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ABSTRACT
The aim of this study is to provide an automatic compu-

tational framework to assist clinicians in diagnosing Focal
Liver Lesions (FLLs) in Contrast-Enhancement Ultrasound
(CEUS). We represent FLLs in a CEUS video clip as an en-
semble of Region-of-Interests (ROIs), whose locations are
modeled as latent variables in a discriminative model. Dif-
ferent types of FLLs are characterized by both spatial and
temporal enhancement patterns of the ROIs. The model is
learned by iteratively inferring the optimal ROI locations and
optimizing the model parameters. To efficiently search the
optimal spatial and temporal locations of the ROIs, we pro-
pose a data-driven inference algorithm by combining effec-
tive spatial and temporal pruning. The experiments show that
our method achieves promising results on the largest dataset
in the literature (to the best of our knowledge), which we have
made publicly available.

Index Terms— CEUS, FLLs, Spatio-Temporal Model,

1. INTRODUCTION
Liver cancer is the third cause of cancer-related death [1].
Visualization of Focal Liver Lesions (FLLs) has been at-
tempted by employing various imaging techniques. Ultra-
sound is often performed in the diagnostics due to its low
cost, efficiency and non-invasiveness. The use of Contrast-
Enhanced Ultrasound (CEUS) can further assess the contrast
enhancement (i.e., the intensity of the FLL area relative to
that of the adjacent parenchyma) patterns of FLLs, which
has markedly improved the accurate diagnosis of FLLs [1].
As shown in Fig. 1, temporal enhancement patterns typically
characterize the benign or malignant FLLs (e.g., sustain en-
hancement in the last two vascular phases for benign and
hypo-enhancement for malignant FLLs). On the other hand,
spatial enhancement patterns during the arterial phase often
characterize the specific types of FLLs.

Extensive research efforts have been made to assist the
experts in diagnosing different types of cancers and, in par-
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Fig. 1. The enhancement pattern ROIs of three differ-
ent FLLs: Hemangioma (HEM), Focal Nodular Hyperplasia
(FNH), Hepatocellular Carcinoma (HCC), in three different
phases: arterial, portal venous and late phases. The HEM and
FNH are benign FLLs and HCC is a malignant FLL.

ticular, FLLs using ultrasound images [2]. However, the ap-
plication of CEUS for differentiating FLLs is still a relatively
new technique [3, 4, 5]. A cascade of Artificial Neural Net-
works [3] is employed to classify FLLs based on manually
segmented lesion regions. Anaye et al. [4] analyzes the Dy-
namic Vascular Patterns (DVPs) of FLLs with respect to sur-
rounding healthy parenchyma to differentiate between benign
and malignant FLLs. Bakas et al. [5] track a manually initial-
ized FLL and its surrounding parenchyma to characterize it as
either benign or malignant based on its vascular signature.

In all these works, varying degrees of manual interac-
tions are required to identify the Regions of Interest (ROIs) of
FLLs or the normal parenchyma. The manual annotations are
highly dependent on the skills and knowledge of the experts,
leading to large variations in inter/intra-observer interpreta-
tions. Besides, the ever-increasing amount of CEUS data ac-
quired and processed nowadays demands automatic computa-
tional systems that can save the radiologists’ time and efforts.
In addition, most of the previous works focused on differenti-
ating between benign and malignant FLLs, or characterizing
a specific type of FLLs. We, on the other hand, are trying to
combine different enhancement patterns to recognize multiple
different types of FLLs in a unified framework.

The main contributions of our work herein are threefold.



First, we propose a fully automatic computational framework
to recognize FLLs by modeling the locations of ROIs as la-
tent variables in a discriminative model and combining both
spatial and temporal enhancement patterns of the ROIs into
the framework. Our model is then trained by a weakly su-
pervised learning algorithm, which alternates between infer-
ring the most probable spatial and temporal locations of the
ROIs and optimizing the model parameters. Second, consid-
ering that most of the video frames and the regions in each
frame contain redundant or irrelevant information for recog-
nizing FLLs, the automatic detection of optimal locations of
the ROIs is made very efficient by a novel data-driven infer-
ence method, which combines the spatial and temporal prun-
ing techniques to disregard less discriminative frames and re-
gions. The optimal ROI locations are then determined by dy-
namic programming. Last but not least, a new region repre-
sentation for ROIs is presented to capture the important and
relevant ultrasonic characteristics of FLLs, which is not nec-
essarily limited to our framework.

