
that the symbol “≤” for vectors is defined for element-wise
comparison.

At each execution time, each agent solves independently
a corresponding MPC problem to predict the optimal states
and the optimal control inputs in the future N steps. Then the
predicted optimal control input of the first step is implement-
ed. The resulting trajectories of all agents will be collision
free as guaranteed by the velocity constraints provided by
the ORCA algorithm.

B. Velocity Constraints for the MPC Problem

Note in the MPC problem formulation that the velocity
constraints g(·) ≤ 0 in the future N steps are supposed to
be provided by the ORCA algorithm which can generate
collision-free velocities in future τ ≥ N · τs time period.
However, the previously introduced ORCA algorithm as-
sumes that the relative positions and velocities of the agents
remain unchanged in τ since the agents’ dynamic models are
ignored. This could render the solutions far from optimal.
To derive the optimal solutions, one should run the ORCA
algorithm at each time t + k for 1 ≤ k ≤ N by using the
actual relative positions and velocities at t+ k. Apparently,
this information is not yet available at each current execution
time t. A natural alternative is to use the predicted states
based on the dynamic model in (8) and (9). We will discuss
three potential choices of the predicted states. For simplicity
of presentation, we consider a pair of agents, A and B, only.
In each prediction step k = 1, 2, . . . N , an agent, say A,

• case (i): uses the states z−A,t+k, z−B,t+k predicted at the
last time t−1 to compute the collision avoidance region
ORCAτA,t+k. So, agent A needs agent B’s predicted
state z−B,t+k for computation, which requires the agents
to be able to communicate with each other about this
information. In addition, the old predictions are not
updated to count in the agents’ current states which are
likely to render the resulted ORCAτA,t+k not a collision
avoidance region any more.

• case (ii): uses the states zcaA,t+k, zcaB,t+k predicted at
the current time t under the assumption that the ac-
celerations (or control inputs) of both agents remain
constant in the future N steps. This is a reasonable
setup based on existing known information. However,
the agents need to communicate with each other about
their control inputs.



(a) The current states, zA,t, zB,t, are used in the ORCA algorithm
to generate velocity constraints for MPC in all N future steps.

(b) The predicted states, zcvA,t+k , zcvB,t+k , k = 1, . . . , N , are used
in the ORCA algorithm to generate velocity constraints for MPC.

Fig. 3. To avoid collision with agent B, the velocity of agent A reacts
earlier using the predicted states (b) than using in all N future steps the
current states (a).

• case (iii): uses the states zcvA,t+k, zcvB,t+k predicted at the
current time t under the assumption that the velocities
of both agents remain constant in the future N steps.
This method doesn’t require inter-agent communication
since agent A can infer zcvB,t+k by observing agent B’s
current state. Using predicted states, the agents can react
earlier than using the current states, zA,t and zB,t, in
all N future steps (see the velocity changes in Fig. 3).

Remark 1: Note from the above design that the ORCA-
MPC combined approach is still a decentralized algorithm.
There are three other major advantages of our ORCA-MPC
combined approach over existing ORCA based navigation
methods. i) The trajectories of the agents using MPC will
be much smoother than those generated by the pure ORCA
algorithm that assumes instantaneous velocity changes for
the agents [11]. ii) Incorporating the dynamic models of
the agents, some variants of the ORCA algorithm may ruin
the convexity of the velocity constraints and render the
solutions suboptimal [12], [14]. In contrast, our ORCA-MPC
algorithm retains the convex velocity constraints provided
by the ORCA algorithm, and can generate optimal control
inputs. iii) The ORCA algorithm needs the preferred velocity
vpref preplanned so as to compute the optimal new velocity
in (7). In contrast, our ORCA-MPC approach does not need
this preplanning procedure as long as the target position of
the agent is provided. This feature is extremely beneficial
in real-time applications, such as avoiding obstacles to be
discussed in the sequel.

C. Obstacles

As in original ORCA algorithms, small-sized obstacles can
be considered as passive agents so that they can be avoided
by the active agents. For large-sized obstacles, the ORCA
algorithm may become inapplicable when the obstacles are
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Fig. 4. Snapshots of collision-free motions of 32 agents exchanging
positions with the one at the antipodal point of the circle. (The units of
the X-Y axes are meters in this paper unless otherwise specified.)

too large to be treated as disc-agents. A solution is to model
the observed obstacles as constraints for the agents’ positions
in the MPC problem. The main difficulty is the non-convexity
of these constraints rendered by obstacles. To solve this
problem, one approach is to use the maximum convex region
of feasible positions [18], and another approach is to divide
the non-convex region into a series of convex sub-regions
[15], [19]. The latter approach is adopted in this paper while
the implementation details are omitted.

