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ABSTRACT
Similar to language, understanding an image can be considered as
a hierarchical decomposition process from scenes to objects, parts,
pixels, and the corresponding spatial/contextual relations. How-
ever, the existing convolutional networks concentrate on stacking
redundant convolutional layers with a large number of kernels in a
hierarchical organization to implicitly approximate this decomposi-
tion. This may limit the network to learn the semantic information
conveyed in the internal feature maps that may reveal minor yet
crucial differences for visual understanding. Attempting to tackle
this problem, this paper proposes a simple yet effective tree convolu-
tion (TreeConv) operation for deep neural networks. Specifically, in-
spired by the image grammar techniques [73] that serve as a unified
framework of object representation, learning, and recognition, our
TreeConv designs a generative image grammar, i.e., tree generation
rule, to parse the hierarchy of internal feature maps by generating
tree structures and implicitly learning the specific visual grammars
for each object category. Extensive experiments on a variety of
benchmarks, i.e., classification (ImageNet / CIFAR), detection &
segmentation (COCO 2017), and person re-identification (CUHK03),
demonstrate the superiority of our TreeConv in both boosting the
accuracy and reducing the computational cost. The source code
will be available at https://github.com/wanggrun/TreeConv.
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1 INTRODUCTION
Achieving remarkable success on various vision tasks, deep con-
volutional neural networks (DNNs) have been widely studied and
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Figure 1: An example parse tree of grammatically recognizing im-
ages. As shown, the parse tree covers a variety of visual concepts,
including objects (i.e., dog and person), actions (i.e., hug), and back-
ground (i.e., “bkg”), which accord with human perception. The cor-
responding heatmap denotes the parsed visualization.
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Figure 2: An overview of our TreeConv operation. Given the in-
put feature maps, our TreeConv first generates constituency-based
parse trees, and then performs convolution with redundancy reduc-
tion for different nodes in the corresponding scales. The output fea-
ture maps are obtained by fusing the above convolved results.

improved by introducing more powerful architectures (e.g., ResNet
[15]) and effective layers (e.g., [6]). However, most of these works
still rely on the standard convolutional operation, i.e., vanilla con-
volution, which regards the input image / feature maps within
each DNN layer as 2D-sequential signals for processing through
a sliding-window fashion. Therefore, all the regions of input fea-
ture maps are supposed to be indistinguishable and convolved by
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the same convolutional kernel. This operation may ignore the un-
derlying structure within the input image / feature map, which is
conceptually hierarchical rather than strictly sequential.

To overcome this limitation, sufficient convolutional layers with
a large number of hidden neurons need to be stacked up to implicitly
encode the hierarchical structure of the input image. However, this
is inconsistent with human perceptions, and also inefficiency in
capturing long-term dependencies as well as containing spatial
redundancies [2, 3].

According to the theory of image grammar [73], the semantic
content of the input image / feature map can be represented / gen-
erated by a set of grammar rules, i.e., visual grammars, which is a
powerful tool to model the high-level human knowledge for spe-
cific domains in a hierarchical and compositional manner. These
domains include the decompositions of scenes [12], semantic rela-
tions between humans and objects [65], and dependency of human
parts with attributes [58]. Fig. 1 is a typical example of how a scene
image (sampled from ImageNet [39]) can be parsed into a hierar-
chical tree with nodes representing regions (e.g., a dog, a person,
and a region of interaction “hugging”) and edges representing the
relation between different regions. As pointed out by the existing
theories [25, 27, 45, 46, 63], this hierarchical tree structure also ex-
ists in the internal feature map and is considered to be beneficial for
being integrated to enhance the network capacity of deep models.

Due to the lack of annotations, reconciling the convolutional
operation finely with the tree structure generated from human per-
ceptions is a fundamental yet challenging problem. Intuitively, one
straightforward way is to manually annotate a hierarchical struc-
ture (e.g., tree) for each image as a guide. However, this is infeasible
for the following two reasons: i) the annotation is extremely expen-
sive; ii) the annotation usually has an ambiguity, i.e., an image may
have more than one way of hierarchical decomposition.

Attempting to overcome the limitation of the convolutional oper-
ation and implicitly learn the visual grammar for decomposing the
input image / feature map into a hierarchical structural representa-
tion, we propose a novel tree convolution (TreeConv) operation for
improving the CNNs via the guidance of visual grammars within
each DNN layer. Specifically, our TreeConv includes three main
steps: i) parsing the input feature maps by using trees via a top-
down parsing; ii) resizing the tree nodes to different scales for
redundancy reduction and convolving them by vanilla convolu-
tions; iii) fusing the convolved nodes from the bottom up to form
the output feature maps. Fig. 2 illustrates the above three steps.
According to our observation, the hierarchical features seem to be
ordered regularly, i.e., they are sorted by the fineness, implying
there may be some knowledge of visual grammar implicitly learned
by our model. Moreover, as a by-product, the automatically sorted
hierarchical features enable us to reduce the redundancy of the
input feature maps and thus greatly reduce the computational cost,
compared with the vanilla convolution.