We apply our method on a new dataset (namely SYSU-
CEUS dataset) we collected and made public, which contains
in total 353 CEUS video sequences of three types of FLLs
(186 HCC, 109 HEM and 58 FNH), and is, to the best of our
knowledge, the largest dataset in the literature. The experi-
mental results demonstrate that our method achieves promis-
ing performance without manual interactions.

2. OUR MODEL
2.1. Region representation
The accurate classification of FLLs highly depends on the
representation of the characteristics of the lesion regions (e.g.,
internal echo, morphology, edge, echogenicity and posterior
echo enhancement). However, one single ROI R is often in-
sufficient to capture all the ultrasonic characteristics. For in-
stance, the region inside the lesion, denoted as R−, can cap-
ture the internal echo of the FLL; the lesion region R can be
used to observe the boundary and the morphology of the FLL;
the tissue area surrounding the lesions, denoted as R+, can
be used to measure the posterior echo enhancement; and the
echogenicity of the lesion can be measured by comparing the
intensities of above regions. Therefore, given an ROI R, the
regions R− and R+ can be obtained by shrinking and enlarg-
ing R by a small factor, respectively. We propose to describe
the characteristics of the lesion region as following:
f(R) = [f t(R−), f t(R), f t(R+), fd(R−, R), fd(R,R+)] (1)

where f t extracts the appearance features of each region,
such as the widely-used Grey Level Co-occurrence Matrix
(GLCM) and Local Phase (LP); fd calculates the mean in-
tensity difference of two regions. Consequently, the con-
catenation of all these features, f(R), captures all kinds of
ultrasonic characteristics of region R.
2.2. Model representation
Given a CEUS video sequence x, y is the corresponding class
label of the FLL in this video, ranging over a finite set Y (e.g.,

Y={HCC, HEM, FNH}). We assume that the FLL can be
compactly represented by a set of ROIs (intuitively, the most
discriminative regions for distinguishing different FLLs),
{R1, R2, . . . , Rm}, in three vascular phases, the arterial, por-
tal venous, and late phase. Each ROI Ri is a region extracted
from video frame ti, at spatial location pi = (xi, yi, si),
where xi, yi, si are the coordinates and scale of Ri. The
latent variables h = {h1, h2, . . . , hm}, where hi = (pi, ti),
take values from a finite set Hi of all possible ROI locations.
Given a video x, its corresponding class label y, and latent
variables h, the conditional probability of the recognition
problem is defined as,

p(y|x;ω) =
∑
h∈H

p(y,h|x;ω)

=

∑
h∈H exp(ωT · ψ(x,h, y))∑

ŷ∈Y
∑

h∈H exp(ωT · ψ(x,h, ŷ))

(2)

where ω is the model parameter vector, H = H1 ×H2 × · · · ×
Hm, and ψ(x,h, y) is a feature function depending on video
sequence x, class label y, and latent variables h. We then
define ωT · ψ(x,h, y) as the combination of two potentials,

ωT · ψ(x,h, y) =
∑
i∈m

αT
i · φu(x, y, hi)

+
∑

(i,j)∈E

βT
i,j · φp(x, y, hi, hj)

(3)

where φu(·) is the unary potential function of variable hi and
φp(·) the pairwise potential function of (hi, hj). E is the set
of neighboring latent variables (defined for the pairs of tem-
porally adjacent ROIs).

1) Unary potential αT
i · φu(x, y, hi): This singleton po-

tential function φu(·) models the compatibility between class
label y and appearance of region Ri (note that Ri = x(hi)).

αT
i · φu(x, y, hi) =

∑
a∈Y

∑
b∈Hi

αa
i · δy(a) · δhi(b) · f(x(hi)) (4)

where f(x(hi)) is the feature vector describing the appear-
ance of the region, as defined in section 2.1. The indicator
function δy(a) is equal to 1 if y = a, 0 otherwise. Similarly,
δhi(b) is equal to 1 if hi = b, 0 otherwise. The parameter αi

is simply the concatenation of all αa
i .

2) Pairwise potential βT
i,j · φp(x, y, hi, hj): The potential

function φp(·) models the compatibility between class label
y and the temporal transition of a pair of neighboring latent
variables (hi, hj).

βT
i,j · φp(x, y, hi, hj) =

∑
a∈Y

∑
b∈Hi

∑
c∈Hj

βa
i,j · δy(a) · δhi(b) · δhj (c) · f

p(x, hi, hj)

(5)

where fp(·) includes two components: the appearance vari-
ance feature, measuring the difference between f(x(hi)) and
f(x(hj)), and the spatial displacement feature, measuring the
Euclidean distance between the spatial coordinates of hi and
hj . The parameter βi,j is simply the concatenation of all βa

i,j .