IV. SIMULATION RESULTS

In this section, we conduct computer simulations to e-
valuate the proposed ORCA-MPC combined multi-agent
navigation algorithm. The simulations were carried out using
Matlab R2014a on a laptop with Intel Dual Core i7 CPU
and 8GB RAM. The operation system of the computer is
Windows 7 Professional 64-bit. The sampling time period is
τs = 50ms and the time window of the ORCA algorithm
is τ = 3 seconds. In the MPC problem formulation, the
predicted states in case (iii) are used to generate velocity
constraints. The MPC problem is solved by FORCES using
efficient interior point method [20], [21].

A. 32 Agents Swapping Positions

In this simulation, 32 agents initially located uniformly
on a circle as shown in the first figure of Fig. 4. Every pair
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of agents at antipodal positions are expected to exchange
positions with each other. So, the circle center may become
the bottleneck of all agents’ paths. The number of predict
steps of the MPC algorithm is set as N = 20. Simulation
results in Fig. 4 show snapshots of the agents in six different
time steps. It is seen that all agents are successfully navigated
to their target positions without causing collision. By varying
the prediction steps N , we see from Fig.5 approximately
linear increase of the average computing time for an agent.
This shows acceptable computational performance of the
algorithm since even when N = 60, the predicted time
horizon N ∗ τs = 3s reaching its maximum allowed value τ ,
the average computing time (about 23ms) is still far smaller
than the sampling time period τs = 50ms.

B. Comparison Between ORCA-MPC and ORCA

In this section, we compare the performance of the ORCA
algorithm with the ORCA-MPC algorithm. The number of
predict steps of the ORCA-MPC algorithm is set as N = 10.

1) Trajectories: For clarity, a small number of 4 agents
are considered for the scenario in section IV-A. The agents’
trajectories are presented in Fig. 6(a) and 6(b) where both
algorithms can navigate the agents to their target positions
without causing collision. The velocities of one of the four
agents are shown in Fig. 6(c) where the fluctuations around
time period 1s to 3s indicate that the agent was changing its
speed to avoid collision with others. As seen in this period,
the velocity curve using the ORCA-MPC algorithm is much
smoother than that using the ORCA algorithm.

2) Computing Time: To evaluate the computing time of
the ORCA-MPC algorithm as the number of agents increas-
es, navigation tasks similar to that in subsection IV-A are
performed for different number n of agents. For each n, 200
simulations are conducted using the ORCA algorithm and the
ORCA-MPC algorithm, respectively, and the computing time
of each algorithm is averaged over all agents, all executions
and all simulations. From Fig.7, we can see linear increases
of the averaged computing time for both algorithms as the
number of agents increases, owing to the distributed nature
of both algorithms. However, the average computing time of
the ORCA-MPC algorithm increases much faster than that of
the ORCA algorithm, and it will exceed the sampling period
τs = 50ms when the number of agents is larger than 190
approximately. So, the new algorithm may be suitable when
the number of agents is not too large.
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C. Navigation with Static Obstacles

In this simulation, we present the scenario where the
workspace contains four agents and two large static obsta-
cles. The initial configurations are shown in Fig. 8(a) where
agents in the same column are supposed to exchange their
positions. The grey areas are the obstacles and the narrowest
part between them allows at most two agents to pass through
simultaneously. Fig. 8(b) to Fig. 8(d) show snapshots of
the simulation result where the four agents traveled along
the edges of the obstacles, encountered with each other
at the narrowest passage, and finally reached their target
positions, respectively. The velocities of the four agents are
drawn in Fig. 8(e) where one can see clearly the process of
decelerations and accelerations near the narrowest passage
around time 2.5s to 4s. From the velocities in the y direction
one sees that the agents 1 and 2 reduced their vertical speeds
to nearly zero so that the other two agents 3 and 4 can pass
through first. Velocities after time 5s show that agents 3 and
4 arrived at their target positions earlier than the agents 1 and
2. This result illustrates that the ORCA-MPC algorithm can
solve the multi-agent navigation problem in environments
with static obstacles, and no preplanning for the preferred
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Fig. 8. Navigation of four agents using the ORCA-MPC algorithm in a
workspace containing static obstacles.

velocities is needed for the agents.

V. CONCLUSIONS

In this paper, a distributed multi-agent navigation method
is proposed by combing the optimal reciprocal collision
avoidance criterion and model predictive control (ORCA-
MPC). In the proposed algorithm, each agent generates
velocity constraints in N future steps using the ORCA
algorithm and the predicted states from the agent’s dynamic
model. Under these constraints, the local optimal control
input for each agent is derived by solving a MPC problem
that minimizes the agent’s control cost and the distance
between the agent’s current position and the target position.
The proposed approach can avoid collisions with agents and
obstacles without predefining the preferred velocities for the
agents. Simulation results show that the velocity trajectories
using the new method are much smoother than those using
the traditional ORCA algorithm that allows instantaneous
velocity changes. In the future, the performances of the
proposed approach will be evaluated in experiments. In

addition, navigating agents with non-holonomic dynamics
will be a direction to extend the ORCA-MPC combined
method.
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