Overall, the main contributions are two-fold. First, we propose
a novel convolutional operation named TreeConv to enable the
ability of implicitly learning semantic information (i.e., visual gram-
mars) about hierarchical human perception within each DNN layer.
This is beneficial for alleviating the problems raised by CNNs, such
as inconsistency with human perception and inefficiency in captur-
ing long-term dependencies. Second, thanks to the good property

of hierarchical convolution, our TreeConv is able to reduce the
network redundancy of existing state-of-the-art network archi-
tectures while improving their discriminative power. Extensive
experimental results on a variety of benchmarks (i.e., ImageNet
classification, COCO 2017 detection and segmentation, CUHK03
person re-identification, and CIFAR recognition) demonstrate the
superiority of our TreeConv.

2 RELATEDWORK
Trees in Neural Networks: Existing works suggest that introduc-
ing structure information into CNNs is beneficial for many machine
learning tasks, such as image classification [38], semantic segmen-
tation [27, 63], object detection [45, 46], language processing [35],
knowledge discovery and data mining [23, 72], and general AI sys-
tems [10]. However, these works have two drawbacks. First, the
structures they use are handcrafted and fixed. Second, they only
consider the hierarchy of input images while ignoring the hierar-
chy of internal feature maps. Beyond CNNs and computer vision,
many works on grammar induction are based on RNNs and natural
language modeling. Similar to that in CNNs, recent results suggest
that introducing structure information into RNNs is also benefi-
cial [30, 41, 59]. For example, [42] showed that LSTMs with tree
structures perform better than standard LSTMs in a wide range of
language tasks.

Visual Grammar: As a topic of interest in neural language for
many years, grammar models [12, 58, 65, 73] have been applied to
solving the computer vision problems for their expressive capa-
bility and human-perception consistency in modeling structures
and relations of semantic contents inside the input image. Briefly,
the grammar models can be coarsely divided into two variations:
phase structure grammar (PG) and dependency grammar (DG). In
the PG, the constituency relation is defined to ensure each node
must geometrically contain all of its constituents for representing
the compositional structures [9]. However, it has difficulty in han-
dling large deformations of objects. In the DG, constituent parts
do not need to be contained within their parents but instead are
constrained by an adjacency relation [13]. The DG advances in rep-
resenting objects with large articulated deformations, but cannot
support the coarse-to-fine summarization. The recursive cortical
networks [11] have been proposed with better data efficiency in
learning, which adopts the AND-OR grammar framework [73]. The
recent proposed AOGNet [25] advances existing works by impos-
ing compositional grammatical architectures for deep learning and
presents deep AND-OR Grammar networks. However, AOGNet
has several drawbacks, including handcrafted grammar, debatable
tree nodes, and the unexplainable channel-wise grammatical rules.
Please see Section 3.5 for more details.

Reducing Network Redundancy: To improve the network
efficiency, most of the existing works focus on improving the con-
nectivity [15, 21, 75], reducing the channels [18, 40], and using
depth-wise/group convolutions [5, 64]. Some recent works start to
consider removing spatial redundancy [2, 3]. However, these meth-
odsmanually define spatial redundancy. In contrast, the redundancy
is naturally obtained as a by-product in our TreeConv, thanks to
the good property of our implicitly learned visual grammars.
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Figure 3: Detail of our TreeConv. ds: downsampling; us: upsampling; conv: 3×3 convolution. x-scale: The feature maps are first
downsampled by x times and then convolved by vanilla convolution before being upsampled by 1/x times. chw, 1hw, c/4*hw:
shapes of the featuremaps. Here, ρ0, ρ1, and ρ2 are obtained by: ρ0 = 1

1+exp(W 0S0)
, ρ1 = 1

1+exp(W 1S1)
, ρ2 = 1

1+exp(W 2S2)
, respectively.

Attention Based Model: Through capturing the long depen-
dencies by focusing on the most important part of the input data,
attention-based models and gate mechanism (e.g., LSTM [17] and
gated convolution [60]) have achieved remarkable success in var-
ious artificial intelligence and data mining tasks, e.g., machine
translation [48], graph embedding [8], generative modeling [62],
visual recognition [19, 20, 53, 55], and knowledge discovery and
data mining [32, 47, 56, 71]. In contrast to these proposed attention
mechanisms, our proposed TreeConv considers the input data as
a whole for grammatical modeling within each DNN layer to im-
plicitly capture the long-range dependencies of input data via a
hierarchical decomposition fashion. This is beneficial for alleviating
the problems raised by attention mechanisms, such as inconsistency
with human perception and inefficiency in capturing long-term de-
pendencies.