2.3. Learning
Given a training set D = {(x1, y1), . . . , (xn, yn)}, the model
parameter ω can be learned by maximizing the conditional
log-likelihood on the training samples:

ω∗ = argmax
ω
L(ω) = argmax

ω

N∑
i=1

Li(ω)

= argmax
ω

N∑
i=1

log p(yi|xi;ω)

= argmax
ω

N∑
i=1

log(
∑
h∈H

p(yi,h|xi;ω))

(6)

where Li(ω) denotes conditional log-likelihood of the ith

training sample (defined in Eq(2)) and L(ω) conditional log-
likelihood of the whole training set. The objective function is
not concave due to the latent variables h. We adopt the latent
structural SVM framework [6, 7], which alternates between
inferring latent variables h and optimizing model parame-
ter ω. The problem of inferring h can be solved efficiently
using a data-driven inference algorithm (Sec. 2.4), and the
parameter optimization is a standard structural SVM training
problem, solved by the cutting-plane algorithm. We use the
one-vs-one binary classification strategy for the multi-class
problem, and repeat the above two steps until convergence.

Given a learned model, the classification is achieved by
picking the FLL class with the highest SVM score given the
optimal locations of the ROIs, which are also inferred during
the classification:

y∗ = argmax
y∈Y

max
h∈H

ωT · ψ(x, y,h) (7)

2.4. Data-driven inference
The inference task is to find the optimal locations of the ROIs
(i.e., the latent variables h). However, the searching space
will be very large if we consider all regions in all frames.
Thus, we propose a data-driven inference algorithm, which
combines effective spatial and temporal pruning techniques
to disregard less discriminative frames and regions. The op-
timal locations of the most discriminative ROIs can then be
determined using dynamic programming in a limited space.

1) Temporal pruning: In a CEUS video, the appearance
of ultrasound frames often varies slowly and smoothly ac-
cording to the hemodynamic, and the most discriminative
frames are usually those with the largest contrast changes
compared with neighboring frames. Thus, a small set of
candidate frames, which have local maximum of the con-
trast change, are automatically selected. In particular, for
each frame It, (t = 1, · · · , T ) in a video x, we compute the
contrast feature vt from the co-occurrence distribution Ct

defined over It [8]. Let ∇v be the gradient of the contrast
vector v = [v1, v2, . . . , vT ], the candidate frame set B is
formed by finding the frames at the local maximum of∇v.

2) Spatial pruning: After temporal pruning, we also prune
the less important regions by considering two priors: saliency
prior and location prior. First, we believe that salient regions
(e.g., having higher contrast or containing typical structures)

have more discriminative information, and thus are more
likely to be candidates of ROIs. Second, we observe that
FLLs often appear in or close to the center of the images,
probably because a skilled ultrasound operator usually places
the liver area in the middle of the display. According to these
two observations, we evaluate all the regions with different
scales in each candidate frame I ∈ B (sliding window proto-
col), and only select the regions with prior probability larger
than a threshold τ as ROI candidates. The prior probability
of a region r being an ROI is,

p(r) = S(r)N (Cr|CI , σ) (8)

where S(r) is the normalized mean saliency of the region r in
the saliency map S computed, e.g., by the quaternion-based
spectral saliency method [9], on image I . Cr and CI are the
centers of region r and image I , respectively. N (Cr|CI , σ)
is a Gaussian distribution.

It is worth noting that the spatial pruning in the last two
vascular phases (portal and late) can be more aggressive. This
is because the contrast between FLLs and normal tissues is of-
ten very low, and the locations of FLLs do not change much
since the arterial phase. Thus, in the last two phases, we only
search the regions in a spatial neighborhood around the lo-
cations of ROI candidates found in the arterial phase. Fi-
nally, given the model parameters and the observations, the
latent variables h = {h1, h2, . . . , hm} form a hidden Markov
model, and can be solved by the Viterbi algorithm [10].

3. RESULTS
We test our method on the SYSU-CEUS dataset collected
from the First Affiliated Hospital, Sun Yat-sen University 1.
The equipment used was Aplio SSA-770A (Toshiba Medical
System). The dataset consists of three types of FLLs: 186
HCC, 109 HEM and 58 FNH instances (i.e., 186 malignant
and 167 benign instances). All these instances with resolution
768×576 were taken from different patients, with large varia-
tions in appearance and enhancement patterns (e.g., size, con-
trast, shape and location) of FLLs. We adopt the 5-fold cross
validation training strategy and the sensitivity for each class
and mean accuracy as the evaluation criteria, similar to [4]. In
our implementation, we extract four statistics (i.e., Contrast,
Correlation, Energy, Homogeneity) of GLCM [8] with four
orientations (θ = 0o, 45o, 90o, 135o), and one distance “1”,
to represent the texture feature f t (Sec 2.1). Three scales of
regions (i.e., 64× 64, 128× 128, 200× 200) and step length
20 are used for sliding windows, and τ = 0.6 and σ = 0.5 are
used for spatial pruning. The experiments are carried out on
a PC with Core I7 3.4GHz CPU, and the average processing
time for a 4-min CEUS video is about 100 seconds (dozens
of minutes without spatial and temporal pruning).