3 TREE CONVOLUTION
3.1 A Rule of Tree Generation
Instead of predefining concrete visual grammars during the net-
work initialization, we design a generative image grammar (i.e.,
tree generation rule) to implicitly learn the specific visual gram-
mars for each object category from sufficient training data (e.g.,
ImageNet) in a purely data-driven manner. Inspired by hierarchical,
compositional, and reconfigurable with lateral connections of the
phrase structure grammar [9], the tree generation rule is defined
as follows:

Definition. (Tree Generation Rule) Let S0 denote a root node,
which is fed with input feature maps. Then, a constituency-based
parse tree is generated by:

1. S0 → S1L , S
0 → S1R , where the left child S

1
L is a terminal node

which is large-region, informationally redundant, and contextually
global.

2. S1R → S2L , S
1
R → S2R , where the left child S2L is also a ter-

minal node which is more informationally redundant and more
contextually global than S2R .

3. S2R → S3L , S
2
R → S3R . Both S3L and S3L are terminal nodes. S3R is

most informative in all nodes, usually capturing the finest details
of the input feature maps.

Flexible visual grammars. By using the predefined tree gener-
ation rule, a tree is generated. Although the structure of this tree is
handcrafted and fixed during the training and testing, the nodes of
this tree can be connected to different regions for different input
feature maps in an adaptive, flexible, and personalized way. More
importantly, we do not impose any predefined concept on these tree
nodes. We argue that each node of the tree may implicitly learn to
represent a semantic concept for each object category. As in Fig. 4,
for the category “dog”, S1L represents the background; S2L represents
the dog head; S2L means the dog body; S3L is the dog mouth. While
for the category “bottle”, the tree nodes have completely different
meanings. Hence, although the main structure of the tree is always
fixed, the learned visual grammars are capable of being flexible and
implicit for different object categories.

Increasing tree depth.Our definition empirically sets the depth
of the tree as three. Actually, S3R can be further parsed into child
nodes to increase the tree depth. However, according to the defini-
tion, the information in S3R is fine and detailed. However, parsing
S3R further (i.e., increasing the tree depth) may lead to the over-
parsing of feature maps, while reducing tree depth may lead to the
under-parsing of feature maps.

Our TreeConv operation consists of three steps (see Fig. 3), i.e.,
i) parsing the input feature maps by using the trees via a top-down
manner, ii) reducing the redundancy of the nodes by convolving
them in different scales, and iii) fusing the nodes via a bottom-up
fashion to form the output feature maps. Please see Section 3.2 -
3.4 for more details.

3.2 Parsing Feature Maps
As shown in Fig. 3, the parsing process starts with the root node
S0 ∈ Rc×h×w , which is exactly the input feature maps. S0 is first
parsed into a left child S1L ∈ R

c×h×w and a right child S1R ∈ R
c×h×w .

According to the tree generation rule, the left child S1L occupies the
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dominant area of S0. To model this property, we use ρ0 to denote
the component ratio of S1L in S0 and define ρ0 as:

ρ0 =
1

1 + exp(W 0S0)
, (1)

whereW 0 ∈ R1×c , S0 ∈ Rc×(hw ), and ρ0 ∈ R1×(hw ). Actually, Eq.
(1) can be implemented by using a simple 1×1 vanilla convolution
followed by a sigmoid activation function. With the definition of
ρ0, the left child S1L and right child S1R of S0 can be computed by:

S1L = ρ0S0, S1R = S0 − S1L . (2)

By analogy, S1R can be further parsed into two child nodes S2R and S2L
by defining ρ1 = 1

1+exp(W 1S1
R )

whereW 1 ∈ R1×c and S1R ∈ R
c×(hw ).

We have S2L = ρ1S1R , S
2
R = S1R − S

2
L . Furthermore, S2R can be parsed

into two child nodes S3R and S3L by defining ρ
2 = 1

1+exp(W 2S2
R )

where

W 2 ∈ R1×c and S2R ∈ R
c×(hw ). We have S3L = ρ2S2R , S

3
R = S2R − S

3
L .

Fig. 3 illustrates the process of parsing the input feature maps by
using a tree. The parsing has two good properties, i.e., normalization
and orderliness.

Normalization. The parsed nodes sum up to the input feature
maps, i.e., S0 = S1L + S

2
L + S

3
L + S

3
R . This property can be proved

by: S1L + S
2
L + (S

3
L + S

3
R ) = S1L + (S

2
L + S

2
R ) = (S

1
L + S

1
R ) = S0. The

normalization property is in favor of the tree generation rule by
guaranteeing that there is no information loss during the parsing
process.

Orderliness. As the tree depth increases, the effective region of
the right children becomes smaller and smaller. This property can be
proved by the fact SdR = (1−ρ

0)(1−ρ1) · · · (1−ρd−1)S0, considering

0 < 1− ρd = exp(W dSd )
1+exp(W dSd )

< 1. The orderliness property is in favor
of the tree generation rule by limiting the tree depth to be 3 to
avoid too-small-region nodes (i.e., over-parsing). Besides, it also
encourages S3R to be small-region and irredundant.

3.3 Convolution with Redundancy Reduction
According to the tree generation rule, the nodes close to the parent
node capture global layout and contain spatially redundant infor-
mation, while the nodes far away from the parent node capture
fine details and contain less redundant information. This rule is fol-
lowed and obeyed in a data-driven manner. Based on this effective
rule, we design an effective scheme to reduce the redundancy in
these nodes.

According to [3, 29], the feature maps with redundant infor-
mation can be downsampled into a smaller size. Motivated by
these works, we downsample S1L ∈ R

c×h×w , S2L ∈ R
c×h×w , and

S3L ∈ R
c×h×w by a factor of 8, 4, and 2 respectively and have:

˜S1L = д8(S
1
L),

˜S2L = д4(S
2
L),

˜S3L = д2(S
3
L), (3)

where дm (·) is a downsampling function with a shrinking factor of
m. Then, the new set of downsampled nodes {S̃1L , S̃

2
L , S̃

3
L , S

3
R } are fed

into the vanilla convolution. Formally, letW ∈ Rc
′×c×k×k denote

a k ×k convolution kernel where c ′ is the output channels. Y is the

output of the convolution. We have:

Ỹ 1
L = fW1

L
(S̃1L) ∈ R

c ′× h8 ×
w
8 , Ỹ 2

L = fW2
L
(S̃2L) ∈ R

c ′× h4 ×
w
4 ,

Ỹ 3
L = fW3

L
(S̃3L) ∈ R

c ′× h2 ×
w
2 , Y 3

R = fW3
R
(S3R ) ∈ R

c ′×h×w ,
(4)

where fW (·) is a k × k vanilla convolution withW as its convo-
lutional filter. Next, we upsample Ỹ 1

L ∈ R
c ′× h8 ×

w
8 , Ỹ 2

L ∈ R
c ′× h4 ×

w
4 ,

and Ỹ 3
L ∈ R

c ′× h2 ×
w
2 to recover their original size c ′ × h ×w :

Y 1
L = G8(Ỹ

1
L ), Y

2
L = G4(Ỹ

2
L ), Y

3
L = G2(Ỹ

3
L ), (5)

where Gm (·) is a upsampling function with a expansion factor of
m. Finally, we obtain the convolved feature maps {Y 1

L ,Y
2
L ,Y

3
L ,Y

3
R }.

Please refer to Fig. 3 for more details.
It may be argued how the tree generation rule is obeyed, e.g., why

the redundancy of S1L is larger than that of S3R in our TreeConv.
Actually, although the learning process is unsupervised in our for-
mulation (i.e., Eq. (3)), we consider the redundancy has been ordered
as S1L > S2L > S3L > S3R . Hence, we downsample S1L , S

2
L , and S

3
L by a

factor of 8, 4, and 2, respectively. Guided by this human knowledge
(or influenced by the factors of downsampling), the network auto-
matically encourages the redundancy of S1L to be the largest and
the redundancy of S3R to be the smallest.

3.4 Fusing Feature Maps
Combining the convolved feature maps to form the output can be
achieved by chasing the reversed path of the parsed tree from the
bottom up. Specifically, we first combine (Y 3

L , Y
3
R ) to form Y 2

R ; then,
we combine (Y 2

L , Y
2
R ) to form Y 1

R ; finally, we combine (Y 1
L , Y

1
R ) to

obtain the final outputO . Mathematically, this process is equivalent
to concatenate {Y 1

L ,Y
2
L ,Y

3
L ,Y

3
R } with respect to the channel axis in

order, then perform a 1×1 vanilla convolution for channel fusion.
Fig. 3 shows the process of node fusion.

3.5 Comparison With Previous Works
The recently proposed AOGNet [25] also attempts to combine the
grammatical model with neural architectures. They design a hand-
crafted grammatical rule, based on which they manually design
the network architecture. AOGNet has several limitations. First,
their grammatical rule is handcrafted, fixed, and lacks theoreti-
cal explanation, which may reduce the capacity of the network.
Second, AOGNet considers a concatenation as an AND operation
and a summation as OR operation, which may be inappropriate.
Mathematically, it is appropriate to consider an OR operation as
a summation with some probability because an OR operation is
defined as a switch to determine which path to go ahead. How-
ever, in a DNN, a summation and a concatenation share similar
formulations, i.e., they are written as w1x + w1y and w1x + w2y
respectively. Whether it is appropriate to formulate an AND node
as weighted summation is open to question. Third, the AND-OR
operations in AOGNet are performed on the channel axis but NOT
spatial axis of feature maps, which may reduce the explainabil-
ity and interpretability of the model. Actually, so far, finding the
meaning of different channels is still an active research topic. In
contrast to AOGNet, our TreeConv utilizes trees to grammatically
recognize the images. Our trees are adaptive, flexible, and person-
alized, i.e., our trees in different images are connected to different
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Figure 4: Visualization of the trees, where the brighter regions are effective regions.

regions adaptively (see Section 4.2). More importantly, we do not
impose any predefined concept on these tree nodes. We argue that
each node can hold a special concept for each class of objects after
being learned on a dataset. Hence, the grammars we learned are
flexible. Besides, our TreeConv is performed on the spatial axis by
parsing the images into different regions according to their level
of abstraction, making our TreeConv more consistent with human
perception.