We first report the sensitivities and mean accuracies of our
method in differentiating benign and malignant FLLs in Ta-
ble. 1. The average accuracy (89.7%) is comparable, if not
superior, to the results reported in previous studies on smaller

1https://github.com/lemondan/Focal-liver-lesions-dataset-in-CEUS



SensBenign SensMalignant Accuracy
Ours 85.7% 93.4% 89.7%

Table 1. Sensitivities and mean accuracies on characterizing
benign and malignant FLLs. Sens means the sensitivity of the
specific class.

SensHCC SensHEM SensFNH Accuracy
DDI 88.9% 81.0% 63.6% 82.4%

manual 86.1% 85.7% 72.7% 83.8%
bruteforce 83.3% 80.1% 36.4% 75.0%
baseline 78.9% 22.0% 10.3% 49.9%

Table 2. Sensitivities and mean accuracies in the different
experiment settings.

datasets [4, 5]. The second experiment in Table. 2 shows the
effectiveness of our data-driven inference algorithm by alter-
ing the procedure to determine the ROIs. Our data-driven
inference algorithm (“DDI”) is compared with 1) “manual”:
the ROI of each instance in the arterial phase is manually se-
lected and the inference only performed in the portal and late
phase; 2) “bruteforce”: the liver region is labeled and the op-
timal ROIs are searched in the entire region of liver, without
pruning; 3) “baseline”: the ROIs are randomly selected in
the images of three phases. The results demonstrate that our
fully automatic inference algorithm achieves comparable per-
formance to the “manual” method, and performs better than
“bruteforce” and “baseline”. Note that the performance of our
algorithm on FNH is worse because the amount of training
data of FNH is relatively small.

Finally, in Table.3 we compare the region representa-
tion of our framework with other state-of-the-art methods:
Multiple-ROI [11], ROIposterior [12] and ROIout [13]. Each
region representation is tested with three most popular low-
level features used for the ultrasound image: GLCM, Law’s
texture, and Local Phase, similar to [11]. Note that we ignore
the shape features because FLLs often show a wide variety
of shapes or have unclear boundaries due to the low contrast.
We manually select ROIs in three phases as required in pre-
vious works (note here we do not consider the performance
of the inference algorithm), and use linear SVM as the clas-
sifier. The results show that our region representation obtains
superior performances in general.

4. CONCLUSIONS
In this work we propose a fully automatic computational
framework for characterizing different types of FLLs in
CEUS, which effectively combines the diverse information
of spatial and temporal enhancement patterns. Besides, a
weakly supervised learning algorithm is utilized, which alter-
nates between inferring the latent variables (i.e. the locations
of ROIs) and optimizing the model parameters. A data-driven
inference algorithm is then proposed to efficiently deter-
mine the optimal locations of ROIs. The method is shown
to achieve promising results and have the potential of being
developed for real-time clinical applications. In the future, an
interactive system will be developed to allow the radiologists

SensHCC SensHEM SensFNH ACC1
[11]GLCM 85.9 % 75.9% 36.2% 74.7%
[12]GLCM 88.1% 67.5% 51.7% 75.8%
[13]GLCM 82.1% 61.1% 34.4% 67.8%
OursGLCM 87.2% 83.5% 67.2% 82.7%
[11]Law′s 82.7 % 75.9% 72.4% 78.9%
[12]Law′s 75.6% 77.7% 62.0% 74.2%
[13]Law′s 69.7% 72.2% 56.9% 68.4%
OursLaw′s 84.3% 87.2% 67.6% 82.4%

[11]LP 85.9 % 67.5% 63.7% 76.5%
[12]LP 80.0% 69.4% 55.1% 72.7%
[13]LP 78.9% 50.9% 48.2% 65.2%
OursLP 86.1% 73.4% 63.8% 78.3%

Table 3. Comparisons of region representation methods by
applying different feature descriptors.

to revise the intermediate output, e.g., the locations of ROIs,
to improve the accuracies.
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