4 EXPERIMENTS
4.1 Explainable Visualization on ImageNet
To explore what grammars our TreeConv has learned implicitly,
we first visualize the trees of the TreeConv on the ImageNet [39]
classification dataset of 1k categories, which is one of the largest
benchmarks in computer vision. The models are trained on the
1.28M training images. We select the widely used and representa-
tive ResNet50 as a baseline and follow the standard experimental
protocol [16] for training.

In the conventional works on neural network explanation, in-
terpretable visualization is challenging because the feature maps
have many channels. Directly plotting the feature maps lacks inter-
pretability. To tackle this problem, many complicated techniques
have been proposed, e.g., CAM [70]. In contrast, interpretable vi-
sualization is straightforward in our TreeConv. We can visualize
the trees for explanations by printing the component ratio defined
in Eq. (1) with respect to the input feature maps (i.e., ρ0 , (1 − ρ0)ρ1 ,
(1− ρ0)(1− ρ1)ρ2, and (1− ρ0)(1− ρ1)(1− ρ2), or called explanation maps
for simplification.) The meaning of the explanation maps can be
found in the bottom right corner of Fig. 3. In Fig. 4, we randomly

sample six images from the ImageNet val set and visualize their
explanation maps in the last convolutional layer of ResNet50.

Category-based grammars. We have observed some visual
grammars implicitly learned by our TreeConv, especially category-
based grammars. For example, Fig. 4 (a) and (c) are images of
two dogs. Surprisingly, the explanation maps of these two im-
ages share the same contents, i.e., both trees are organized as
(backдround, (doд head, (doд body,doд mouth))). Moreover, Fig. 4
(d) also contains a dog hugged by a person. The sub-tree contain-
ing the dog in the explanation maps in Fig. 4 (d) is organized as
(backдround, (doд head,doд body)), which is similar to that of the
dogs in Fig. 4 (a) and (c). In contrast, the explanation maps of a
bottle (Fig. 4 (b)) is quite different from that of the dogs. These
comparisons verify that our TreeConv has learned some united
category-based grammars for different object categories.

Personalized trees.We can find that our trees in different im-
ages focus on different regions adaptively, demonstrating that our
trees are adaptive, flexible, and personalized.

Human perception. We have observed that the hierarchy of
some explanation maps is consistent with human perception. The
backgrounds are first parsed. Then, the informative regions fea-
tured by the objects are gradually discovered and parsed later. For
example, in Fig. 4 (d), the background, the head of the dog, the body
of the dog, and the person are hierarchically filtered out one by
one, which is different from conventional works on neural network
explanation that just filter out the background.

Discussion. In Section 3.2, the orderliness property indicates
that a sparser matrix ρ corresponds to finer details and lower re-
dundancy. We provide more explanations here. Theoretically, the
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wavelet theory [2] has proved that the global information (i.e., low-
frequency information) is redundant in an image, while the finer
details (i.e., high-frequency information) are sparse. Therefore, a
sparser matrix ρ would correspond to finer details and lower redun-
dancy. Biologically, the human perception system also considers
the global dependencies as redundant and scans them quickly, and
then pays attention to the sparse finer details. Experimentally, we
also observe the finer details correspond to a sparser matrix ρ, as
shown in Fig. 4.

4.2 ImageNet Classification
To demonstrate the effectiveness of our TreeConv, we further com-
pare our top-1 accuracy of TreeConv with that of the most rep-
resentative CNNs on the ImageNet classification to validate the
effectiveness and generalization performance of our TreeConv. For
a fair comparison, we examine top-1 accuracy on the 224×224
single/center-crop-single-scale images. Our baseline model is the
representative ResNet50 and EfficientNet-B0 [44]. Note that, the
top-1 accuracy of the baseline equals to the official results and the
model zoo (Caffe; Tensorflow; Pytorch1). For our Tree-ResNet50, all
the 3 × 3 convolution in the standard ResNet50 are replaced with
TreeConv. The Tree-EfficientNet-B0 shares the same replacement.
Moreover, we also compare our method with the recent state-of-the-
art models, i.e., bL-ResNet50 [1], Oct-ResNet50 [3], AOGNet [25].
Best-performing attention-based methods like LRN [19], SENet [20],
non-local networks (NLN [55]), and ACNet [53] are also compared.

Compare with existing models. The comparisons in terms
of the top-1 validation accuracy are illustrated in Table 1 (a). As
depicted, our Tree-ResNet50 surpasses all the compared methods,
including state-of-the-art methods like bL-ResNet50 [1] as well as
Oct-ResNet50 [3]. More importantly, our Tree-ResNet50 performs
approximately 1.4% better than the compared standard ResNet50
(77.8% vs. 76.4%) with nearly the same parameter number. This
improvement is quite significant in ImageNet society.

Compare with attention mechanisms. Since both TreeConv
and attention-based methods have long-range dependency mod-
eling, we also compare our TreeConv with attention mechanisms
in Table 1 (a). As shown, our Tree-ResNet50 with fewer parame-
ters surpasses the best-performing attention-based methods like
NLN [55], LRN [19] and SENet [20]]. This improvement verifies the
advantage of our TreeConv over previous attention based meth-
ods in capturing long-range dependencies on large-scale image
classification benchmark.

Parameter analysis. Consistent with discussion in Section 5,
the parameter number in our Tree-ResNet50 is exactly the same
as that in ResNet-50 (25.56M vs 25.57M, see Table 1 (b)). To val-
idate the efficient learning capacity of our TreeConv, we design
a lightweight version of Tree-ResNet50 by further reducing the
channel number in both c and c ′, i.e., c ← c

4 , c
′ ← c ′

4 . We denote
this version as “Tree-ResNet50(*)”. The results in Table 1 (b) illus-
trate that Tree-ResNet50(*) obtains limited performance drop when
is compared with Tree-ResNet50 (76.2% vs 77.8%). However, the
parameter number of Tree-ResNet50(*) is nearly a half of that of
Tree-ResNet50. When compared with the lightweight competitors
such as the recently proposed Oct-ResNet26 [3], generalACNet[53],

1https://github.com/Cadene/pretrained-models.pytorch

Table 1: Comparison on ImageNet val top-1 accuracies and
parameter numbers. “attention?” is used to denote whether
a method is attention-based. d=1: depth=1.

(a) Classification Performance.
Method top-1 #params attention?
ResNet50 76.4 25.56M
MultiScale-ResNet50 76.9 25.56M
bL-ResNet50 [1] 76.9 26.2M
Oct-ResNet50 [3] 77.3 25.6M
LRN [19] 77.3 23.3M "

NLN [55] 77.2 27.7M "

SENet [20] 77.3 28.1M "
Tree-ResNet50 (d=1) 76.7 25.56M
Tree-ResNet50 (d=2) 77.3 25.56M
Tree-ResNet50 (d=3) 77.8 25.57M
Tree-ResNet50 (d=4) 77.6 25.57M

(b) Parameter analysis.
Method top-1 #params attention?
R-MG-34 [22] 75.5 32.9M
Oct-ResNet26 [3] 75.9 16.0M
generalACNet [53] 76.2 19.80M "
AOGNet [25] 73.8 4.2M
EfficientNet-B0[44] 76.3 5.28M
Tree-ResNet50(*) 76.2 13.82M
Tree-EfficientNet-B0 77.8 5.30M

(c) Computational cost analysis.
Method images/sec Memory
ResNet50 198 8.6 GB
Tree-ResNet50 151 8.8 GB
Tree-ResNet50(*) 223 8.3 GB

AOGNet [25], and EfficientNet-B0 [44], our Tree-EfficientNet-B0
achieves the best-performing accuracy with significantly fewer
parameters.

Computation complexity. To validate the efficiency of our
TreeConv, we compare our Tree-ResNet with the standard ResNet50
in terms of inference speed and memory usage. Considering the
theoretical gain of parameter numbers might not be equal to the
practical gain. We also compare with the lightweight version Tree-
ResNet50(*). For a fair comparison, all methods are trained in
the same desktop with 8 Titan Xp GPUs. As shown in Table 1
(c), our Tree-ResNet50 performs about 20% faster (151 vs 198 im-
ages/second/GPU) than ResNet50 with about 2% more (8.8GB vs
8.6GB) memory usage. The reason is that the size of feature maps
in our Tree-ResNet50 is smaller than the vanilla convolution in
ResNet50, due to the downsampling operation. Besides, our Tree-
ResNet(*) has the least computational cost, verifying the effective-
ness of our TreeConv.

Comparison with multi-scale learning. As Fig. 3 shows, our
TreeConv implicitly employs multi-scale learning by using four
feature scales (i.e., 1, 1/2, 1/4, and 1/8). To validate the superiority
of our TreeConv over multi-scale learning, we replace all the 3×3
convolution in the standard ResNet50 with four parallel branches.
In each branch, an s× downsampling, a 3×3 convolution, and an
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s× upsampling are performed in order (s ∈ {1, 2, 4, 8} respectively).
Like our TreeConv, the output channels of each branch is c ′ = c

4 .
Finally, the outputs of the four branches are concatenated, forming
the standard multi-scale learning. The result of multi-scale learning
is shown in Table 1 (a), which has a 0.9% degradation compared with
our TreeConv, confirming the effectiveness of our tree structure.

Analysis of different tree depth.According to the tree genera-
tion rule, the depth of the tree is a hyper-parameter and needs to be
empirically set as a constant during the training phase. To provide
more insights into the tree depth, we also conduct the experiment
to compare their performance on the ImageNet classification bench-
mark. As shown in Table 1 (a), Tree-ResNet50 (depth=1) performs
much worse than Tree-ResNet50 (depth=3) but still slightly better
than the baseline ResNet50. This validates the effectiveness of our
TreeConv. Tree-ResNet50 (depth=2) and Tree-ResNet50 (depth=4)
perform slightly worse than Tree-ResNet50 (depth=3), which may
be attributed to under-parsing and over-parsing, respectively. This
also illustrates that our TreeConv is somewhat insensitive to the
depth of the tree.

4.3 Analysis on CIFAR10
To demonstrate the generality of our method, we deploy TreeConv
to another best-performing architecture, i.e., DARTSNet [33]. Dif-
ferent from ResNet50, DARTSNet is not manually designed by a
human. It is automatically searched by using a neural architec-
ture search method. Note that, DARTSNet does not consist of a
vanilla convolution operation. Instead, it contains 3×3 separable
convolutions and 3×3 dilated convolutions. We replace its separable
convolutions and dilated convolutions with our TreeConv and re-
train the model. The comparison results with recent state-of-the-art
methods are presented in Table 2, showing that our Tree-DARTSNet
achieves new state-of-the-art performance.

4.4 COCO 2017 Object Detection and
Segmentation

We have demonstrated the effectiveness of our TreeConv in image
classification; next, we evaluate it on two higher-level tasks, i.e.,
object detection and segmentation, which are more in need of
learning visual grammar. Without loss of generality, we use one
of the largest detection and segmentation benchmarks, i.e., COCO
2017 [28], to evaluate the effectiveness of our TreeConv. Following
the standard protocol, we finetune the models trained on ImageNet
[39] for transferring to detection & segmentation with the frozen
BN parameters.

We conduct experiments on theMask-RCNNbaseline [14], which
uses a ResNet50-FPN backbone. Specifically, we replace all the
3×3 layers in ResNet50 with our TreeConv layers. The models are
trained in the COCO train2017 set and evaluated in the COCO
val2017 set. We report the standard COCO metrics of Average Pre-
cision (AP) for bounding box detection and instance segmentation.

Table 3 shows the comparison of our TreeConv vs. NLN [55] vs.
the standard CNN. Our TreeConv improves over standard CNN
by 1.8% box AP and 2.2% mask AP. This may be attributed to two
reasons. First, our implicitly learned visual grammar benefits the
image recognition task. Second, Our TreeConv obtains non-local
dependencies by learning a grammar that represents the whole

Table 2: CIFAR10 Analysis.

Method error #params
DenseNet[21] 3.46 25.6M
NASNet-A[75] 2.83 3.1M
AmoebaNet-A[37] 3.12 3.1M
PNAS[31] 3.41 3.2M
ENAS[36] 2.89 4.6M
DARTS[33] 2.76 3.3M
Tree-DARTS 2.68 3.3M

Table 3: Detection and segmentation on COCO 2017 with
Mask-RCNN. “attention?”: attention-based or not.

Method APbbox APmask attention?
Mask-RCNN(CNN) 38.0 34.6
Mask-RCNN(NLN) 39.0 35.5 "
Mask-RCNN(TreeConv) 39.8 36.8

Table 4: Comparison on CUHK03 Person ReID.

Method Rank-1
IDE+DaF [61] 26.4
IDE+XQ.+Re-ranking [68] 34.7
DPFL [4] 40.7
SVDNet [43] 41.5
TriNet + Era. [69] 55.5
TriNet + Era.(Our reproduction) 62.0
TriNet + Era. + Tree 66.2
TriNet + Era. + reranking 61.2
TriNet + Era. + reranking + Tree 67.4
MGN [54] 68.0
MGN + Tree 71.4

image. We have also found NLN is 0.8% box AP worse than our
TreeConv. This suggests that although NLN is also suitable for
global inference, its capacity is weaker than our TreeConv due to
inflexible-globalization, i.e., it imposes the same global information
to every pixel of a feature map. This phenomenon has also been
observed experimentally by [74] and theoretically discussed in
[34]. In contrast, our TreeConv achieves flexible-globalization by
learning flexible visual grammars.

4.5 CUHK03 Person Re-identification (ReID)
In a general sense, all the above tasks (image classification, object
detection, and segmentation) belong to visual classification since
detection and segmentation can be seen as categorizing regions and
pixels for a given image. The effectiveness of our TreeConv beyond
visual classification remains uninvestigated. In the following, we
investigate a completely different task, i.e., ReID, which is funda-
mental in video surveillance for keeping the safety of society [49–
52]. ReID refers to the problem of re-identifying individuals across
cameras. Mathematically, ReID is a matching problem rather than
a classification problem, because it requires to calculate distance
metric between two given images. As is proved by [57], learning
image grammar benefits the distance metric learning, therefore
validating the effectiveness of our TreeConv in ReID can verify the
contribution of the visual grammar learned by our TreeConv.

Research Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

909



Dataset & Metric. We conduct experiments on the CUHK03
dataset [24], which is one of the largest databases for ReID. This
database contains 14,096 images of 1,467 pedestrians. Each person
is observed by two disjoint camera views and is shown in 4.8 images
on average in each view. We follow the new standard setting of
using CUHK03 [69], where 767 individuals are regarded as the
training set, and another 700 individuals are considered as the
testing set without sharing the same individuals. For the evaluation,
the testing set is further divided into a gallery set of images and
a query set. We use the standard rank-1 as the evaluation metric.
The standard protocol [69] is employed for the training.

Result Analysis. In Table 4, we compare with the current rep-
resentative state-of-the-art models, i.e., BOW+XQDA [66], PUL [7],
LOMO+XQDA [26], IDE [67], IDE+DaF [61], IDE+XQ.+Re-ranking
[68], DPFL [4], and the newly proposed methods SVDNet [43],
TriNet + Era. [69], TriNet + Era. + Reranking [69], and the current
best-performing MGN [54]. Our baseline is [69] and MGN [54],
which use ResNet50 as the feature extractors. All the 3×3 convo-
lutions in ResNet50 are replaced with our TreeConv, forming our
models TriNet + Era. + Tree, TriNet + Era. + reranking + Tree, and
MGN + Tree. The results in Table 4 show that our models achieve
a new state-of-the-art performance, i.e., a rank-1 accuracy of 71.4%.
We can also observe that TreeConv surpasses its baseline by a clear
margin (71.4% vs. 68.0% for MGN + Tree vs. MGN). The consistent
performance gains are also obtained on improving both the TriNet
+ Era and TriNet + Era. + reranking methods. This verifies the
effectiveness of TreeConv on visual matching tasks like ReID.

5 CONCLUSION
This work presented a novel tree convolution (TreeConv) operation
to improve deep neural networks. Through explicitly modeling
the hierarchy of internal feature maps and implicitly learning the
visual grammars among them, our TreeConv not only improves the
network capability and reduces the network redundancy naturally,
but also provides explainable visualization results on ImageNet.
However, this work only focuses on implicit visual grammar learn-
ing. Can we learn the explicit visual grammar? What is the explicit
visual grammar? These questions are so difficult to answer to date.
Future works will focus on these directions.
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REPRODUCIBILITY & IMPLEMENTATION
DETAILS
In the following, we present more details of our TreeConv for third-
party reproductivity.

Number of channels. For fair comparison in terms of both
parameter number and tensor size, the output tensors c ′ in Eq. (4) is
set as c ′ = c

4 . Therefore, the parameter number in our TreeConv
is exactly the same as that in vanilla convolution. Note that the
size of feature maps in our TreeConv is smaller than that in vanilla
convolution, due to the downsampling operation in our model. It
is worth mentioning that due to the efficient learning capacity of
our tree convolution, further reducing the channel number in both
c and c ′ (e.g., c ← c

4 , c
′ ← c ′

4 ) does not affect the performance of
our model too much, while greatly reducing the computational cost
(see experiments in Section 4.2).

Downsampling and upsampling. As is discussed in Section
3.3, the feature maps with redundant information can be downsam-
pled into a smaller size to reduce computational cost. For downsam-
pling, we utilize average pooling (2, 2), (4, 4), and (8, 8), respectively,
where (k, s) means that the pooling kernel and the stride are k×k

and s, respectively. For upsampling, we have tried two kinds of
strategies, i.e., nearest interpolation and bilinear interpolation. Ac-
cording to our experiments, these two interpolations have similar
top-1 accuracies. Therefore, in our experiments, we simply pick up
the nearest interpolation.

Variants of vanilla convolutions. Our TreeConv can also be
adapted to other popular variants of vanilla convolutions such
as depth-wise, dilated, group convolution, and so on because our
TreeConv does not directly change the convolutional filter. This can
be done by simply replacing the vanilla convolution fW (·) in Eq.
(4) with other variants of convolutions (see experiments in Section
4.3).

Deploying TreeConv into backbone networks. TreeConv is
compatible with vanilla convolution and can be inserted into state-
of-the-art backbone architectures such as ResNets [15] without
special adjustment. For example, we replace all of the 3×3 con-
volutions in ResNet50, forming the Tree-ResNet50. Similarly, we
have also equipped one of the best-performing architectures, i.e.,
DARTSNet, in CIFAR10, forming Tree-DARTSNet (see experiments
in Section 4.3).
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